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Abstract: This article presents novel fixed point results using Mann’s iterative process in complete convex b-metric
spaces, building upon Isa Yildirim’s recent work. The author established the definition of theF -Hardy-Rogers contraction
of the Nadler type by relaxing two conditions of Wardowski’s F -mapping. Our approach employs Mann’s iterative
scheme in Gb-metric spaces under convex conditions. A supporting example with detailed calculations validates our
result. Furthermore, we demonstrate the applicability of our findings by solving an integral equation through fixed point
equation along with the axioms of the provided result. The obtained results are generalizations of several existing results
in the literature.
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1. Introduction
Fixed point (fp) theory, a vital branch of functional analysis, has numerous applications in nonlinear analysis. The

contractionmapping principle, also known as Banach’s contraction principle (BCP) [1], is a fundamental tool for studying
nonlinear equations. Its constructive nature enables numerical calculation of fixed points, making it an intriguing area of
research. This task is achieved by converting an operator equation G ζ = 0 into a fp equation Qζ = ζ with self-mapping Q
and a suitable domain. In recent years, researchers have extensively generalizedBCP by modifying spaces, contraction
conditions, or both.

Chen et al. [2] presented the notion of convex b-MS and established certain fp results. Ek et al. [3] applied the
convex condition to Chatterjea and Hardy Roger’s contractive mappings and proved some fp results which are analogous
to this concept.

Iterative processes are an important feature of many numerical techniques, especially for finding a fp. The Picard
iteration scheme is the most simple and commonly used iterative scheme which is applied inBCP. Later, in 1953, Mann
[4] presented Mann’s iterative scheme to approximate fp of a mapping, which is a generalization of Picard iteration. Ji et
al. [5] used the convex structure endowed with Gb-MS to prove fp results using Mann’s iterative scheme. Moudafi [6]
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used the concept of Mann’s iterative scheme to generalize some fp results. In his research he has presented a method for
finding hierarchically a fixed-point of a nonexpansive mapping Q with respect to a nonexpansive mapping P. Unlike in
the case of BCP, a non-expensive map Q even with a unique fp may fail to converge to the fp with iterative sequence
Ψu+1 = QΨu, Ψ0 ∈ S , u ≥ 0. According to Krasnoselski [7], a convergent sequence of successive approximations can
be obtained by taking the auxiliary non-expensive mapping

1
2
(I+Q), where I represents the identity transformation, i.e.,

if the sequence of successive approximations is defined, for arbitrary Ψ0 ∈ D , by

Ψu+1 =
1
2
(Ψu +QΨu), u ≥ 0. (1)

It is clear that the mapping Q and
1
2
(I +Q) have the same set of fp’s so that the limit of the convergent sequence

defined by (1) is necessarily a fp ofQ. On the other hand, Ullah and Arshad [8] introduced a new concept known as theK∗-
iterative scheme. This scheme provides some accurate results in the least iterative steps equipped with Suzuki mappings.
Since then, many generalizations have been made using different iterative schemes. Some other most commonly used
iterative schemes are the Picard-Mann hybrid [9], iterative methods by strictly pseudocontractive mappings [10], S∗-
iteration of Karahan and Ozdemir [11], SP iteration of Pheungrattana and Suantai [12], iterative scheme of Suzuki’s
generalized non-expansive mappings [13].

In 2012, Wardowski [14] presented a new fixed point theorem concerningF -contraction using a mappingF :R+ →
R. The concept of F -contraction has inspired a bulk of research studies since its introduction. Aslam et al. [15] proved
coincidence point results endowed with F -weak contraction by using a binary relation. Cosentino et al. [16] presented
the notion ofF -contractive mappings of Hardy-Rogers-type which further generalizes theF -contraction by relaxing two
condition of F mappings. Asif et al. [17] presented the concept of F -Reich contraction in convex b-metric spaces.

In 2022, Yildirim [18] presented the F -Hardy-Rogers of Nadler’s type contraction by removing two condition of
F mappings. Moreover, He established some fp results using Mann’s iterative scheme in convex b-MS . Motivated by
the idea of Yildirim [18], this article encompasses some fp results on the platform of convex Gb-MS using the Mann’s
iterative scheme by further weakening the conditions on F .

The article is structured as follows:
1. Necessary definitions and preliminaries.
2. Existence and uniqueness of fp theorems using F -Hardy Roger’s type contraction.
3. Example and application.
4. Conclusion.

2. Preliminaries
In the current section, we will recollect some basics for the best understanding of this article.
Definition 1 [19] Let D ̸= ϕ and d : D ×D → [0,+∞) be a mapping, which fulfills the subsequent properties for

every Ψ,ζ ,η ∈ D :
(1): d(Ψ, ζ ) = 0 ⇐⇒ Ψ = ζ ;
(2): d(Ψ, ζ ) = d(ζ , Ψ);
(3): d(Ψ, η)≤ s[d(Ψ, ζ )+d(ζ , η)] for s≥ 1,

then d and (D , d) represents b-metric and b-MS respectively.
In [20], Aghajani et al. presented the idea of Gb-MS as follows.
Definition 2 [20] Let D ̸= ϕ and G : D ×D ×D → [0,+∞) be a mapping, which fulfills the subsequent properties

for each Ψ, ζ , η ∈ D :
(1): G (Ψ, ζ , η) = 0 if Ψ = ζ = η ;
(2): G (Ψ, Ψ, ζ )> 0 for every Ψ, ζ ∈ D with Ψ ̸= ζ ;
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(3): G (Ψ, Ψ, ζ )≤ G (Ψ, ζ , η) for every Ψ, ζ , η ∈ D with ζ ̸= η ;
(4): G (Ψ, ζ , η) = G (p{Ψ, ζ , η}), where p is a permutation of (Ψ, ζ , η) (symmetry);
(5): there exists s≥ 1 such that G (Ψ, ζ , η)≤ s[G (Ψ, ζ , ζ )+G (ζ , ζ , η)] for every Ψ, ζ , η , ζ ∈ D , then G and

(D , G ) are called Gb-metric and Gb-MS respectively.
Remark 1 [20] It is important to note that b-MS and Gb-MS are equivalent topologically. To get benefit from this

fact, we can use many results of b-MS into Gb-MS .
Definition 3 [21] Let (D , G ) denotes a Gb-MS . We say that {Ψu} ⊆ D is a G -Cauchy sequence (cs) if for each

ε > 0, there exists N ∈ N such that for each l, m, n≥ N, G (Ψl, Ψm, Ψn)< ε .
Definition 4 [20] Let (D , G ) denotes a Gb-MS . If there exists Ψ0 ∈ D such that lim

u, k→+∞
G (Ψu, Ψk,Ψ0) = 0, then

{Ψu} ⊆ D is called a convergent sequence in D .
Remark 2 If every cs is convergent in D then (D , G ) is called complete Gb-MS .
Definition 5 [20] A Gb-MS is called symmetric if G (Ψu, Ψk, Ψk) = G (Ψk, Ψu, Ψu) for every Ψu, Ψk ∈ D .
Definition 6 [22] Consider two Gb-MS defined as (D1, G1) and (D2, G2). Then f : (D1, G1) → (D2, G2) is G -

continuous at a point Ψ0 ∈ D if for every Ψ1, Ψ2 ∈ D and ε > 0, there exists δ > 0, such that G1(Ψ0, Ψ1, Ψ2)< δ =⇒
G2( f Ψ0, f Ψ1, f Ψ2)< ε .

Proposition 1 [20] Consider two Gb-MS defined as (D1, G1) and (D2, G2). Then f : (D1, G1) → (D2, G2) is
G -continuous at a point Ψ0 ∈ D ⇐⇒ f (Ψu) is G -convergent to f (Ψ0) whenever {Ψu} is G -convergent to Ψ0.

Definition 7 [5] Let (D , G ) be a Gb-MS and a mapping Q : D → D . We say that {Ψu} is a Mann sequence if

Ψu+1 = v(Ψu, QΨu; µu), u ∈ N0,

where Ψ0 ∈ D and µu ∈ [0, 1].
However, Iterative methods have an important role in finding fp’s of non-expansive mappings. In particular, Mann

iterative is one of the well-known methods to find the approximations of the problems by using iteration schemes. Mann’s
iterative scheme is defined as

Ψu+1 = µuΨu +(1−µu)QΨu, µu ∈ [0, 1].

Definition 8 [5] Let (D , G ) be a Gb-MS with constant s ≥ 1 and I = [0, 1]. A mapping v : D ×D × I → D is
called a convex structure on D if for each Ψ1, Ψ2, Ψ3, η , ζ ∈ D and µ ∈ I

G (η , ζ , v(Ψ1, Ψ2; µ))≤ µG (η , ζ , Ψ1)+(1−µ)G (η , ζ , Ψ2) (2)

holds, then (D , G , v) is called a convex Gb-MS .
Next, we present an example of convex Gb-MS .
Example 1 Let D = Rn and define a b-metric d : D ×D → [0, +∞) ∀ ζ , Ψ ∈ D by

d(ζ , Ψ) =
n

∑
i=1

(ζi −Ψi)
2,

for each ζ = (ζ1, ζ2, · · · , ζn) ∈ D , Ψ = (Ψ1, Ψ2, · · · , Ψn) ∈ D and define the mapping v : D ×D × [0, 1]→ D by
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v(Ψ, ζ ; µ) =
Ψ+ζ

2
.

Then (D , d) is a convex b-MS with s= 2. Define a metric G : D ×D ×D → [0, +∞) by

G (Ψ, ζ , η) = max{d(Ψ, ζ ), d(Ψ, η), d(η , ζ )} ∀ Ψ, ζ , η ∈ D .

For each Ψ, ζ , α, β ∈ D , we have

G (Ψ, ζ , v(α, β ; µ)) = max{d(Ψ, ζ ), d(Ψ, v(α, β ; µ)), d(ζ , v(α, β ; µ))}

≤ max{d(Ψ, ζ ), µd(Ψ, α)+(1−µ)d(Ψ, β ), µd(ζ , α)+(1−µ)d(ζ , β )}

≤ µ max{d(Ψ, ζ ), d(Ψ, α), d(ζ , α)}+(1−µ)max{d(Ψ, ζ ), d(Ψ, β ), d(ζ , β )}

= µG (Ψ, ζ , α)+(1−µ)G (Ψ, ζ , β ).

Hence (G , D , v) is a convex Gb-MS with s= 2p−1.
Remark 3 A convex Gb-MS becomes a convex G -MS for s= 1.
Wardowski [14] introduced the F -contraction in 2012, which plays a crucial role in recent trends of research in the

area of fp theory. Cosentino et al. [23] presented the following.
Definition 9 [23] Let s≥ 1 be a real number. F : (0, +∞)→R be amappingwhich fulfills the subsequent conditions:
(F1): F is strictly increasing,
(F2): for every sequence {Ψu}u∈N of positive numbers lim

u→+∞
Ψu = 0 ⇐⇒ lim

u→+∞
F (Ψu) =−∞,

(F3): there exists k ∈ (0, 1) such that lim
Ψ→0+

ΨkF (Ψ) = 0,

(F4): for every sequence {Ψu} ⊂ R+

if τ +F (sΨu)≤ F (sΨu−1) ∀ u ∈ N, τ ∈ R+, then

τ +F (suΨu)≤ F (su−1Ψu−1) ∀ u ∈ N.

Definition 10 [14] Let (D , d) be a MS . A mapping Q : D → D is said to be F -contraction if there exists τ > 0
such that d(QΨ1, QΨ2)> 0

=⇒ τ +F (d(QΨ1, QΨ2))≤ F (d(Ψ1, Ψ2)) for each Ψ1, Ψ2 ∈ D .

Popescu and Stan [24] proved fixed point results by applying weaker symmetrical conditions on the self-map of a
complete metric space, Wadowski’s control function F , and the contractions defined by Wardowski. Vujakovic et al.
[25] proved Wardowski type results within G -MS using only the condition F1. Fabiano et al. [26] presented a beautiful
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survey on F mappings and suggested some improvements on the conditions of F mapping involved in the contractive
condition.

We now state a property [25, 26] of the function F which is the consequence of the condition F1. This paper is a
third chapter of the book (see, [27]).

• At each point u ∈ (0, +∞) there exist its left and right limits lim
ζ→u−

F (ζ ) = F (u−) and lim
ζ→u+

F (ζ ) = F (u+).

Moreover, for the function F one of the subsequent two properties hold: F (0+) = m ∈ R or F (0+) =−∞.
The collection of functions that satisfy condition (F1) are denoted by F.

3. Main results
Definition 11 Assume that F ∈ F and (D , G , v) is a complete convex Gb-MS with s> 1. Then Q : D →D is said

to be a F -Hardy Rogers type contraction if for f, g, h : D ×D →
[

0,
1
2

)
the subsequent equation hold:

τ +F (sG (QΨ, Qζ , Qγ))≤F
(

f(Ψ, ζ , γ)G (Ψ, ζ , γ)+g(Ψ, ζ , γ)
[
G (Ψ, QΨ, QΨ)+G (ζ , Qζ , Qζ )

+G (γ, Qγ, Qγ)
]
+h(Ψ, ζ , γ)

[
G (QΨ, QΨ, ζ )+G (Qζ , Qζ , Ψ)

+G (Qγ, Qγ, Ψ)
])

,

(3)

for every Ψ, ζ , γ ∈ D , with p ̸= q and q ̸= r.
Theorem 1 Let (D , G , v) be a complete convex Gb-MS with a convex structure v and Q : D → D is a F -Hardy

Rogers type contraction. Assume that the sequence {Ψu} is defined as

Ψu = v(Ψu−1, QΨu−1, µu−1), where 0 < µu−1 <
1

4s2 ∀ u ∈ N, (4)

then a unique fp of Q exists, provided that

f(Ψ, ζ , γ)+3g(Ψ, ζ , γ)+4h(Ψ, ζ , γ)≤ 1
4s4 . (5)

Proof. By Equation (4) and convex structure of the Gb-MS

G (Ψu, Ψu, Ψu+1) = G (Ψu, Ψu, v(Ψu, QΨu; µu))

≤ (1−µu)G (Ψu, Ψu, QΨu)

(6)

and
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G (Ψu, QΨu, QΨu) = G (v(Ψu−1, QΨu−1; µu−1), QΨu, QΨu)

≤ (µu−1)G (Ψu−1, QΨu, QΨu)+(1−µu−1)G (QΨu−1, QΨu, QΨu)

≤ (µu−1)s
{

G (Ψu−1, QΨu−1, QΨu−1)+G (QΨu−1, QΨu, QΨu)
}

+(1−µu−1)G (QΨu−1, QΨu, QΨu)

≤ (µu−1)s
{

G (Ψu−1, QΨu−1, QΨu−1)+G (QΨu−1, QΨu, QΨu)
}

+G (QΨu−1, QΨu, QΨu)

= µu−1sG (Ψu−1, QΨu−1, QΨu−1)+(1+µu−1s)G (QΨu−1, QΨu, QΨu)

≤ µu−1sG (Ψu−1, QΨu−1, QΨu−1)+ s(1+µu−1)G (QΨu−1, QΨu, QΨu).

Therefore,

G (Ψu, QΨu, QΨu)≤ µu−1sG (Ψu−1, QΨu−1, QΨu−1)+ s(1+µu−1)G (QΨu−1, QΨu, QΨu). (7)

By using contraction

τ +F
(
sG (QΨu−1, QΨu, QΨu

)
≤F

(
f(Ψu−1, Ψu, Ψu)G (Ψu−1, Ψu, Ψu)+g(Ψu−1, Ψu, Ψu)

[
G (Ψu−1, QΨu−1, QΨu−1)+G (Ψu, QΨu, QΨu)

+G (Ψu, QΨu, QΨu)
]
+h(Ψu−1, Ψu, Ψu)

[
G (QΨu−1, QΨu−1, Ψu)

+G (QΨu, QΨu, Ψu−1)+G (QΨu, QΨu, Ψu−1)
])

Volume 6 Issue 1|2025| 261 Contemporary Mathematics



=⇒ F
(
sG (QΨu−1, QΨu, QΨu

)
≤ F

(
f(Ψu−1, Ψu, Ψu)G (Ψu−1, Ψu, Ψu)+g(Ψu−1, Ψu, Ψu)

[
G (Ψu−1, QΨu−1, QΨu−1)+G (Ψu, QΨu, QΨu)

+G (Ψu, QΨu, QΨu)
]
+h(Ψu−1, Ψu, Ψu)

[
G (QΨu−1, QΨu−1, Ψu)

+G (QΨu, QΨu, Ψu−1)+G (QΨu, QΨu, Ψu−1)
])

− τ

≤ F
(

f(Ψu−1, Ψu, Ψu)G (Ψu−1, Ψu, Ψu)+g(Ψu−1, Ψu, Ψu)

[
G (Ψu−1, QΨu−1, QΨu−1)+G (Ψu, QΨu, QΨu)

+G (Ψu, QΨu, QΨu)
]
+h(Ψu−1, Ψu, Ψu)

[
G (QΨu−1, QΨu−1, Ψu)

+G (QΨu, QΨu, Ψu−1)+G (QΨu, QΨu, Ψu−1)
])

.

With the help of property F1, we have

sG (QΨu−1, QΨu, QΨu)≤ f(Ψu−1, Ψu, Ψu)G (Ψu−1, Ψu, Ψu)+g(Ψu−1, Ψu, Ψu)

[
G (Ψu−1, QΨu−1, QΨu−1)+2G (Ψu, QΨu, QΨu)

]

+h(Ψu−1, Ψu, Ψu)
[
G (QΨu−1, QΨu−1, Ψu)+2G (QΨu, QΨu, Ψu−1)

]
.

(8)

By using Equation (8) in Equation (7),

G (Ψu, QΨu, QΨu)≤ µu−1sG (Ψu−1, QΨu−1, QΨu−1)+(1+µu−1)
{

f(Ψu−1, Ψu, Ψu)G (Ψu−1, Ψu, Ψu)

+g(Ψu−1, Ψu, Ψu)
[
G (Ψu−1, QΨu−1, QΨu−1)+2G (Ψu, QΨu, QΨu)

]

+h(Ψu−1, Ψu, Ψu)
[
G (QΨu−1, QΨu−1, Ψu)+2G (QΨu, QΨu, Ψu−1)

]}
.

From Equation(6),
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G (Ψu, QΨu, QΨu)≤ µu−1sG (Ψu−1, QΨu−1, QΨu−1)+(1+µu−1)(1−µu−1)f(Ψu−1, Ψu, Ψu)

G (Ψu−1, QΨu−1, QΨu−1)+(1+µu−1)g(Ψu−1, Ψu, Ψu)
[
G (Ψu−1, QΨu−1, QΨu−1)

+2G (Ψu, QΨu, QΨu)
]
+(1+µu−1)h(Ψu−1, Ψu, Ψu)

[
G (QΨu−1, QΨu−1, Ψu)

+2G (QΨu, QΨu, Ψu−1)
]
.

Then

G (Ψu, QΨu, QΨu)≤ µu−1sG (Ψu−1, QΨu−1, QΨu−1)+(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)

G (Ψu−1, QΨu−1, QΨu−1)+(1+µu−1)g(Ψu−1, Ψu, Ψu)
[
G (Ψu−1, QΨu−1, QΨu−1)

+2G (Ψu, QΨu, QΨu)
]
+(1+µu−1)h(Ψu−1, Ψu, Ψu)

[
G (Ψu, QΨu−1, QΨu−1)

+2G (Ψu−1, QΨu, QΨu)
]

≤ µu−1sG (Ψu−1, QΨu−1, QΨu−1)+(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)

G (Ψu−1, QΨu−1, QΨu−1)+(1+µu−1)g(Ψu−1, Ψu, Ψu)
[
G (Ψu−1, QΨu−1, QΨu−1)

+2G (Ψu, QΨu, QΨu)
]
+ s(1+µu−1)h(Ψu−1, Ψu, Ψu)

[
G (Ψu, Ψu−1, Ψu−1)

+G (Ψu−1, QΨu−1, QΨu−1)+2G (Ψu−1, Ψu, Ψu)+2G (Ψu, QΨu, QΨu)
]

≤ µu−1sG (Ψu−1, QΨu−1, QΨu−1)+(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)

G (Ψu−1, QΨu−1, QΨu−1)+(1+µu−1)g(Ψu−1, Ψu, Ψu)
[
G (Ψu−1, QΨu−1, QΨu−1)

+2G (Ψu, QΨu, QΨu)
]
+ s(1+µu−1)h(Ψu−1, Ψu, Ψu)

[
(1−µu−1)

G (Ψu−1, QΨu−1, QΨu−1)+G (Ψu−1, QΨu−1, QΨu−1)

Volume 6 Issue 1|2025| 263 Contemporary Mathematics



+2G (Ψu, QΨu, QΨu)+2(1−µu−1)G (Ψu−1, QΨu−1, QΨu−1))
]

=
[
µu−1s+(1−µ2

u−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)+ s(1+µu−1)

h(Ψu−1, Ψu, Ψu)(4−3µu−1)
]
G (Ψu−1, QΨu−1, QΨu−1)+

[
2(1+µu−1)

g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)
]
G (Ψu, QΨu, QΨu),

which implies that

[
1−
{

2(1+µu−1)g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)
}]

G (Ψu, QΨu, QΨu)

≤
[
µu−1s+(1−µ2

u−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)+ s(1+µu−1)

h(Ψu−1, Ψu, Ψu)(4−3µu−1)
]
G (Ψu−1, QΨu−1, QΨu−1).

By the hypothesis, we know that

f(Ψ, ζ , γ)+3g(Ψ, ζ , γ)+4h(Ψ, ζ , γ)≤ 1
4s4 and µu−1 ∈

(
0,

1
4s2

]
.

Consider

2(1+µu−1)g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)

≤ 2(1+µu−1)sg(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)

= 2(1+µu−1)s[g(Ψu−1, Ψu, Ψu)+h(Ψu−1, Ψu, Ψu)]

≤ 2
(

1+
1

4s2

)
s× 1

4s4

< 1,

and
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(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)+ s(1+µu−1)

h(Ψu−1, Ψu, Ψu)(4−3µu−1)

≤(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)+4s(1+µu−1)

h(Ψu−1, Ψu, Ψu)

=(1+µu−1)(1−µu−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)+4s(1+µu−1)

h(Ψu−1, Ψu, Ψu)

≤(1+µu−1)
[
f(Ψu−1, Ψu, Ψu)+g(Ψu−1, Ψu, Ψu)+4hs(Ψu−1, Ψu, Ψu)

]

≤s(1+µu−1)
[
f(Ψu−1, Ψu, Ψu)+g(Ψu−1, Ψu, Ψu)+4h(Ψu−1, Ψu, Ψu)

]

≤
(

1+
1

4s2

)
s× 1

4s4

< 1.

Hence

G (Ψu, QΨu, QΨu)

≤

µu−1s+(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)

+s(1+µu−1)h(Ψu−1, Ψu, Ψu)(4−3µu−1)

1−{2(1+µu−1)g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)}

×G (Ψu−1, QΨu−1, QΨu−1).

Denote,

θu−1 =

µu−1s+(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)

+s(1+µu−1)h(Ψu−1, Ψu, Ψu)(4−3µu−1)

1−{2(1+µu−1)g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)}
.

Then,
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θu−1 =

µu−1s+(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)

+s(1+µu−1)h(Ψu−1, Ψu, Ψu)(4−3µu−1)

1−{2(1+µu−1)g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)}

≤

µu−1s+(1−µ2
u−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)

+s(1+µu−1)4h(Ψu−1, Ψu, Ψu)

1−{2(1+µu−1)g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)}

<

µu−1s+(1+µu−1)f(Ψu−1, Ψu, Ψu)+(1+µu−1)g(Ψu−1, Ψu, Ψu)

+s(1+µu−1)4h(Ψu−1, Ψu, Ψu)

1−{2(1+µu−1)g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)}

<
1+

1
4s

1−{2(1+µu−1)g(Ψu−1, Ψu, Ψu)+2(1+µu−1)sh(Ψu−1, Ψu, Ψu)}
−1

<
1+

1
4s

1− s

(
1+

1
4s2

)
1

4s4

−1

=

4s+1
4s

1− 1
4s3 − 1

16s5

−1

=
4s4 +4s2 +1
16s5 −4s2 −1

< 1.

Implies

G (Ψu, QΨu, QΨu)≤ θu−1G (Ψu−1, QΨu−1, QΨu−1)

<
4s4 +4s2 +1

16s5 −4s2 −1
G (Ψu−1, QΨu−1, QΨu−1).

(9)

By using (3), (7) and (9), we have
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τ +F (du) = τ +F (G (Ψu, QΨu, QΨu))

≤ F
( 4s4 +4s2 +1

16s5 −4s2 −1
G (Ψu−1, QΨu−1, QΨu−1)

)
= F (du−1)

=⇒ F (G (Ψu, QΨu, QΨu))≤ F
( 4s4 +4s2 +1

16s5 −4s2 −1
G (Ψu−1, QΨu−1, QΨu−1)

)
− τ

that is,

F (du)< F (du−1)− τ for all p ∈ N. (10)

Since F is strictly increasing, then du < du−1. Thus, we conclude that the sequence {du} is strictly decreasing, so
there exists lim

u→+∞
du = d. Suppose that d > 0. Since F is increasing mapping there exists lim

ζ→d+
F (ζ ) = F (d+), so

taking limit as p →+∞ in inequality (10), we get

τ +F (d+)≤ F (d+),

a contradiction. Therefore lim
u→+∞

du = 0,

lim
u→+∞

G (Ψu, QΨu, QΨu) = 0.

Then

lim
u→+∞

G (Ψu, Ψu, Ψu+1) = lim
u→+∞

G (Ψu, Ψu, v(Ψu, QΨu; µu))

≤ lim
u→+∞

(1−µu)G (Ψu, Ψu, QΨu),

(11)

which implies that

lim
u→+∞

G (Ψu, Ψu, Ψu+1) = 0. (12)

Now, we will check the Cauchyness of the sequence {Ψu}. For this, we proceed by a contradiction. Assume that
{Ψu} is not a Cauchy sequence. Then there exists an ε and two subsequences {Ψν(λ̂ )} and {Ψw(λ̂ )} of {Ψu} such that

ν(λ̂ )> w(λ̂ )> λ̂ ,
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and

G (Ψν(λ̂ ), Ψw(λ̂ ), Ψw(λ̂ ))≥ ε,

and

G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))≤ ε.

Then,

ε ≤ G (Ψν(λ̂ ), Ψw(λ̂ ), Ψw(λ̂ ))

≤ s
{

G (Ψν(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)+G (Ψw(λ̂ )+1, Ψw(λ̂ ), Ψw(λ̂ ))
}
.

By using (12)

ε ≤ s lim
λ̂→+∞

G (Ψν(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1).

Therefore,

ε
s
≤ lim

λ̂→+∞
G (Ψν(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)

≤ lim
λ̂→+∞

supG (Ψν(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1).

Also,
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G (Ψν(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1) = G (v(Ψν(λ̂ )−1, QΨν(λ̂ )−1; µν(λ̂ )−1), Ψw(λ̂ )+1, Ψw(λ̂ )+1)

≤ µν(λ̂ )−1G (Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

+(1−µν(λ̂ )−1)G (QΨν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

≤ µν(λ̂ )−1G (Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

+ s(1−µν(λ̂ )−1)
[
G (QΨν(λ̂ )−1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)

+G (QΨw(λ̂ )+1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
]
.

(13)

By using the contraction condition,

F (sG (QΨν(λ̂ )−1, QΨw(λ̂ )+1, QΨw(λ̂ )+1))

≤F
(

f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)G (Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

+g(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)

+G (Ψw(λ̂ )−1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)+G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)
]

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (QΨν(λ̂ )−1, QΨν(λ̂ )−1, Ψw(λ̂ )+1)

+G (QΨw(λ̂ )+1, QΨw(λ̂ )+1, Ψν(λ̂ )−1)+G (QΨw(λ̂ )+1, QΨw(λ̂ )+1, Ψν(λ̂ )−1)

])
− τ

≤F
(

f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)G (Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

+g(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)
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+G (Ψw(λ̂ )−1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)+G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)
]

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (QΨν(λ̂ )−1, QΨν(λ̂ )−1, Ψw(λ̂ )+1)

+G (QΨw(λ̂ )+1, QΨw(λ̂ )+1, Ψν(λ̂ )−1)+G (QΨw(λ̂ )+1, QΨw(λ̂ )+1, Ψν(λ̂ )−1)

])
.

By using F1,

sG (QΨν(λ̂ )−1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)

≤ f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)G (Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

+g(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)

+G (Ψw(λ̂ )−1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)+G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)
]

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (QΨν(λ̂ )−1, QΨν(λ̂ )−1, Ψw(λ̂ )+1)

+G (QΨw(λ̂ )+1, QΨw(λ̂ )+1, Ψν(λ̂ )−1)+G (QΨw(λ̂ )+1, QΨw(λ̂ )+1, Ψν(λ̂ )−1)

]
.

Use the above equation in (13),

G (Ψν(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)

≤ (µν(λ̂ )−1)G (Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)+(1−µν(λ̂ )−1)

([
f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)G (Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

+g(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)

+G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)+G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)
]
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+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (Ψν(λ̂ )−1, Ψν(λ̂ )−1, QΨw(λ̂ )+1)

+G (Ψw(λ̂ )+1, Ψw(λ̂ )+1, QΨν(λ̂ )−1)+G (QΨw(λ̂ )+1, QΨw(λ̂ )+1, Ψν(λ̂ )−1)
]

+ sG (QΨw(λ̂ )+1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
])

≤ s(µν(λ̂ )−1)[G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))+G (Ψw(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)]+(1−µν(λ̂ )−1)

[
f(Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ )+1)s[G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))+G (Ψw(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)]

+g(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)

+2G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)
]

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
2sG (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+2sG (Ψw(λ̂ ), QΨw(λ̂ )+1, QΨw(λ̂ )+1)+ sG (Ψw(λ̂ )+1, Ψν(λ̂ ), Ψν(λ̂ ))
]

+ sG (Ψν(λ̂ ), QΨν(λ̂ )−1, QΨν(λ̂ )−1)
]
+ sG (QΨw(λ̂ )+1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

≤ s(µν(λ̂ )−1)[G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))+G (Ψw(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)]+(1−µν(λ̂ )−1)

[
f(Ψw(λ̂ ), Ψw(λ̂ ), Ψw(λ̂ )+1)s[G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))+G (Ψw(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)]

+g(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)

+2G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)
]

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
2sG (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+2s2
[
G (Ψw(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)+G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)

]
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+sG (Ψν(λ̂ ), Ψν(λ̂ ), Ψw(λ̂ )+1)+ s2
[
G (Ψν(λ̂ ), Ψν(λ̂ )−1, Ψν(λ̂ )−1)

+G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)
]
+ sG (QΨw(λ̂ )+1, Ψw(λ̂ )+1, Ψw(λ̂ )+1).

By applying lim
λ̂→+∞

in above inequality,

lim
λ̂→+∞

supG (Ψν(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)

≤ lim
λ̂→+∞

{
sups(µν(λ̂ )−1)[G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))+G (Ψw(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)]+(1−µν(λ̂ )−1)

[
f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)s[G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))+G (Ψw(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)]

+g(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)

+2G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)
]

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
2sG (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+2s2
[
G (Ψw(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)+G (Ψw(λ̂ )+1, QΨw(λ̂ )+1, QΨw(λ̂ )+1)

]

+ sG (Ψν(λ̂ ), Ψν(λ̂ ), Ψw(λ̂ )+1)+ s2
[
G (Ψν(λ̂ ), Ψν(λ̂ )−1, Ψν(λ̂ )−1)

+G (Ψν(λ̂ )−1, QΨν(λ̂ )−1, QΨν(λ̂ )−1)
]
+ sG (QΨw(λ̂ )+1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)

}

≤ lim
λ̂→+∞

{
sups(µν(λ̂ )−1)G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+
[
f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)s[G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))]

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
2sG (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+ sG (Ψw(λ̂ )+1, Ψν(λ̂ ), Ψν(λ̂ ))
]}
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≤ lim
λ̂→+∞

{[
sups(µν(λ̂ )−1)+ f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)s

]
G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
2sG (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+ s3G (Ψw(λ̂ ), Ψν(λ̂ )−1, Ψν(λ̂ )−1)
]}

≤ lim
λ̂→+∞

{[
sups(µν(λ̂ )−1)+ f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)s

]
G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
(2s+ s3)G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

}

≤ lim
λ̂→+∞

{[
sups(µν(λ̂ )−1)+ f(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)s

3
]
G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

+h(Ψν(λ̂ )−1, Ψw(λ̂ )+1, Ψw(λ̂ )+1)
[
(2s3 + s3)G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

}

≤ lim
λ̂→+∞

{
sup(s(

1
4s2 )+ s3(f+3h))G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

}

≤ lim
λ̂→+∞

{
sup(s(

1
4s2 )+ s3(

1
4s4 )G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

}

= lim
λ̂→+∞

sup
{ 1

2s
G (Ψν(λ̂ )−1, Ψw(λ̂ ), Ψw(λ̂ ))

}
.

Implies

ε
s
≤ lim

λ̂→+∞
supG (Ψν(λ̂ ), Ψw(λ̂ )+1, Ψw(λ̂ )+1)≤

ε
2s

,

which leads to a contradiction. Thus {Ψu} is a Cauchy sequence in D . Since (D , G , v) is a complete convex Gb-MS ,
there exists Ψ̂ ∈ D such that Ψu → Ψ̂ ∈ D as u →+∞. Now, we will show that Ψ̂ is a fp of Q. Note that

G (Ψ̂, QΨ̂, QΨ̂)≤ s
[
G (Ψ̂, Ψu, Ψu)+G (Ψu, QΨ̂, QΨ̂)

]

≤ sG (Ψ̂, Ψu, Ψu)+ s2
[
G (Ψu, QΨu, QΨu)+G (QΨu, QΨ̂, QΨ̂)

] (14)
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and

F (sG (QΨu, QΨ̂, QΨ̂))≤F
(

f(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)+g(Ψu, Ψ̂, Ψ̂)
[
G (Ψu, QΨu, QΨu)

+G (Ψ̂, QΨ̂, QΨ̂)+G (Ψ̂, QΨ̂, QΨ̂)
]
+h(Ψu, Ψ̂, Ψ̂)

[
G (QΨu, QΨu, Ψ̂)

+G (QΨ̂, QΨ̂, Ψu)+G (QΨ̂, QΨ̂, Ψu)
])

− τ

≤F
(

f(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)+g(Ψu, Ψ̂, Ψ̂)
[
G (Ψu, QΨu, QΨu)

+G (Ψ̂, QΨ̂, QΨ̂)+G (Ψ̂, QΨ̂, QΨ̂)
]
+h(Ψu, Ψ̂, Ψ̂)

[
G (QΨu, QΨu, Ψ̂)

+G (QΨ̂, QΨ̂, Ψu)+G (QΨ̂, QΨ̂, Ψu)
])

,

with the help of F1,

sG (QΨu, QΨ̂, QΨ̂)≤ f(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)+g(Ψu, Ψ̂, Ψ̂)
[
G (Ψu, QΨu, QΨu)+G (Ψ̂, QΨ̂, QΨ̂)

+G (Ψ̂, QΨ̂, QΨ̂)
]
+h(Ψu, Ψ̂, Ψ̂)

[
G (QΨu, QΨu, Ψ̂)+G (QΨ̂, QΨ̂, Ψu)

+G (QΨ̂, QΨ̂, Ψu)
]
.

(15)

From (14) and (15),

G (Ψ̂, QΨ̂, QΨ̂)≤ sG (Ψ̂, Ψu, Ψu)+ s2G (Ψu, QΨu, QΨu)+ s2G (QΨu, QΨ̂, QΨ̂)

≤ sG (Ψ̂, Ψu, Ψu)+ s2G (Ψu, QΨu, QΨu)+ s
{

f(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)

+g(Ψu, Ψ̂, Ψ̂)
[
G (Ψu, QΨu, QΨu)+G (Ψ̂, QΨ̂, QΨ̂)+G (Ψ̂, QΨ̂, QΨ̂)

]

+h(Ψu, Ψ̂, Ψ̂)
[
G (QΨu, QΨu, Ψ̂)+G (QΨ̂, QΨ̂, Ψu)+G (QΨ̂, QΨ̂, Ψu)

]}

= sG (Ψ̂, Ψu, Ψu)+ s2G (Ψu, QΨu, QΨu)+ s
{

f(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)
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+g(Ψu, Ψ̂, Ψ̂)
[
G (Ψu, QΨu, QΨu)+2G (Ψ̂, QΨ̂, QΨ̂)

]

+h(Ψu, Ψ̂, Ψ̂)
[
G (QΨu, QΨu, Ψ̂)+2G (QΨ̂, QΨ̂, Ψu)

]}

≤ sG (Ψ̂, Ψu, Ψu)+ s2G (Ψu, QΨu, QΨu)+ s
{

f(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)

+g(Ψu, Ψ̂, Ψ̂)
[
G (Ψu, QΨu, QΨu)+2G (Ψ̂, QΨ̂, QΨ̂)

]

+h(Ψu, Ψ̂, Ψ̂)
[
s[G (Ψ̂, Ψu, Ψu)+G (Ψu, QΨu, QΨu)]

+2s[G (Ψu, Ψ̂, Ψ̂)+G (Ψ̂, QΨ̂, QΨ̂)]
]}

.

Hence

G (Ψ̂, QΨ̂, QΨ̂)≤ sG (Ψ̂, Ψu, Ψu)+ s2G (Ψu, QΨu, QΨu)+ s
{

f(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)+g(Ψu, Ψ̂, Ψ̂)

[
G (Ψu, QΨu, QΨu)+2G (Ψ̂, QΨ̂, QΨ̂)

]
+h(Ψu, Ψ̂, Ψ̂)

[
s[G (Ψ̂, Ψu, Ψu)

+G (Ψu, QΨu, QΨu)]+2s[G (Ψu, Ψ̂, Ψ̂)+G (Ψ̂, QΨ̂, QΨ̂)]
]}

,

=⇒ [1−2sg(Ψu, Ψ̂, Ψ̂)−2s2h(Ψu, Ψ̂, Ψ̂)]G (Ψ̂, QΨ̂, QΨ̂)

≤ sG (Ψ̂, Ψu, Ψu)+ s2G (Ψu, QΨu, QΨu)+ sf(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)+ sg(Ψu, Ψ̂, Ψ̂)

G (Ψu, QΨu, QΨu)+ sh(Ψu, Ψ̂, Ψ̂)
[
2sG (Ψ̂, Ψu, Ψu)+ sG (Ψu, QΨu, QΨu)+ sG (Ψu, Ψ̂, Ψ̂)

]

< sG (Ψ̂, Ψu, Ψu)+ s2
( 4s4 +4s2 +1

16s5 −4s2 −1

)u
G (Ψ0, QΨ0, QΨ0)+ sf(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)

+ sg(Ψu, Ψ̂, Ψ̂)
( 4s4 +4s2 +1

16s5 −4s2 −1

)u
G (Ψ0, QΨ0, QΨ0)+ sh(Ψu, Ψ̂, Ψ̂)

[
2sG (Ψ̂, Ψu, Ψu)

+ s
( 4s4 +4s2 +1

16s5 −4s2 −1

)u
G (Ψ0, QΨ0, QΨ0)+ sG (Ψu, Ψ̂, Ψ̂)

]
.
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As we know that
4s4 +4s2 +1
16s5 −4s2 −1

< 1. By applying limit

lim
u→+∞

{
sG (Ψ̂, Ψu, Ψu)+ s2

( 4s4 +4s2 +1
16s5 −4s2 −1

)u
G (Ψ0, QΨ0, QΨ0)

+ sf(Ψu, Ψ̂, Ψ̂)G (Ψu, Ψ̂, Ψ̂)+ sg(Ψu, Ψ̂, Ψ̂)
( 4s4 +4s2 +1

16s5 −4s2 −1

)u
G (Ψ0, QΨ0, QΨ0)

+ sh(Ψu, Ψ̂, Ψ̂)
[
2sG (Ψ̂, Ψu, Ψu)

+ s
( 4s4 +4s2 +1

16s5 −4s2 −1

)u
G (Ψ0, QΨ0, QΨ0)+ sG (Ψu, Ψ̂, Ψ̂)

]}

=0.

It implies that

lim
u→+∞

[1−2sg(Ψu, Ψ̂, Ψ̂)−2s2h(Ψu, Ψ̂, Ψ̂)]G (Ψ̂, QΨ̂, QΨ̂) = 0. (16)

By assumption,

f(Ψ, ζ , γ)+3g(Ψ, ζ , γ)+4h(Ψ, ζ , γ)≤ 1
4s4 and µu−1 ∈

(
0,

1
4s2

]
∀ n ∈ N and Ψ, ζ , γ ∈ D . (17)

This implies that

2sg(Ψu, Ψ̂, Ψ̂)+2s2h(Ψu, Ψ̂, Ψ̂)< 1 ∀ n ∈ N.

From (16), we obtain G (Ψ̂, QΨ̂, QΨ̂) = 0. Hence it is proved that Ψ̂ is a fp of the mapping Q. Next to prove the
uniqueness we proceed by a contradiction. Assume that, ζ is also fp of the mapping Q. Then

F (sG (Ψ̂, ζ̂ , ζ̂ ))

=F (sG (QΨ̂, Qζ̂ , Qζ̂ ))

≤F
(

f(Ψ̂, ζ̂ , ζ̂ )G (Ψ̂, ζ̂ , ζ̂ )+g(Ψ̂, ζ̂ , ζ̂ )
[
G (Ψ̂, QΨ̂, QΨ̂)+G (ζ̂ , Qζ̂ , Qζ̂ )
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+G (ζ̂ , Qζ̂ , Qζ̂ )
]
+h(Ψ̂, ζ̂ , ζ̂ )

[
G (QΨ̂, QΨ̂, ζ̂ )+G (Qζ̂ , Qζ̂ , Ψ̂)

+G (Qζ̂ , Qζ̂ , Ψ̂)
])

− τ

=F
(

f(Ψ̂, ζ̂ , ζ̂ )G (Ψ̂, ζ̂ , ζ̂ )+h(Ψ̂, ζ̂ , ζ̂ )
[
G (QΨ̂, QΨ̂, ζ̂ )+G (Qζ̂ , Qζ̂ , Ψ̂)

+G (Qζ̂ , Qζ̂ , Ψ̂)
])

− τ

=F
(

f(Ψ̂, ζ̂ , ζ̂ )G (Ψ̂, ζ̂ , ζ̂ )+h(Ψ̂, ζ̂ , ζ̂ )
[
G (Ψ̂, Ψ̂, ζ̂ )+G (ζ̂ , ζ̂ , Ψ̂)

+G (ζ̂ , ζ̂ , Ψ̂)
])

− τ

=F
(

f(Ψ̂, ζ̂ , ζ̂ )G (Ψ̂, ζ̂ , ζ̂ )+h(Ψ̂, ζ̂ , ζ̂ )
[
G (Ψ̂, ζ̂ , ζ̂ )+G (Ψ̂, ζ̂ , ζ̂ )

+G (Ψ̂, ζ̂ , ζ̂ )
])

− τ = F
(
[f(Ψ̂, ζ̂ , ζ̂ )+3h(Ψ̂, ζ̂ , ζ̂ )]G (Ψ̂, ζ̂ , ζ̂ )

)
− τ

≤F
(
[f(Ψ̂, ζ̂ , ζ̂ )+3h(Ψ̂, ζ̂ , ζ̂ )]G (Ψ̂, ζ̂ , ζ̂ )

)
.

(18)

F1 implies

G (Ψ̂, ζ̂ , ζ̂ )≤ [f(Ψ̂, ζ̂ , ζ̂ )+3h(Ψ̂, ζ̂ , ζ̂ )]G (Ψ̂, ζ̂ , ζ̂ )

≤ 1
4s5 G (Ψ̂, ζ̂ , ζ̂ ),

which is a contradiction. Therefore, G (Ψ̂, ζ̂ , ζ̂ ) = 0. This proves the uniqueness of the fp. That is, Ψ̂ = ζ̂ .
Remark 4 Choosing µu = 0 and b = 1 in Theorem 1 with suitable values for f(x, y, z), g(x, y, z) and h(x, y, z) we

get the results of [28] and [29].
Theorem 2 Let (D , G , v) be a complete convex Gb-MS with a convex structure v andQ : D →D be aF -Chatterjea

type contraction, that is there exists h : D ×D →
[

0,
1

4s4

)
the following hold:

τ +F (sG (QΨ, Qζ , Qγ))≤F
(

h(Ψ, ζ , γ)
[
G (QΨ, QΨ, ζ )+G (Qζ , Qζ , Ψ)+G (Qγ, Qγ, Ψ)

])
,

for every Ψ, ζ , γ ∈ D . Assume that the sequence {Ψu} is defined as
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Ψu = v(Ψu−1, QΨu−1, µu−1), where 0 < µu−1 <
1

4s2 ∀ u ∈ N,

then Q has a unique fp in D , provided that

4h(Ψ, ζ , γ)≤ 1
4s4 .

By choosing h = 0 in the Theorem (3.), we obtain the subsequent result.
Theorem 3 Let (D ,G ,v) be a complete convex Gb-MS with a convex structure v and Q : D → D be a F -Riech

type contraction is as follows. Suppose there exists f, g : D ×D →
[

0,
1

4s4

)
the following hold:

τ +F (sG (QΨ, Qζ , Qγ))≤F
(

f(Ψ, ζ , γ)G (Ψ, ζ , γ)

+g(Ψ, ζ , γ)
[
G (Ψ, QΨ, QΨ)+G (ζ , Qζ , Qζ )+G (γ, Qγ, Qγ)

])
,

for every Ψ, ζ , γ ∈ D . Assume that the sequence {Ψu} is defined as

Ψu = v(Ψu−1, QΨu−1, µu−1), where 0 < µu−1 <
1

4s2 ∀ u ∈ N,

then Q has a unique fp in D , provided that

f(Ψ, ζ , γ)+3g(Ψ, ζ , γ)≤ 1
4s4 .

Example 2 Assume D = {1, 2, 3} and G : D ×D ×D → [0, +∞) defined by

G (Ψ, ζ , γ) = max{d(Ψ, ζ ), d(Ψ, γ), d(γ, ζ )} ∀ ζ , Ψ, η ∈ D ,

be amapping for eachΨ, ζ , γ ∈D such thatG (Ψ, ζ , γ)=G (ζ , Ψ, γ)=G (γ, ζ , Ψ)= · · · andG (1, 1, 1)=G (2, 2, 2)=
G (3, 3, 3) = 0, G (1, 1, 2) = G (2, 2, 1) = 1, G (1, 1, 3) = G (3, 3, 1) = 4, G (2, 2, 3) = G (3, 3, 2) = 1, G (1, 2, 3) = 4.

Then (D , G ) is a complete Gb-MS with s= 2. Define a mapping Q such that Qθ =
θ
15

for any θ ∈D . Also the mapping
v : D ×D × [0, 1]→ D by

v(ζ , Ψ; µ)≤ µζ +(1−µ)Ψ,

for each ζ , Ψ ∈ D and µ ∈ [0, 1].
Set
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Ψu = v(Ψu−1, QΨu−1, µu−1) and µu−1 =
1

24
.

Then (D , G , v) be a complete convex Gb-MS with s= 2, where d(a, b) = (a−b)2 for each a, b ∈D . Next, define

f, g, h : D ×D →
[

0,
1
2

)
as

f(Ψ, ζ , γ) =


1

128
, if Ψ < ζ , ζ < γ

1
138

, otherwise ,

g(Ψ, ζ , γ) =
1

384
and h(Ψ, ζ , γ) = 0 for every Ψ, ζ , γ ∈ D . It is clear that

f(Ψ, ζ , γ)+3g(Ψ, ζ , γ)+4h(Ψ, ζ , γ)≤ 1
64

.

Then all conditions of Theorem (1) are fulfilled. That is, a unique fp of Q exists. Indeed,

τ +F (sG (QΨ, Qζ , Qγ))≤F
(

f(Ψ, ζ , γ)G (Ψ, ζ , γ)+g(Ψ, ζ , γ)
[
G (Ψ, QΨ, QΨ)+G (ζ , Qζ , Qζ )

+G (γ, Qγ, Qγ)
]
+h(Ψ, ζ , γ)

[
G (QΨ, QΨ, ζ )+G (Qζ , Qζ , Ψ)

+G (Qγ, Qγ, Ψ)
])

.

(19)

Next, consider the following cases in (19)
• Case 1: If Ψ = 1, ζ = 2, γ = 3, then

τ + ln[2G (Q1, Q2, Q3)] = τ + ln
[

2max
{

d
(

1
15

,
2
15

)
, d
(

1
15

,
3
15

)
, d
(

2
15

,
3
15

)}]

= τ + ln
[

2d
(

1
15

,
3
15

)]

= τ + ln
[

2
225

(1−3)2
]

= τ −3.337
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≤ ln
[
f(1, 2, 3)G (1, 2, 3)

+g(1, 2, 3)
[
G (1, Q1, Q1)+G (2, Q2, Q2)+G (3, Q3, Q3)

]

+h(1, 2, 3)
[
G (Q1, Q1, 2)+G (Q2, Q2, 1)+G (Q3, Q3, 1)

]]

= ln

[
1

128
(4)+

1
384

[(
1− 1

15

)2

+

(
2− 2

15

)2

+

(
3− 3

15

)2
]]

= ln[0.0631]

=−2.763.

For τ ≤ 0.574, our contraction condition is satisfied.
• Case 2: If Ψ = 1, ζ = 1, γ = 2, then

τ + ln[2G (Q1, Q1, Q2)] = τ + ln
[

2max
{

d
(

1
15

,
1
15

)
, d
(

1
15

,
2
15

)
, d
(

1
15

,
2
15

)}]

= τ + ln
[

2d
(

1
15

,
2
15

)]

= τ −4.7230

≤ ln
[
f(1, 1, 2)G (1, 1, 2)

+g(1, 1, 2)
[
G (1, Q1, Q1)+G (1, Q1, Q1)+G (2, Q2, Q2)

]

+h(1, 1, 2)
[
G (Q1, Q1, 1)+G (Q1, Q1, 1)+G (Q2, Q2, 1)

]]

= ln

[
1

138
+

1
384

[(
1− 1

15

)2

+

(
1− 1

15

)2

+

(
2− 2

15

)2
]]

= ln[0.02084]

= −3.8709.
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For τ ≤ 0.8521, our contraction condition is satisfied.
• Case 3: If Ψ = 1, ζ = 1, γ = 3, then

τ + ln[2G (Q1, Q1, Q3)] = τ + ln
[

2max
{

d
(

1
15

,
1
15

)
, d
(

1
15

,
3
15

)
, d
(

1
15

,
3
15

)}]

= τ + ln
[

2d
(

1
15

,
3
15

)]

= τ −3.337

≤ ln
[
f(1, 1, 3)G (1, 1, 3)

+g(1, 1, 3)
[
G (1, Q1, Q1)+G (1, Q1, Q1)+G (3, Q3, Q3)

]

+h(1, 1, 3)
[
G (Q1, Q1, 1)+G (Q1, Q1, 1)+G (Q3, Q3, 1)

]]

= ln

[
1

138
+

1
384

[(
1− 1

15

)2

+

(
1− 1

15

)2

+

(
3− 3

15

)2
]]

= ln[0.0539]

= −2.921.

For τ ≤ 2.4315, our contraction condition is satisfied.
• Case 4: If Ψ = 2, ζ = 2, γ = 3, then

τ + ln[2G (Q2, Q2, Q3)] = τ + ln
[

2max
{

d
(

2
15

,
2
15

)
, d
(

2
15

,
3
15

)
, d
(

2
15

,
3

15

)}]

= τ + ln
[

2d
(

2
15

,
3
15

)]

= τ −4.7230

≤ ln
[
f(2, 2, 3)G (2, 2, 3)

+g(2, 2, 3)
[
G (2, Q2, Q2)+G (2, Q2, Q2)+G (3, Q3, Q3)

]
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+h(2, 2, 3)
[
G (Q2, Q2, 2)+G (Q2, Q2, 2)+G (Q3, Q3, 2)

]]

= ln

[
1

138
+

1
384

[(
2− 2

15

)2

+

(
2− 2

15

)2

+

(
3− 3

15

)2
]]

= ln[0.02085]

=−3.870.

For τ ≤ 0.8530, our contraction condition is satisfied.
We choose Ψ0 ∈ D/{0}. Combining with

Ψu = v(Ψu−1, QΨu−1, µu−1), µu−1 =
1

24
and QΨ =

Ψ
15

,

we obtain

Ψu = v(Ψu−1, QΨu−1, µu−1), µu−1

= µu−1Ψu−1 +(1−µu−1)QΨu−1

=
1

24
Ψu−1 +

(
1− 1

24

)
Ψu−1

15

=
19
180

Ψu−1.

Proceeding in the same way, we obtain

Ψu−1 =
19

180
Ψu−2, Ψu−2 =

19
180

Ψu−3, · · · . Ψ1 =
19

180
Ψ0.

Therefore,

Ψu =

(
19

180

)u

Ψ0, QΨu =
1
15

(
19
180

)u

Ψ0.

By applying lim
u→+∞

, we get Ψu → 0 and QΨu → 0. That is, 0 is a fp of Q.
Due to the vast applications of integral equations in many real-life problems, the solution of integral equations and

their existence has become an important topic for researchers. A huge literature is present on the existence of the solution
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to such integral equations using the fixed point technique. Gnanaprakasam et al. [30] applied their results to prove
the existence of the solution to the integral equation by incorporating F-Khan contraction. Similarly, Panda et al. [31]
presented fixed point results and their application to find the solution of Volterra integral equations to verify their results
on the platform of dislocated extended b-metric spaces. Gupta et al. [32] applied their results to find the solution of
Fredholm integral equation in the framework of Gb-MS .

4. Application
To ensure the existence of a solution to the subsequent integral equation, we apply Theorem 2.

Ψu(q) = f (q)+ γ
∫ l2

l1

w(q, ζ )K1(ζ , Ψu(ζ ))dζ
∫ l2

l1

w(q, ζ )K2(ζ , Ψu(ζ ))dζ for all u ∈ N (20)

for any q ∈ [l1, l2], where f : [l1, l2]→R, w : [l1, l2]× [l1, l2]→R and K1, K2 : [l1, l2]×R→R are continuous functions.
Let D =C([l1, l2], R) represent the space of continuous functions on [l1, l2]. Define

G (Ψu, βu, ηu) =
(

sup
q∈[l1, l2]

|Ψu(q)−βu(q)|+ sup
q∈[l1, l2]

|βu(q)−ηu(q)|+ sup
q∈[l1, l2]

|Ψu(q)−ηu(q)|
)2

, for all u ∈ N

while the function v : D ×D × (0, 1)→ D is presented as v(Ψu, βu; θ) = θΨu +(1−θ)βu. Then, (D , G , v) represents
a complete convex Gb-MS with s= 2. Consider a mapping Q : S → S by

QΨu(q) = f (q)+ γ
∫ l2

l1

w(q, ζ )K1(ζ , Ψu(ζ ))dζ
∫ l2

l1

w(q, ζ )K2(ζ , Ψu(ζ ))dζ . (21)

Q is well-defined. To obtain the solution for (20), it is equivalent to finding a fp of Q. Next, we state the subsequent
theorem.

Theorem 4 Suppose that the subsequent conditions are fulfilled:
(1): γ ≤ 1

s
;

(2):
∫ l2
l1

w(q, ζ )dζ ≤ 1;

(3): |Ki(ζ , Ψu(ζ ))−Ki(ζ , βu(ζ ))| ≤
√

3
3

√
h(β , ζ , η)

∣∣∣Ψu(ζ )−Qβu(ζ )
∣∣∣, i = 1, 2, u ∈ N and

∫ l2

l1

w(q, ζ )|K1(ζ , βu(ζ ))+K2(ζ , Ψu(ζ ))|dζ ≤ 1.

Then, the unique solution of Equation (20) exists.
Proof. Clearly, any fp of (21) is solution of (20). Using conditions (1)-(3), we have
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sG (QΨu, Qβu, Qβu)

=s
(

2 sup
q∈[l1, l2]

|QΨu(q)−Qβu(q)|
)2

=4γ

(
sup

q∈[l1, l2]

∣∣∣∣∣
∫ l2

l1

w(q, ζ )K1(ζ , Ψu(ζ ))dζ
∫ l2

l1

w(q, ζ )K2(ζ , Ψu(ζ ))dζ

−
∫ l2

l1

w(q, ζ )K1(ζ , βu(ζ ))dζ
∫ l2

l1

w(q, ζ )K2(ζ , βu(ζ ))dζ

∣∣∣∣∣
)2

≤4γ

(
sup

q∈[l1, l2]

∣∣∣∣∣
∫ l2

l1

w(q, ζ )

∣∣∣∣∣K1(ζ , Ψu(ζ ))dζ −K1(ζ , βu(ζ ))

∣∣∣∣∣dζ
∫ l2

l1

w(q, ζ )K2(ζ , Ψu(ζ ))dζ

+
∫ l2

l1

w(q, ζ )K1(ζ , βu(ζ ))dζ
∫ l2

l1

w(q, ζ )

∣∣∣∣∣K2(ζ , Ψu(ζ ))dζ −K2(ζ , βu(ζ ))

∣∣∣∣∣dζ

)2

≤γ

(
sup

q∈[l1, l2]
sup

ζ∈[l1, l2]

∣∣∣∣∣K1(ζ , Ψu(ζ ))−K1(ζ , βu(ζ ))

∣∣∣∣∣
∣∣∣∣∣ sup
q∈[l1, l2]

∫ l2

l1

w(q, ζ )dζ

∫ l2

l1

w(q, ζ )K2(ζ , Ψu(ζ ))dζ

∣∣∣∣∣+ sup
q∈[l1, l2]

sup
ζ∈[l1, l2]

∣∣∣∣∣K2(ζ , Ψu(ζ ))−K2(ζ , βu(ζ ))

∣∣∣∣∣
∣∣∣∣∣
∫ l2

l1

w(q, ζ )K1(ζ , βu(ζ ))dζ
∫ l2

l1

w(q, ζ )dζ

∣∣∣∣∣
)2

≤γ

(√
3

3
sup

q∈[l1, l2]

√
h(β , ζ , η)|Ψu −Qβu| sup

q∈[l1, l2]

∣∣∣∣∣
∫ l2

l1

w(q, ζ )dζ
∫ l2

l1

w(q, ζ )K2(ζ , Ψu(ζ ))dζ

+
∫ l2

l1

w(q, ζ )K1(ζ , βu(ζ ))dζ
∫ l2

l1

w(q, ζ )dζ

∣∣∣∣∣
)2

≤1
3

γ sup
q∈[l1, l2]

(∫ l2

l1

w(q, ζ )dζ
)2
(

sup
q∈[l1, l2]

√
h(β , ζ , η)|Ψu −Qβu| sup

q∈[l1, l2]

∣∣∣∣∣
∫ l2

l1

w(q, ζ )K2(ζ , Ψu(ζ ))dζ

+
∫ l2

l1

w(q, ζ )K1(ζ , βu(ζ ))dζ

∣∣∣∣∣
)2
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≤1
3

γ

(
sup

q∈[l1, l2]

√
h(β , ζ , η)|Ψu −Qβu|

)2

≤ 1
3s

(
sup

q∈[l1, l2]

√
h(β , ζ , η)|Ψu −Qβu|

)2

≤1
3

h(β , ζ , η)
(

2 sup
q∈[l1, l2]

|Ψu −Qβu|
)2

+
1
3

h(β , ζ , η)
(

2 sup
q∈[l1, l2]

|βu −Qηu|
)2

+
1
3

h(β , ζ , η)
(

2 sup
q∈[l1, l2]

|Ψu −Qηu|
)2

=
1
3

h(β , ζ , η)

(
G (Ψu, Qβu, Qβu)+G (βu, Qηu, Qηu)+G (Ψu, Qηu, Qηu)

)
.

Hence

τ +F (G (QΨu, Qβu, Qηu))≤
1
3

h(β , ζ , η)
(
G (Ψu, Qβu, Qβu)+G (βu, Qηu, Qηu)+G (Ψu, Qηu, Qηu)

)
,

where F(t) = ln t and τ ∈
(

0, ln
(1

3
h(β , ζ , η)(G (Ψu, Qβu, Qβu)+G (βu, Qηu, Qηu)+G (Ψu, Qηu, Qηu))

G (QΨu, Qβu, Qηu)

))
.

All conditions of Theorem 2 with βu = ηu are satisfied. Which enables us to know that a fixed point for Q exists.
Thus, the solution of the integral equation exists. Hence, we obtain that Equation (20) gives a unique solution, where the

sequence satisfies the convex condition with µu ∈
(

0,
1
4

)
.

5. Conclusion
• In 2022, Yildirim [18] presented certain fixed point results using Mann’s iterative scheme tailored with b-metric

spaces.
• In the present research, the existence and uniqueness of the fixed points are establishedwithMann’s iterative scheme

in convex Gb-metric spaces using F -contraction of Hardy Rogers type.
• This task is achieved by further weakening the conditions of Wardowski’s F mappings.
• An example is provided to support our results. Eventually, an application is given for the validity of our results.
• The obtained results are generalizations of several existing results in the literature [28, 29].
• Future research endeavors may focus on establishing the above result:
(i) in the setting of controlled Gb-metric spaces and double controlled Gb-metric spaces.
(ii) by using the Picard-Mann hybrid iterative scheme.
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