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Abstract: In this paper, we present new results on the interconnections between Schur stability and structured singular
values of real-valued matrices, denoted asRn×n. Most new findings are obtained for n= 2 and n= 3. These novel insights
into the relationship between Schur stability and structured singular values are developed by applying various tools from
linear algebra, system theory, and matrix analysis. Schur stability ensures that all eigenvalues lie within the unit circle
in the complex plane, which is fundamental for the boundedness and stability of system responses. Structured singular
values, on the other hand, provide a measure of robustness, stability, and performance against structured perturbations
in system parameters, offering valuable insights into the stability margins and performance limits under such uncertainties.
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1. Introduction
The Schur stable matrix A ∈ Rn, n is the one whose all eigenvalues σ(A) lie in the open unit disk. Furthermore, for

A ∈ Rn, n to be a Schur stable matrix, its spectral radius ρ(A) < 1. The concept of Schur stability is closely related to
Schur D-stability in the sense that A is Schur D-stable if and only if for each D, a positive diagonal matrix, the matrix DA
is Schur stable [1].

For a given concrete problem (see [2]) xk+1 = Axk, with A ∈ Rn, n, xk is the state of the linear dynamical system at a
given time k. The natural choice of initial state x = 0 acts as an arbitrary, on the other hand, if the linear dynamical system
has different equilibrium points, so there is a need to make a shift in the origin by an affine change of coordinates.

Stability analysis is a fundamental concept in various areas of science and, in particular, engineering. Linear
algebra plays an important role in studying the stability analysis of linear dynamical system xk+1 = Axk. For instance,
the computation of eigenvalues and singular values discusses the stability of such a system. But, once such systems are
subject to external perturbations in the form of structured or unstructured uncertainties, then one needs the computation
of structured singular values to analyze the stability and instability of such systems.
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In literature [3], the most common mathematical technique to deal with Schur stability is bi-linear transformation
[4, 5], followed by the use of Hurwitz stability tools. On the other hand, we can use bi-quadratic transformation [6] to
study and discuss the Schur stability of the linear dynamical system. There is a vast amount of literature to study Schur
stability, for instance, see [7–19] and the references therein.

A comprehensive and detailed analysis of the necessary and sufficient conditions for Schur stability, using the Schur-
Cohn criterion, is presented in [20]. The investigation into the robust Schur stability of n-dimensional matrix segments,
employing the bi-alternate product of matrices, is discussed in [21]. Furthermore, the authors demonstrated that the
problem under consideration allows us to examine and analyze the negative spectrum (the eigenvalues) in two out of three
constructed matrices, as well as the presence of the spectrum in the interval [1, ∞) in a third matrix.

The structured singular value introduced by Doyle [22] describes both the stability and performance of linear
dynamical systems. Unfortunately, the exact determination of structured singular values is NP-hard [23]. Due to this
limitation, various mathematical techniques have been developed [24–26] to specifically address the problem in a lower-
dimensional linear dynamical system.

The n-dimensional diagonal matrix is defined as:

diag(δ1, · · ·, δn) : δ1, · · ·, δn ∈ R.

For a given A ∈ Rn, n, the largest singular value is denoted by σ1(A). The uncertainty set, that is, the set of diagonal
matrices, B1, is defined by

B1 : = {diag(δ1, · · ·, δn) : δi ∈ R, ∀ i = 1, 2, · · ·, n}.

For each δ ∈ R, δ ≥ 0, we define the set Xδ as

Xδ = {diag(∆1, · · ·, ∆1, ∆2, · · ·, ∆2, · · ·, ∆n, · · ·, ∆n, ) : σ1(∆ j)≤ δ , ∀ j = 1 : n},

and ∆ j ∈ Rm j , m j , ∀ j = 1, 2, · · ·, n.
For a given A ∈ Rn, n, and B1, as defined above, the structured singular value is denoted by µB1(A). The quantity

µB1(A) = 0 if there there exists no ∆ ∈ B1 such that det(I −A∆) = 0, ∀∆ ∈ B1 : otherwise,

µB1(A) : = (min{σ1(∆) : det(I −A∆) = 0})−1, ∀ ∆ ∈ B1,

where minimum is over all perturbations ∆ ∈ B1.
The spectral radius of A ∈ Rn, n is denoted by ρ(·) and is defined as

ρ(A) : = max{|λ1|, |λ2|, · · ·, |λn|},

with λ1, λ2, · · ·, λn are the eigenvalues of matrix A. The main contribution of this article is to present some new results
on the interconnection between Schur stability and structured singular values for A ∈ Rn, n. Our results on Schur stability
are more general in the sense that they apply to both complex-valued matrices as well as the real-valued matrices.
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In this section, we recall some important properties and results on structured singular values.

2.1

2. Preliminaries results on µB1(A)

Properties of structured singular values

Some of the basic properties of structured singular values are taken from [22] (properties P1 to P4) and from [27]
(properties P5 to P8), and they are as follows:

P1: µ(αA) = |α|µ(A) for a square matrix A ∈ Rn, n.
P2: µ(I) = 1, for an identity matrix I.
P3: µ(AB)≤ σ1(A)µ(B), where σ1(·) is the largest singular value of matrix, and B is also a square matrix.
P4: µ(∆) = σ1(∆), ∀ ∆ ∈ Xδ .
P5: Let ∆0 = {λ I : λ ∈ C}, then µ(A) = ρ(A), where ρ(A) is the spectral radius of A.
P6: Let ∆ = {diag(∆1, ∆2, · · ·, ∆n) : ∆i ∈Cn, n}, then µ∆(A) = µ∆(D−1AD), where D = {diag(d1, · · ·, dn), |di|> 0}.
P7: Let ∆0 = diag(∆1, ∆2, · · ·, ∆n), ∆i ∈ Cn, n, then ρ(A)< µ(A)< σ1(A).
P8: From P6 and P7, we have that

µ(A) = µ(D−1AD)≤ in f σ1(D−1AD),

where inf is taken over D.

2.2 Results on the computation of structured singular values

Next, we recall some of the well-known results on the computation of structured singular values. There is an
alternative expression concerning the computation of structured singular values for a given A ∈Rn, n, and B1. This fact is
provided in Lemma 3.7 taken from [28], which shows that the computation of structured singular values is equivalent to
the computation of the spectral radius of an admissible perturbation from B1 times the given A ∈ Rn, n.

Lemma 1 Let A ∈ Rn, n, then

µB1(A) = max ρ(∆A),

where ∆ ∈ B1, and themax is taken over all such ∆’s.
For Q ∈ B1, we define a set Q1 as

Q1 = {Q ∈ B1 : Q∗Q = In},

and consider a positive diagonal matrix D. Then, the computation of structured singular value is given by following
Theorem 3.8, taken from [28].

Theorem 2 Let Q ∈Q1, and D > 0, a positive diagonal matrix. Then

µB1(AQ) = µB1(QA) = µB1(A) = µB1(D
1
2 AD

−1
2 ).
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In this section, we present some new results on the interconnection between Schur stability, and µB1(A)

3. New results on Schur stability and µB1(A)
, where

A ∈ Rn, n. The set B1, the set of uncertainties is defined in the introductory section.
Assumption 3 For A ∈ R2, 2, the spectrum σ(A) = {λi}2

i=1 does not contain the zero eigenvalue.
The following Theorem 4 discusses an interconnection between 2-dimensional Schur stable matrices, and structured

singular value µB1(A), where B1, is the set of block diagonal matrices.

Theorem 4 Let A =

(
m11 m12

m21 m22

)
∈ R2, 2. Then A is Schur stable if

0 ≤ µB1

[
(I2 +A)−1(I2 −A)

]
< 1,

where I2 is a 2-dimensional identity matrix.
Proof. Let ∆= (I2−D)(I2+D)−1 is with 2-dimensional diagonal structure. The matrixD= diag(dii), for all i= 1, 2,

is a real positive diagonal matrix. The matrix D in term of ∆ ∈ B1 is of the form

D = (I2 +∆)−1(I2 −∆), ∀∆ ∈ B1.

To show that 0 ≤ µB1

[
(I2 +A)−1(I2 −A)

]
< 1, it is necessary to show that

λ1
[
I2 − (I2 +A)−1(I2 −A)∆

]
̸= 0, ∀∆ ∈ B1

and

λ2
[
I2 − (I2 +A)−1(I2 −A)∆

]
̸= 0, ∀∆ ∈ B1.

The rank
[
A+(I2 +∆)−1(I2 −∆)

]
will lead us to proof, that is,

rank
[
A+(I2 +∆)−1(I2 −∆)

]
= rank [(I2 +A)− (I2 −A)∆] , ∀∆ ∈ B1.

This leads us to matrix
(
I2 − (I2 +A)−1(I2 −A)∆

)
, ∀∆ ∈ B1. From this, it is further obvious that

λ1
[
I2 − (I2 +A)−1(I2 −A)∆

]
̸= 0, ∀∆ ∈ B1,

and

λ2
[
I2 − (I2 +A)−1(I2 −A)∆

]
̸= 0, ∀∆ ∈ B1,

which is the necessary condition that
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0 ≤ µB1

[
(I2 +A)−1(I2 −A)

]
< 1.

Theorem 5 provides an interconnection between Schur stable matrix A ∈ R2, 2 and the structured singular value of
(I2 +DA+AT D)−1(I2 −DA−AT D), where AT is the transpose of A.

Theorem 5 Let A =

(
m11 m12

m21 m22

)
∈ R2, 2. Then A is Schur Stable if

0 ≤ µB1

[
(I2 +DA+AT D)−1(I2 −DA−AT D)

]
< 1,

where D = diag(dii), dii > 0, ∀ i = 1, 2.

Proof. Let ∆ ∈ B1, a block diagonal structure, that is, ∆ = (I2 −D)(I2 +D)−1, D =

(
d11 0
0 d22

)
such that d11 > 0,

d22 > 0. As, λ1(DA+AT D) ̸= 0, ∀D, and λ2(DA+AT D) ̸= 0, ∀D. This allows us to have that

λ1, 2
[
DA+AT D+(iI2 +∆)−1(I2 −∆)

]
̸= 0, ∀D, ∀∆ ∈ B1.

This implies

λ1, 2
[
(I2 +DA+AT D)− (I2 −DA−AT D)∆

]
̸= 0, ∀D, ∀∆ ∈ B1.

Thus,

λ1, 2
[
I2 − (I2 +DA+AT D)−1(I2 −DA−AT D)∆

]
̸= 0, ∀D, ∀∆ ∈ B1.

The last expression for λ1, 2 is precisely the necessary condition that

0 ≤ µB1

[
(I2 +DA+AT D)−1(I2 −DA−AT D)

]
< 1.

In Theorem 6, the inequalities present the conditions for Schur stability and structured singular values for a three-
dimensional real-valued matrix.

Theorem 6 Let A =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 ∈ R3, 3. Then A is Schur stable if

1.
∣∣∑3

i=1 λi(A)∏3
i=1 λi(A)− (m11 +m22 +m33)

∣∣< 1−∏3
i=1 λi(A), and

2. 0 ≤ µS (AS(v))< σ1 (AS(v))≤ 1, where σ1 (AS(v)) is the largest singular value of AS(v) : = S−1A, S =

(
I 0
0 vT v

)
,

v ∈ R3, 1.
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Proof. Consider that ∑3
i=1 λi(A)∏3

i=1 λi(A)− (m11 +m22 +m33)≥ 0, and ∏3
i=1 λi(A)> 0.

For A ∈ R3, 3, we know that

3

∑
i=1

λi(A)+
3

∏
i=1

λi(A)−1 < (m11 +m22 +m33)

or

3

∑
i=1

λi(A)+
3

∏
i=1

λi(A)< 1+(m11 +m22 +m33)

subtract (m11 +m22 +m33) from the last inequality, we have

0 ≤
3

∑
i=1

λi(A)
3

∏
i=1

λi(A)− (m11 +m22 +m33)

≤
3

∏
i=1

λi(A)+
3

∏
i=1

λi(A)(m11 +m22 +m33)− (m11 +m22 +m33)−
3

∏
i=1

λ 2
i (A)

=
3

∏
i=1

λi(A)− (m11 +m22 +m33).

This imply

0 ≤
3

∑
i=1

λi(A)
3

∏
i=1

λi(A)− (m11 +m22 +m33)< 1−
3

∏
i=1

λ 2
i (A).

Since, 1−∏3
i=1 λ 2

i (A)> 0 because |∏3
i=1 λi(A)|< 1.

(ii) The matrix decomposition of A ∈ Rn, n, (n = 3 can be taken) can be written as

A =U

(
σ1 0
0 T

)
V T ,

where U, V are unitary matrices. Let σ1(AS) = ||AQ1||2 = ||A||2, ||Q1||2 = 1, with || · ||2 is matrix 2-norm defined over
the real-valued matrix.

Let u1 =
AQ1

σ1
, this yields ||u1||2 =

||AQ1||2
||A||2

= 1. Also, takeU = (u1|U2), andV = (v1|V2). Then the matrix product

UT AV becomes

(u1|U2)A(v1|V2) =

(
σ1 aT

0 B

)
,
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where uT
1 u1 = 1, UT

2 u1 = 0, a =V T
2 Au1, and B =UT

2 AV2.
Take a = 0, yields

σ2
1 (AS) = max

x ̸=0

∥∥∥∥∥
(

σ1 uT

0 B

)
x

∥∥∥∥∥
2

2

||x||22
.

Replacing x → a, gives

σ2
1 = σ2

1 +aT a, =⇒ a = 0

and thus,

UT AV =

(
σ1 0
0 B

)

or

A =U

(
σ1 0
0 B

)
V T .

To show that 0 ≤ µS(AS(v))≤ σ1(AS(v)), we have that

AS(v): =

(
M11 M12

1
v M11

1
v M22

)
.

Also,

(
I AS(v)

AT
S (v) I

)
> 0 ⇐⇒ I −AS(v)IAT

S (v)≥ 0.

From this, it follows that

λi(I −AS(v)AT
S (v))≥ 0, ∀i.

implies 0 ≤ σ1(AS(v))≤ 1.
The following Theorem 7 show that the given real-value d Hermitian matrix A ∈ R3, 3 is Schur stable if it can

decomposed as A = P−Q.
Theorem 7 Let A ∈ R3, 3 be a singular matrix, and let A = P−Q. Then, the matrix P−1Q is Schur stable, that is,
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max
i

|λi(P−1Q)|< 1.

Proof. As A = P−Q, with P, Q being as the Hermitian matrices such that P−1 exists, then A−1Q can be written as

A−1 = (P−Q)−1 = (I3 −P−1Q)P−1Q.

The expression for P−1Q is

P−1Q = (A+Q)−1Q = (I3 +A−1Q)−1A−1Q.

For x ̸= 0, x ∈ R3, 1, we have

A−1Px =
1

1−maxi |λi(P−1Q)|
x.

Finally,

A−1Qx ≥ P−1Qx

⇐⇒ max
i

|λi(P−1Q)|x
(

1−max
i

|λi(P−1Q)|
)−1

≥ max
i

|λi(P−1Q)|x

⇐⇒ max
i

|λi(P−1Q)|< 1.

Theorem 8 gives the condition for Schur stability of given matrix while taking into account the computations of its
eigenvectors, and an admissible perturbation ε ∈ [0, 1).

Theorem 8 Let A ∈ Rn×n. Then, A is Schur stable for ε > 0, εx−Ax > 0, where x > 0, is an eigenvector, such that

max
i

|λi(A)|< ε, ε ∈ [0, 1).

Proof. The proof is straightforward by letting y > 0, the left eigenvector such that

yT (εx−Ax)> 0 ⇐⇒
(

ε −max
i

|λi(A)|
)

yT x > 0.

Since, x > 0, yT > 0, the last inequality becomes
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max
i

|λi(A)|< ε, ε ∈ [0, 1).

4. Conclusion
The present work introduces novel findings on the relationship between Schur stability and structured singular values

of real-valued n-dimensional matrices. We derive these findings by using a range of mathematical techniques from linear
algebra, matrix analysis, and system theory. Both Schur’s stability and structured singular values play a pivotal role in
modern system theory and the design of robust systems. Schur stability ensures the boundedness and stability of system
responses by requiring that all eigenvalues lie within the unit circle. In contrast, structured singular values provide a means
to quantify a system’s resilience, stability, and performance under organized disturbances in system parameters. This
quantification offers critical insights into the stability margins and performance boundaries in the presence of uncertainties.
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