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Abstract: This article presents novel fixed point results using Mann’s iterative process in complete convex b-metric
spaces, building upon Isa Yildirim’s recent work. The author established the definition of the .% -Hardy-Rogers contraction
of the Nadler type by relaxing two conditions of Wardowski’s .%-mapping. Our approach employs Mann’s iterative
scheme in %,-metric spaces under convex conditions. A supporting example with detailed calculations validates our
result. Furthermore, we demonstrate the applicability of our findings by solving an integral equation through fixed point
equation along with the axioms of the provided result. The obtained results are generalizations of several existing results
in the literature.
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1. Introduction

Fixed point (fp) theory, a vital branch of functional analysis, has numerous applications in nonlinear analysis. The
contraction mapping principle, also known as Banach’s contraction principle (B &)3) [1], is a fundamental tool for studying
nonlinear equations. Its constructive nature enables numerical calculation of fixed points, making it an intriguing area of
research. This task is achieved by converting an operator equation ¢4 ¢ = 0 into a fp equation Q¢ = { with self-mapping Q
and a suitable domain. In recent years, researchers have extensively generalized BE&) by modifying spaces, contraction
conditions, or both.

Chen et al. [2] presented the notion of convex b-901.% and established certain fp results. Ek et al. [3] applied the
convex condition to Chatterjea and Hardy Roger’s contractive mappings and proved some fp results which are analogous
to this concept.

Iterative processes are an important feature of many numerical techniques, especially for finding a fp. The Picard
iteration scheme is the most simple and commonly used iterative scheme which is applied in *B&P. Later, in 1953, Mann
[4] presented Mann’s iterative scheme to approximate fp of a mapping, which is a generalization of Picard iteration. Ji et
al. [5] used the convex structure endowed with ¥,-901.% to prove fp results using Mann’s iterative scheme. Moudafi [6]
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used the concept of Mann’s iterative scheme to generalize some fp results. In his research he has presented a method for
finding hierarchically a fixed-point of a nonexpansive mapping Q with respect to a nonexpansive mapping P. Unlike in
the case of BEYP, a non-expensive map Q even with a unique fp may fail to converge to the fp with iterative sequence
Putr1 = QWy, Yo € ¥, u > 0. According to Krasnoselski [7], a convergent sequence of successive approximations can

1
be obtained by taking the auxiliary non-expensive mapping 5 (I+Q), where I represents the identity transformation, i.e.,
if the sequence of successive approximations is defined, for arbitrary ¥y € Z, by

1
Yoy = 5(‘1‘“+Q‘PU), u>0. )

It is clear that the mapping Q and %(1 + Q) have the same set of fp’s so that the limit of the convergent sequence
defined by (1) is necessarily a fp of 2. On the other hand, Ullah and Arshad [8] introduced a new concept known as the K*-
iterative scheme. This scheme provides some accurate results in the least iterative steps equipped with Suzuki mappings.
Since then, many generalizations have been made using different iterative schemes. Some other most commonly used
iterative schemes are the Picard-Mann hybrid [9], iterative methods by strictly pseudocontractive mappings [10], S*-
iteration of Karahan and Ozdemir [11], SP iteration of Pheungrattana and Suantai [12], iterative scheme of Suzuki’s
generalized non-expansive mappings [13].

In 2012, Wardowski [14] presented a new fixed point theorem concerning .% -contraction using a mapping .% : Rt —
R. The concept of .% -contraction has inspired a bulk of research studies since its introduction. Aslam et al. [15] proved
coincidence point results endowed with .% -weak contraction by using a binary relation. Cosentino et al. [16] presented
the notion of .% -contractive mappings of Hardy-Rogers-type which further generalizes the .% -contraction by relaxing two
condition of .% mappings. Asif et al. [17] presented the concept of .%-Reich contraction in convex b-metric spaces.

In 2022, Yildirim [18] presented the .% -Hardy-Rogers of Nadler’s type contraction by removing two condition of
Z mappings. Moreover, He established some fp results using Mann’s iterative scheme in convex b-91.%. Motivated by
the idea of Yildirim [18], this article encompasses some fp results on the platform of convex ¥,-91.% using the Mann’s
iterative scheme by further weakening the conditions on .%.

The article is structured as follows:

1. Necessary definitions and preliminaries.

2. Existence and uniqueness of fp theorems using . -Hardy Roger’s type contraction.

3. Example and application.

4. Conclusion.

2. Preliminaries

In the current section, we will recollect some basics for the best understanding of this article.

Definition 1 [19] Let Z # ¢ and d : 2 X  — [0, +0) be a mapping, which fulfills the subsequent properties for
every ¥, {,n € 9:

(1: d(¥, §)=0 <= ¥={:

(2): d(¥, §) =d(E, ¥);

(3): d(¥, n) <s[d(¥, {)+d(&, n)] fors > 1,
then d and (2, d) represents b-metric and b-91.% respectively.

In [20], Aghajani et al. presented the idea of ¥,-901.% as follows.

Definition 2 [20] Let Z # ¢ and ¢ : I x Z x 9 — [0, +o0) be a mapping, which fulfills the subsequent properties
foreach ¥, {, n € Z:

(1): 9 (¥, £, m)=0if W= =n;

2):9¥, ¥, {)>0foreveryP, { € 2 with ¥ £ {;
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BrYY, Y, )<YV, ¢, n) forevery ¥, {, n € 2 with { #n,

4): 9%, ¢, n)=9%(p{¥, {, n}), where p is a permutation of (¥, {, ) (symmetry);

(5): there exists s > 1 such that (¥, £, n) <s[9 (¥, , §)+9(, {, n)] forevery ¥, £, n, { € 2, then ¢ and
(9, 94) are called ¥,-metric and ¥,-9N.7 respectively.

Remark 1 [20] It is important to note that 5-901.% and ¥,-901.% are equivalent topologically. To get benefit from this
fact, we can use many results of »>-901.7 into ¥,-91..

Definition 3 [21] Let (2, ¢) denotes a ¥,-9.7. We say that {¥,} C Z is a ¥-Cauchy sequence (cs) if for each
€ > 0, there exists N € N such that for each [ m, n > N, (¥, ¥, ¥n) < €.

Definition 4 [20] Let (2, ¢) denotes a 4,-91.7. If there exists ¥y € & such that lim ¢ (¥, ¥, ¥o) =0, then

u, k—roo
{¥y} C 2 is called a convergent sequence in 2.

Remark 2 If every cs is convergent in 2 then (2, ¥) is called complete ¢,-9.7.

Definition 5 [20] A ¥,-9.7 is called symmetric if 4 (¥, ¥y, i) = G (¥, Py, Pu) for every ¥, ¥ € 2.

Definition 6 [22] Consider two ¥,-0M.% defined as (2, %) and (%>, %). Then [ : (D, %) — (Dr, %) is Y-
continuous at a point Wy € 7 if for every ¥1, ¥, € & and € > 0, there exists 6 > 0, such that ¢, (¥y, ¥, ¥2) < 6 =
gz(f\yo, f‘P], f‘Pz) < €.

Proposition 1 [20] Consider two ¥,-9.7 defined as (2, ¢) and (2, %,). Then f: (21, %) = (21, %) is
@-continuous at a point ¥y € 7 < f(W,) is ¥-convergent to f(¥¢) whenever {¥,} is ¥-convergent to ¥.

Definition 7 [5] Let (2, ¢) be a 4,- M. and a mapping Q : ¥ — &. We say that {¥, } is a Mann sequence if

lPLH—l = V(IPW e@q"u’ ‘u'u)7 uc N07

where Wy € Z and p, € [0, 1].

However, Iterative methods have an important role in finding fp’s of non-expansive mappings. In particular, Mann
iterative is one of the well-known methods to find the approximations of the problems by using iteration schemes. Mann’s
iterative scheme is defined as

lPu—}—l = .uu\Pu"‘ (1 _.uu>Q‘Pua Uy € [O, 1]

Definition 8 [5] Let (2, ¢¥) be a ¥,-9M. with constant s > 1 and I = [0, 1]. A mappingv: 2 X P xI — P is
called a convex structure on & if for each W, ¥o, W3, n, { € Zandu el

g(n’ C? v(lpla o ‘U)) < ‘Ll,g“", Ca \P1)+(1 _:u)g(rh g’ lP2) (2)

holds, then (2, ¢, v) is called a convex ¥4,-N.7.
Next, we present an example of convex ¢,-91.7.
Example 1 Let 2 = R" and define a b-metricd : 2 x 9 — [0, +o0) V {, ¥ € & by

(&G—¥)?,

M-

d(Cﬂ ‘P) = ‘

foreach{ = (&, &, -+, &n) €2, ¥ = (W1, P2, -+, Pn) € 2 and define the mappingv: 2 x 2 x [0, 1] — 2 by
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Y+ C

v(¥, &)= 5

Then (2, d) is a convex b-0M.% with s = 2. Define a metric 4 : 7 x X 9 — [0, +o0) by

9(¥, ¢, n) =max{d(¥, {), d(¥, n),d(n, {)}VY¥, {,ne 2.

Foreach¥, {, a, B € 2, we have

(Y, §, va, Bs ) = max{d(¥, §), d(¥, v(a, B; n)), d(&, v(e, B; 1))}
<max{d(¥, §), ud(¥, &)+ (1 - p)d(¥, B), ud(&, o)+ (1—p)d(S, B)}
<pmax{d(¥, §), d(¥, @), d({, &)} + (1 —p)max{d(¥, ¢), d(¥, B), d(¢, B)}
=g (¥, § )+ (1-¥ (¥, €, B).

Hence (¢, 2, v) is a convex %,-9N.7 with 5 = 27~ 1,
Remark 3 A convex ¥,- 1. becomes a convex 4-91.7 for s = 1.
Wardowski [14] introduced the .% -contraction in 2012, which plays a crucial role in recent trends of research in the
area of fp theory. Cosentino et al. [23] presented the following.
Definition 9 [23] Let s > 1 be areal number. .% : (0, +o0) — R be a mapping which fulfills the subsequent conditions:
(F1): % is strictly increasing,
F»): for every sequence {¥, },en of positive numbers UETWTH =0 < lim F(¥,)=—o

( ): u—r o0
(F3): there exists k € (0, 1) such that lim WX.7 (¥) =0,

Y—0"
(F4):

)

Fy): for every sequence {¥,} C R

ifT+.F(sW,) < Z(sP,_1)VueN, T€RT, then
T+.F(s"W,) < Z(s* "W, )VueN.

Definition 10 [14] Let (2, d) be a .. A mapping Q : Z — ¥ is said to be % -contraction if there exists 7 > 0
such that d(Q¥;, Q¥,) >0

= 7+ .7(d(Q¥, Q¥2)) < F(d(¥1, ¥2)) foreach¥,, ¥, € 2.

Popescu and Stan [24] proved fixed point results by applying weaker symmetrical conditions on the self-map of a
complete metric space, Wadowski’s control function .%, and the contractions defined by Wardowski. Vujakovic et al.
[25] proved Wardowski type results within &-91.% using only the condition F;. Fabiano et al. [26] presented a beautiful
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survey on .% mappings and suggested some improvements on the conditions of .% mapping involved in the contractive
condition.

We now state a property [25, 26] of the function .% which is the consequence of the condition F;. This paper is a
third chapter of the book (see, [27]).

* At each point u € (0, +oo) there exist its left and right limits Q‘ILIE* F(§)=%(u") and glim+55(l_f) = Z(uh).

—u
Moreover, for the function . one of the subsequent two properties hold: .# (07) =m € R or #(0") = —co.

The collection of functions that satisfy condition (F}) are denoted by F.

3. Main results

Definition 11 Assume that % € F and (2, ¢, v) is a complete convex ¥,-01.% with s > 1. Then Q : Z — % is said
1
to be a .% -Hardy Rogers type contraction if forf, g, h: I x Z — [07 2) the subsequent equation hold:

T+ F(s9(QY, QC, Q) <7 (K%, L, NY(¥, ¢, 1) +e(¥, &, 7)[4(¥, Q¥, Q¥)+9(C, QL. Q0)
+9(1, Q1 QV)] +h(¥, £, ) [4(Q¥, Q¥, {)+¥(QC. Q¢, ¥) 3

+9Qr, Qr, ¥))).

forevery ¥, {, y€ 2, with p#£qgand g #r.
Theorem 1 Let (2, ¢, v) be a complete convex ¥,-91. with a convex structure v and Q : ¥ — % is a % -Hardy
Rogers type contraction. Assume that the sequence {W, } is defined as

Yy =v(Wuo1, QPu_1, Uu—1), where 0 < iy < 41? VueN, 4)
then a unique fp of 2 exists, provided that
(¥, £ 1)+ 380, ,7)+4n(F, &, 7)< oo ©
Proof. By Equation (4) and convex structure of the ¢,-91.

g(l}lm lPu: \Pu+l) :g(‘{’u) \Pu7 V(lPU’ Q\Pu; ‘uu))
(6)
< (1 @)% (¥, Wy, QF,)

and
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g(l{‘m Q‘Pua leu) = g(v(‘{’u,h QW¥yu—_1; ,uufl); QY¥y., QlPu)

< (1) (Pt Q¥uy QW)+ (1~ pa )7 (Q¥um1, Q¥u, Q)
< (- 1)s{ F (a1, Q¥ 1, Q¥ 1) +9(Q¥u 1, QPy, Q) }
(1 fae)F (Q¥u-1, QP QT4)
< (Ha-1)s{ 9 (Part, Q¥uct, Q1) +9(QWurt, Q¥ QW)
+9(Q¥s 1, Q¥ Q)
= Hu-159 (Pu-1, QFu-1, QFu-1) + (1 + ty-15)% (QW¥u-1, Q¥u, Q¥y)
< pac189 (Pt Q¥art, Q¥unt) (14 u ) (Q¥ur, Q¥ Q).
Therefore,
(Y, Q¥ QW) < 159 (P 1, Q¥ 1, Q¥uo1) +5(1+ Mo 1)9 QW0 1, Q¥4 Q). ™
By using contraction
o+ 7 (s4(QWu1, Q¥ QW) <F (H(¥uo1, Yo, Y)Y (a1, Pu, o) +2(Wrt, W, W)
(9 (¥art, Q¥ut, QU 1) +9(Pu, QP QT)

(Yo, Q¥ QW] +h(Parr, W, W) [#(Q¥u1, QW1 W)

+4/(Q¥u, QPu, Wurt) +9/(Q%, QPu, W) )
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— F(sH(QWu1, Q¥ QW) < F (F(Wu-1, Yo, Y)F (a1, Pu, o) +2(Wurt, W, W)
(9%t QUur, QW) +9(%0, Qs QP)
(%0, Q¥u Q¥ +h(Purr, W, W) [#(Q¥u1, Q¥ )
+Y(Qa; Q¥u, Wur1) +9(QWu, Qs Wa)] ) — 7
< (f0Purr, Wu W)Y (Fur, P W) + (Pt B, )
(9%t QUur, QW) +9( 0, QPs, QP)
Y (Pa, Q¥ Q¥)| +h(Purt, W W) [4(Q¥u1, QW1 W)

+9(QW, Q¥ Wur1) +9(Q¥u, Q¥u, W) )
With the help of property .%#;, we have

5Y(QWu 1, Q¥ QW) < (W1, W, Wa)¥ (Pur1, W, W)+ 2(Wa1, Pa, W)
G(Put, Q¥u-1, Q1) +29(Ya, Q¥ QF) ®)
(W1, Yo, W) [F(Q¥u 1, QPun1, W) +29(Q%, Q¥ W)
By using Equation (8) in Equation (7),
(Y, Q¥u, Q%) < 159 (Fart, Q¥umt, Q1)+ (1 ) {1(Puct, W, WS (W, W, W)
+e(Wu 1, Yo W) [9(Fa 1, Q¥ 1, Q1) +29(%0, Q¥ Q)]

Fh(¥uot, P, W) [F(QPut, QPunt, W) +27(Q, QW Wart)] |-

From Equation(6),
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G (W, Q¥u, QW) < pu—159 (Wu—1, Q¥u—1, Q¥u1) + (1 + ptu—1)(1 = plu— 1 )f(Pu—1, W, o)
G (Wamt, Q¥u-t, Q¥ 1)+ (14 Ham1)e(War 1, Yoy W) [9(Famt, Q¥umt, Q¥u-)
29, Q¥u, Q)| + (14 pa-)h(Purr, W, W) [4(Q¥u1, Q¥umr, )
+29(Q¥, Q¥ W 1)].
Then
G (P, Q¥u, Q¥y) < tu159 (Pu_1, QPu1, Q1) + (1 — 2 E(Puo1, P, Pu)
G (Wamt, Q¥u-t, Q1)+ (14 Ham1)e(War 1, Yoy W) [Pt Q¥umt, Q¥un)
29, Q¥u, Q)| + (14 pa-)h(Pur1, W, W) [P, Qo1 Q¥u1)
+29(%, 1, QP QT)]
< tu159 (Puct, QPu—1, Q¥ut) + (1—p2 (W 1, Pu, W)
G (Put, Q¥umt, Qo)+ (14 Hu)2(Purt, P, W) [9(Fut, Q¥ut, Qo)
+29 (W, Q¥u, Q)| +5(1+ tu)h(Fu-1, P W) [(a, ¥ty Fu)
G (Wamr, QPusr, Q¥us1) +29(Pumi, Pu, W) +29(Wy, Q¥,, QW)
< 159 (W1, Q¥ust, QPu_1) + (1— py f(Wusr, Pu, Pu)
G (Wamt, Q¥u-t, Q¥ 1)+ (14 Ham1)e(War 1, Yoy W) [Pt Q¥umt, Q¥un)
1 29(W,, Q¥,, Q\pu)} (14 po)h(Wa_i, Pa, Fo) [(1 )

g(\yufh QlPufla Q\Pu,])Jrff(\Pu,], Q‘Pufh QlPufl)
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+29 (¥, Qa, QW) +2(1 — Ha 1) (Pt Q¥u-1, Q)|
:[Nu715+(1 — tg (W1, W, W) + (14 - 1)g(Wa1, Wa, Wa) +5(1+ 1)
h(Woo1, W Wa) (4= 3t 1) (Pa 1, Qa1 Q¥umn) + 201+ 1)

e(Wamr, Wa, Wa) 201+t 1)sh(Wy 1, W, W) | 920, QW Q).

which implies that
(1= {200+ am)2(Punt, P, )21+ a1 )sh(Farr, Yo, W)} 9 (%0, Qs QL)
S[ﬂuflﬁ-l-(l — iy (a1, Wo, Wo) + (14 o 1)g(Pu1, Wa, Wo) +5(1+ pha1)
h(Wy_1, Wy, ‘Pu)(4*3ﬂu71)]g(‘{’u71, Q¥y-1, Q¥u1).

By the hypothesis, we know that

1 1
f(lP7 C’ y)+3g(\P, Cv ’Y)+4h(lpﬂ C? ’}/) S E and Hu—1 € <05 452:| .

Consider
2(1+ pu—1)g(Pu-1, P, W) +2(1 + pu—1)sh(Pu-1, Pu, Pu)
< 2(1 4 pu—1)sg(Pu-1, Yo, W) +2(1 + pu—1)sh(Pu-1, Yo, Fu)
=2(1+py-1)s[g(Pu-1, Yo, Pu) +h(Pu_1, Pu, Pu)]
<2 (1 + 412) 5 X 4%4
<1,
and
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(1= g ) (Pamt, Pu, W) + (14 pu—1)g(Wamt, Pu, W) +5(1+ put)
h(Wy—1, Wy, Pu)(4—3uu-1)
<(1 =g E(Pu1, Yo, W) + (14 pu1)2(Pu1, o, Pu) +4s(1+ 1)
h(Wy-1, Pu, Pu)
=1+ ty—1)(1 — gy 1)f(Pu_1, Pu, o)+ 1+ tu—1)2(Pu_1, Py, Pu) +4s(1+ ty_1)
h(¥y—1, Py, o)

S(l +,uu71) [f(\Pu717 le ‘I’u)+g(‘Pu71, lPu» \Pu) +4h5(‘Pu717 lPua lPu)}

(1 o) [{(Pu1, W, W)+ 2(Wamt, W, W) +40( Pt o, o)

1 1
<<1+452)“454

< 1.
Hence
9 (Pu, Qu, Q%)
Uy—15+ (1 —Hf,l)f(‘i’u—h Yy, \Pu) + (1 +,uu—1)g(lpu—l7 Yy, lI"u)
< +5(1+nu'u*1)h(lpll*]a ‘Plh \Pu)(4_3ﬂu71)
11— {2(1 +Hu71)g(‘f’u71, Yy, lPu) +2(1 +Nu71)5h(q]u717 Yy, lI"u)}
><g(l}lu—h QlPu—la Q\Pu—l)~
Denote,
Hu—15+ (1 _.u&_l)f(lpu—h \Pm lI"u) + (1 +.uu—1)g<\Pu—17 lPu; lPu)
0 _ +5(1 +,uufl)h(q"u717 le lPu)(4_?’.uufl)
20+ e )g(Pur, W, W) +2(1+ i 1)sh(Wyp, P, W)}
Then,
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Hu—15+ (1 _I-‘fq)f(lpufla Wy, Po) + (1 + ptu—1)g(Wu-1, Pu, Pu)
+5(1+,uu71>h(lpu717 \Pua ‘Pu)(4_3,uu71)

Ou_1 =
PTTE0 e )g(Pa 1, P, W) +2(1 + e 1)sh(Py_1, Py, W)}

:uuflﬁ"f‘ (1 - ﬂ&il)f(‘{’u,l, ‘Pua lPu) + (1 +Mu71)g(‘1’u71, \Pm lPu)
< +s(14 pty—1)4h(Py_1, Py, ¥u)
o 1 - {2(1 +1“U7l)g(qJU7l7 \Plh lPll) +2(1 +‘ul17l)5h(lPU717 \Plh \Pu)}

uu,15+(l+yu,1)f(‘{‘u,1, ‘Pua lPu)"‘(1‘|‘,“u71)g(‘{lu71, \Pm lPu)
+5(1+”u71)4h(qju717 ‘Pm LPu)
=20+ fra 1)e(Pa 1, Wa, Bo) 1201 1 fha 1)sh(Py 1, ¥y, Bo)]

1
1+—
< 4s —1
1-— {2(1 +uu—l)g(l}‘u—la \Pm lPu)""z(l +ﬂu—l)5h(lpu—l; \Pua \Pu)}

483 1650

4s* 4452 4+ 1
1655 — 452 — 1

< 1.
Implies
gg(qjua QlPua Q‘Pu) S euflg(‘Pufla QlPufl, leufl)
©)

4s* 4452 41

Toes —aar =12 Wu-1, Q¥u-1, Q¥u-y).

By using (3), (7) and (9), we have
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T+ F(dy) = T+ (9 (W, Q¥y, QPy))

45t + 452+ 1

< |- _ 7
= (1655 —4527 lg(qju_l? QlPu—l) Q\Pu—l)> c/(du_l)

4s* 4452 41

= Z(9 (¥, Q¥u, Q¥u)) < y(m

G (¥uo1, Q¥ut, Q¥ut)) — 7
that is,
F(dy) < F(dy_1)— 7 forall p € N. (10)

Since .# is strictly increasing, then dy, < dy,—. Thus, we conclude that the sequence {d,,} is strictly decreasing, so
there exists lirf dy, = d. Suppose that d > 0. Since .Z is increasing mapping there exists Clim+,? (&) = F(d"), so
u—rtoo —d

taking limit as p — +oo in inequality (10), we get
T+ FZ(dh) < F(dh),
a contradiction. Therefore LIIJIrl d, =0,

lim (¥, Q¥,, Q¥,) =0.

u—r+oo

Then

lim & (¥, Yy, Puq1) = lim G (Wy, Wu, v(Pu, QPu; Uu))
u—>—+oo

u—>-o0
(11
Sul_ig_loo(l - Uu)g(lpm lIJua QLPu)a
which implies that
lim 9(P,, Yo, Pas1) =0. (12)

u—r+-o0

Now, we will check the Cauchyness of the sequence {W,}. For this, we proceed by a contradiction. Assume that
{W¥,} is not a Cauchy sequence. Then there exists an € and two subsequences {Tv(i)} and {‘Pw(i)} of {¥,} such that

~

V() >w(d)> 2,
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and

and

Then,

By using (12)

Therefore,

Also,

Co iporary Math

€<s lim g(‘I’V@), Y,

A—+o0

¥

A+ Tw

(i)+1)'

268 | Amna Naz, et al.



g(q’v(i)’ lpw(iww le(;l)+l) :g(v(lpv(i)w Qq’v(i)q; Hv(i)fl)’ Tw(i)w q’w(i)ﬂ)
<My 9 Y- Yader Yaiyen)
+ (=5, DYQY, 01 Yoa)o Yaiysn)
(13)
<Hya1 Yo Yo Yagr)

+5(1*“v(iyl)[%(QTv(z)w Q¥ )10 Q¥yiyer)

+9(Q¥, 1 Py ¥

+10 Fw)+10 w(i)+l):|'

By using the contraction condition,
9(5%(@{“/(1)71, Q¥ )+10 lew(i)ﬂ))

<7 (f(lpv(i)w \Pw(i)Jrl’ ‘Pw(1>+1)g(q’v(i)w Tw(i)ﬂ» ¥

w(i)+1)

T2 o)1 Y Yai0) |9 Q¥ Qa0

+9 (o)1 Q¥ QY1) 9 ¥y Q¥4 Qle(i)+1):|
+h(¥, i) Ve Yoy |Z9QY 0 QY61 Y1)

TYQY )10 Q¥ Foa)-) FE Q¥ 000 Q¥4 va(i%l)}) -7

=4 (f(‘yv(i)*l’ o ‘Pw(i)ﬂ)g(wv(i),], Y i v

w(d)+1 A)+1 w(i)+1)

+g(q'v(}1)fw ‘Pw(ﬁuw ‘Pw(i)ﬂ) g(lpv(i)fw Q‘Pv(i)fw Qva(i)fl)
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C

By using %,

<E(¥, 50 1 Yoo P

+g(LPw(i)717 Qle(i)Jrl’ Ql}lw(i)#»l)—’_g(qlw(}t%rl’ Q‘Pw(i)+1’ QTW(1)+1):|
Fh(Y, 0 Yagyer Yaiya) |9QY 0 QY01 Yoyt

Jrg(Qle(i)Hv quw(i)Hv Tv(i)fl)Jrg(Qle(i)w Qle(fLHl’ q‘v(i)fl)})'

57 QY1 Q¥4 QY1)

(P51 Py P

-1 Twh)+10 Tw(d)+1 w(l)+1° w(i)+1)

+2(¥yi) Yaiyer Yaiyr) [g(lpv(i)—v Q¥, ;)1 Q¥y3)-1)
YY) Qi) Qar) T9Woi) 0 Qi) QY1)
+h(\Pv(}1)717 Tw(i)w le(i)Jrl) [g(Qva(i)w Qlyv(i)fp le(;l)+1)

+9Q% 0010 Q¥yiyrr ¥y TE Q¥ 0 110 Q¥ va(i)q)]

Use the above equation in (13),
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+h(‘Pv<i)71, Tw(i)ﬂv Tw(i)+1) [g(q’vmw ‘Pvmm wa(i)ﬂ)
+9 (Ym0 Yo QY1) +9 Q%0 110 Q¥ ‘Pv(i)q)}
+59(Q¥ w(A)+1° lIlw(i)Jrl’ qlw(i)ﬂ)D

<s(kya)- DG Wy Yaay Yaa) T9oa) Yoy Yyl 0 —ty5)-)
{f(lyv(i)—v Tw(i)a ‘Pw(}l)ﬂ)ﬁ[g(q’v(i)—v le(i)’ lPW(W +g(‘yw(}1)7 ‘Pw(i)ﬂv ‘Pw(i)ﬂ)]
+eWyi—r Yamen Yoyt [%(‘PV(QH, Q¥y3)-10 Q¥y3)-1)
+2g(ww(i)+1’ Qle(/iHl’ Qle(i)H)}

+h(¥y -1 Ya@yer Yaiyen) [25{4(‘{"/(1)717

T2, 5, Q¥ Q) H57 (T, 00 By Po)
+59(¥, 5, Q¥ 0,1 Q¥ )} +57(Q¥ 310 Yoy Yaysr)
<s(lya) - Yoy Vi) T9Waa) Yo eI 0=ty )
LCRTE NP NPILCIC TS SIS SRR ACNPIEE NI ST
g g

+a(¥ w(i)+1) [g(q‘v(ﬁt)q’ Q¥ 3)-1- Q‘Pv(i)fl)

v(A)—10 Fwd)+10

F29 (¥ 00 Qi Wiy

Volume 6 Issue 12025| 271 Contemporary Mathematics



+9 (¥, 00 Py o) 8 {g(\pvm, Y-t Vo1

Jrg(lyv()l)—l’ Qva(i)fl’ Qwv(i)fl)} Jrﬁg(Qq]w(i)H7 le(?l)Jrl’ ‘Pw(i)ﬂ)'
By applying lim in above inequality,

A—>+Foo

zlinfwsupg (Fyiy Po@er Yudyr)

Sil—if:m{Sups(“v(i)q)[g(q’v(iyw Poay Yo) T9Faa) Yo Va0 =1y6))

[f(‘Pv(i)—p \Pw(i>+1v \Pw(i)+1)5[g(lyv(i)—l’ \Pw(iy lPw(i)) +g(\yw(z)7 ‘Pw(i)w le(i)H)]
+g(‘Pv(;l)71, lPw(i)ﬂv lPw(}lm) [g(q'v(i)q» Q‘Pv(i)qv Ql}'v(}wq)

+2g(q’w(i)+1’ QIPW(Z)H’ Qle(;l)+l)}

g

R0 1 oy Pug ) |29 (%,

-1 Twd)+1 )—17 Tw(d) Tw))

2
+257 190 Yo Yo T Qi Qi)
2
+59(Y, 00 Yoayp Yaaye) T {g(wv(i)v Yoo ¥oa)-1)
+9¥ya-1 QY01 Qva(i)—lﬂ +59(Q¥ )10 Yaii)110 lPw(}1>+1)}

< lim < sups P G 5 P s, W s
b+w{ pstya) -9 (Fya) - Foy o)

+ [f(qjv(i)fl’ Yo Yas89 (Yo Yany Yai)

R0 1 iy Puy ) |29 (P,

A= Twd)+1 )—1°

+59 (W10 Yoy Tv(i))} }
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SZETW{ [SuPﬁ(“v(}wq)+f(q’v(}1>f1v L SVVAIRE LPw(}m)+1)5 g(lyv(i)fv Py ‘Pw(i))

SiliTm{ [S“ps(“v(i>—1> +f(va(i>—17 Yoy \Pw(i)+1)5}g(q’v(i)—l’ Foay lPw(i))

3
+h(¥y - Yag)er Y@y {(25+5 99 (Y- ey ‘Pw(i))}

>
+
pay
e
=
>
|
oS
z
>
x
oS
z
>
x
=
w
—_
g
e
=
>
L
o]
z
>
o]
z
>

< il_iiloo { [SUPE(“V( _

. N
SigTw{sup(s(@)+5 (37 2y Py Poit) ]

. 1
:il_l?joosuP {2—5%(‘}@@)71, le(i)’ \PW(M)}

Implies

€

< lim sup%(‘I’vm, Y5 ‘Pw(;l)+1) SZ,

)
Ao w1

w| oM

which leads to a contradiction. Thus {¥,} is a Cauchy sequence in &. Since (Z, ¢, v) is a complete convex ¥,-9M.7,
there exists ¥ € 2 such that ¥, — ¥ € 2 as u — +o0. Now, we will show that ¥ is a fp of Q. Note that

S S ~

G, Q¥, Q) <s|9(W, W,, W) + 9 (¥,, Q¥, Q‘i’)}
(14)
<SG (¥, Wy, W) +57[F(%,, Q. QF) +9(QWy, QF, QF)]
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and

a A

F(s9(Q¥,, Q¥, Qb)) gy<f(lyu, b, )G (w,, U, ) +g(P,, ¥, b) [g(lpu, Q¥,, Q¥.)
+9(%, Q¥ Q¥)+9(¥, Q¥ Q¥)| +n(¥., ¥ ¥)[(Q¥., Q.. )

+9(Q¥, Q¥, W,)+¥(Q¥, Q¥, w,)|) -

IN
Y
=
&
e
o
s
&
e

=S

)+ e(, B, )[4 (%0, Q¥ QP)
+9(¥, Q¥, Q) +9(¥, QF, Q¥)| +h(¥., ¥, ¥)[#(Q¥., Q¥ ¥)

+9(Q¥, Q¥, W) +9(Q¥, Q¥, W) ),

with the help of .71,

A ~

s9(QWu, Q¥ QF) < f(%u, ¥, V)7 (¥, ¥, ¥) +e(Wu, ¥, 9) | (%0, Q. Qo) +9(, Q¥, Q)
TP, QY Q\if)} Fh(®,, ¥, ) [%(Q‘Pu, QY. ¥) +9(Q¥, Q¥, w,) (15)
+9(Q¥, Q¥ ‘Pu)}.
From (14) and (15),
G, Q¥, Q¥) <s¥(¥, Wy, Wu) +5°% (¥, QPu, Q¥u) +5°9(QPu, QF, QF)

a a

<s9(P, Wy, W) + 529 (W, Q¥,, QP,) +s{f(‘}’u, ¥ W)z, ¥, ¥
+e(¥u ¥, V)[4 (%0, Q¥ Q) +9(F, Q¥ Q¥) + (¥, QF, Q¥)]
+h(%, U, 9)[9(QP, Q¥ ) +9(QY, QF, W) +9(Q¥, Q¥, )| }

a S

=5GP, W,, ¥,) +5°% (¥, QF,, Q¥,) +s{f(‘Pu, 4y (w,, ¥, ¥
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+e(P, T 9)[9 (%, QU Q) +29(8, QF, QF)]

+h(,, ¥, &) {%(Q‘Pu, Q¥,, ¥) +29(Q¥, Q¥, \P)}}
<GP, Wy, W)+ 529 (P, Q¥ QW) +s{F(Py, P, ¥

oW, B, ¥) [0, QU Q) +29(F, QF, QP)]

~

+ h(qlu’ lI’7

=3

)[sl(, wa, W)+ 9 (20, QP QL)
+2s[9(Py, B, )+ 9 (P, QF, Q‘i’)]} }

Hence

S a a

9P, Q¥, Q¥) <s?(¥, W, W,) +5°9(¥,, Q¥., Q¥,) +5{f(‘Pu7 ¥ 99 (v, P, V) +g(V, ¥, P

[%(q’u, QW,, Q¥,) +29(¥, Q¥, Q‘i’)} Fh(Y,, ¥, ¥) {5[{4(‘1’, W, W)

+ (W, Q¥ Q)]+ 2[4 (W0, ¥, #) +9 (%, QF, QW) ],

= [1 —25g(\1—‘u7 \ila lij) _252h(lPUa \i'v lil)]g(\il’ Q\ila qu)

a A ~

<Y (P, Wy, W) +5°9 (o, QP,, QW) +sf(P,, ¥, 9)9(P,, ¥, ¥) +sg(¥,, ¥, ¥)

G (P, Q¥u, QW) +sh(¥,, W, W) [2&4(@!, Wy, W)+ 5% (Py, QWu, QW) +59 (¥, ¥, § }

A 46t 462 1 \u PR A
< ﬁg(lpa \Plh Tu)+52(m) g(lp()a Q\P07 QlPO) +5f(lPll7 lP7 lIl)g(lpllv lP7 lP)

o o /4stH4s2 41 \u PN X
58P, U 9 (Tospr ) ¥(%o, Q0. Qo) +sh(Py, ¥, ¥)[2s9(2, w0, 1)

a

45t 4457 +1 \u X
Teos a2 1) ¢ (Wo, QFo, Q¥ y, @ \P]
5(16557452,1) 9 (Wo, Q¥0, Q¥0) +59(Vy, V¥, V)
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4s* 4452 41 .
As we know that T6s5 a2 1 < 1. By applying limit

45* 452 + 1

. a 2
tim {s9(%, W, W) +5° (sog oy

U—r+oo

)ug(‘l’o, Q%¥o, Q¥y)

. . 45* + 457 + 1

~ ~ ~ ~ u
o (P, U D) (P, U, 9 +se(W ¥, ) () ¢(W0, Q%0 Q¥0)

+sh(W,, ¥, ¥) [25%\?, W, ¥,)

45* 4452 41 \u o
5(m) 9(¥o, Q¥0, Q¥o) +5% (Yo, ¥, \y)”

=0.

It implies that

lim [1—2sg(W,, ¥, ¥) —25°h(¥,, ¥, 9)|9 (¥, Q¥, Q¥)

u—>+-o0

[
e

By assumption,

1 1
(¥, &, v)+3g(¥, &, y)+4h(¥, &, v) < ypes and p,—; € (O } VneNand ¥, {, ye 2.

" 42
This implies that

A

25g(Wy, ¥, ¥) +25°h(W,, ¥, ¥) <1 VneN.

(16)

amn

From (16), we obtain ¢ (‘i’, QY, Q‘i’) = 0. Hence it is proved that ¥ is a fp of the mapping Q. Next to prove the

uniqueness we proceed by a contradiction. Assume that, { is also fp of the mapping Q. Then
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=7 (1%, &, Hg(¥, &, O +n(¥, &, O9(¥, ¥, O +9(¢, ¢, ¥) (18)

71 implies

S 7%(@17 67 5)7

which is a contradiction. Therefore, ¢ (‘i‘, Zj , (: ) = 0. This proves the uniqueness of the fp. That is, Y= Zj . O
Remark 4 Choosing i, =0 and b = 1 in Theorem 1 with suitable values for f(x, y, z), g(x, y, z) and h(x, y, z) we
get the results of [28] and [29].
Theorem 2 Let (2, ¢4, v) be a complete convex ¥,-91.% with a convex structure vand Q : 2 — & be a % -Chatterjea

1
type contraction, that is there existsh: 9 x 9 — [O, 454> the following hold:

T+ F(s9(Q¥, Q¢, Q7)) <7 (h(¥, £, )[#(QP, Q¥, {)+9(Q¢, QC, ¥)+4(Qr. Q1. W) ).

forevery ¥, {, y € 2. Assume that the sequence {¥,} is defined as
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1
Y, =v(Puo1, Q¥u_1, Uu—1), where 0 < py—1 < e VueN,

then Q has a unique fp in 2, provided that

1
4h(P <.
(¥, & 1<

By choosing h = 0 in the Theorem (B.we obtain the subsequent result.

Theorem 3 Let (2,%,v) be a complete convex ¥,-0.% with a convex structure v and Q : 2 — 2 be a .%-Riech

1
type contraction is as follows. Suppose there exists f, g: Z x ¥ — [O, 454> the following hold:

t+ 7 (s4(Q¥, Q¢ Q) <F (F(¥. £, NI(¥. L, 7)

+e(¥, ¢, )[4 (¥, Q¥, Q¥)+9(¢, QL. Q¥)+¥(v, Q1. Q1)) ).

forevery ¥, §, y € 2. Assume that the sequence {W,} is defined as

1
Yy =v(Pu-1, QPu-1, tu—1), where 0 < y—; < pPe) YueN,

then Q has a unique fp in &, provided that

(¥, £ )+3e¥, £ < o

Example 2 Assume 2 ={1, 2,3} and 9 : Z X 2 x 9 — [0, +oo) defined by

54(‘{’, Cﬂ Y) = max{d(‘-}‘, C)7 d(lyv }/)7 d(% C>} v C7 ¥, ne,

be amapping foreach W, {, y€ Zsuchthat 9 (¥, £, v)=9({, ¥, y)=9(y, {, ¥)=---and¥9(1, 1, 1) =9(2,2,2) =
%(3,3,3)=0,9(1,1,2)=9(2,2,1)=1,9(1,1,3) =9(3,3, 1) =4,9(2,2,3)=9(3,3,2) = 1,9(1, 2, 3) =4.
Then (2, ¢) is a complete 4,-M. with s = 2. Define a mapping Q such that Q0 = 5 forany 6 € Z. Also the mapping
v:Px P x[0, 1] > P by

v(§, W ) Spul+(1—p)Y,

foreach {, ¥ € Zand u € 0, 1].
Set
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1
Yy = V(lPufh Q¥u-1, Ivlufl) and fy—1 = %

Then (2, ¥, v) be a complete convex 4,-9N.7 with s = 2, where d(a, b) = (a—b)? for each a, b € 2. Next, define
1
f,g, h: x99 — {0, ) as

2
—, if¥<{ C<y
f(®, ¢, 7)) =4 178
33’ otherwise ,
1
g, &, 7)= 384 and h(¥, §, y) =0forevery ¥, {, y€ 2. Itis clear that

H®, ¢, 7)+3a(W, £, 7)+4n(¥, ¢, 7) < 6i4

Then all conditions of Theorem (1) are fulfilled. That is, a unique fp of Q exists. Indeed,
T+ F(s(QP, QC, Q1) <F (f(¥, £, NI(¥, £, N +e(¥, &, 1)[4(¥, Q¥, Q¥)+9(¢, QC, Q0)
+9(r, Q1 QV)| +h(¥, £ 1) |[4(Q¥, Q¥. {)+¥(QC. Q. ¥) (19)

+9(Qr. Q1. ¥)) ).

Next, consider the following cases in (19)
*Case I: If¥=1, { =2, y=3, then

[ 1 2 1 3 2 3
T+In24(Q1, Q2, Q3)] = t+1n _Zmax{d (15, 15) , d<157 15), d(157 15) H
(1 3

=174+1In|=—==(1-3)2
r+n_225( 3)}

=1—-3.337
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C

<In [f(l, 2,3)%(1, 2, 3)
+e(1.2,3)[%(1, QL. Q) +4(2, Q2, Q2)+¥(3, Q3, Q3)|

+h(1,2,3)[#(QL, Q1. 2)+4(Q2, Q2, 1)+4(Q3, Q3, 1) |

1 1 1)? 2\? 3\’
| @)+ [ (1 — - = 2
nlms( )+ 3% ( 15) +< 15) +(3 15)
—1n[0.0631]
= 2.763.

For 7 < 0.574, our contraction condition is satisfied.
*Case2: If¥=1,{=1, y=2,then

T+1n[2g(Qla le Qz)] - T+ln |:2max{d (115, 115) , d(1157 125> , d<115’ 125> }:|
12
=7+In [Zd (15, 15)}
= 747230
<ml[f(1, 1,290, 1,2)
+e(1, 1,2)[9(1, Q1L Q1) +9(1, Q1, Q1) +4(2, Q2, Q)]
+h(1, 1, 2) [%(Ql, Q1L, +9(Ql, Q1, 1)+¥(Q2, Q2, I)H
1 1 1 2 1 2 2 2
138+38‘*K1‘15) “(1-5) +(%) H

= 1n[0.02084]

=1In

—3.8709.
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For 7 < 0.8521, our contraction condition is satisfied.
*Case3: If¥=1, {=1, y=3, then

T+1In[2¢9(Q1, Q1, Q3)]=7+1n [Zmax{d (115, 115) , d(lls, 135_) ,d (115, 135> H
1 3
— 7+ [Zd(ls, 15)}
=71-3.337
<In [f(l, 1,3)%(1, 1, 3)
+e(1,1,3)[#(1, Q1, QD +¥(1, Q1, Q) +4(3, Q3, Q3)]
+h(1, 1, 3)|4(QL, QL, 1)+¥(QL, Q1, 1)+¥(Q3, @3, 1)||
1 1 1\? 1?2 3)\?2
138*384[(115) (1m5) %) H

= 1n[0.0539]

=1In

—2.921.

For 7 <2.4315, our contraction condition is satisfied.
*Case4: If¥=2, { =2, y=3, then

2 2 2 3 2 3
T+ 1n[24(Q2, Q2, Q3)]=7+In {Zmax{d (15, 15> . d (15, 15) . d <157 15) H

2 3
BEEREN]
=1—4.7230

<In [f(z, 2,3)%(2, 2, 3)

+2(2,2,3)|9(2, Q2, Q2)+4(2, Q2, Q) +¥4(3, Q3, Q3)
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+h(2,2,3)[4(Q2, Q2, 2) +9(Q2, Q2. 2)+¥(Q3, Q3, 2)||

1 1
7+7

=1
1138 " 384

=1n[0.02085]
— —3.870.

For 7 < 0.8530, our contraction condition is satisfied.
We choose Wy € 2/{0}. Combining with

1 ¥
Wy = V(\Pufla Q¥y-_1, .uufl)» Hu—1 = By and Q¥ = 15’
we obtain
\Pu - V(\Pufh quuflv .u'ufl)a Hu—1
= ‘uu,]‘Pu,] + (1 _.uufl)Q\Pufl
1 1\ Wy
=—¥,_ 1-—
24" 1+< 24) 15
19
=—W¥,_.
180 "'
Proceeding in the same way, we obtain
19 19 19
Y1 = =W, Yy = —¥_3, . ¥ = —.
u—1 180 u—2, Tu-2 180 u—3, 1 180 0

Therefore,
19\ 1/ 19\"
Y= — ) W, Q¥y=— | — .
" (180) 0, QFu 15(180) o

By applying liIE , we get ¥, — 0and Q¥, — 0. Thatis, O is a fp of Q.
U—ro0
Due to the vast applications of integral equations in many real-life problems, the solution of integral equations and
their existence has become an important topic for researchers. A huge literature is present on the existence of the solution
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to such integral equations using the fixed point technique. Gnanaprakasam et al. [30] applied their results to prove
the existence of the solution to the integral equation by incorporating F-Khan contraction. Similarly, Panda et al. [31]
presented fixed point results and their application to find the solution of Volterra integral equations to verify their results
on the platform of dislocated extended b-metric spaces. Gupta et al. [32] applied their results to find the solution of
Fredholm integral equation in the framework of ¢,-9.7.

4. Application

To ensure the existence of a solution to the subsequent integral equation, we apply Theorem 2.

wa(a) =@+ [ fzwm, Om(E, W | fzw(q, O)Ra(C, Wa(0))dC forallue N 20)

forany q € [l1, [p], where f: [l1, L] = R, w:[l, L] x[l1, L] = Rand &, K : [l;, ] x R — R are continuous functions.
Let 2 = C([l1, 2], R) represent the space of continuous functions on [l1, I»]. Define

2
G (P pon) = ( sup (W@ Bu@l+ sup [Bul@)—m(@)|+ sup [¥u(@)—m(@)), forallueN
qelly, k] qelly, k] q€elly, k]

while the functionv: 2 x 2 x (0, 1) — 9 is presented as v(¥y, Bu; 6) = 0¥y + (1 —0)B,. Then, (2, ¥4, v) represents
a complete convex 4,-9M.% with s = 2. Consider a mapping 2 : . — . by

QW) = ) +7 [ wla, OR(E B [ wla, R (&, Bu(E))ac. @)

Q is well-defined. To obtain the solution for (20), it is equivalent to finding a fp of Q. Next, we state the subsequent
theorem.
Theorem 4 Suppose that the subsequent conditions are fulfilled:

1
Ty < =
(1) rs

@) [2w(a, §)dg < 1;
(3) ‘Rl(ga IPU(C)) _-ﬁi(ga Bu(g)” S ? V h(ﬁv éa n)‘qju(C) _Qﬁu(g) ’ i= 1’ 2: u € Nand

[, QIR BulE) + (8, Tu(ElaE <1

1

Then, the unique solution of Equation (20) exists.
Proof. Clearly, any fp of (21) is solution of (20). Using conditions (1)-(3), we have
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59 (Q%u, QBu, QBu)

(2 swp Q¥ (0)—QBu0)])’

qe(ly, k]

[ vl 006 0L [ wla, O8a(8. WalE)E
)2
Dl [ wla. (. wale)ag

2
dg>

:4y< sup
qe[[h [2]

— [, O (6 BUENAE [ wla OalE. BuENE

Ri(6, Wu(8))dE — R (S, Bu(§

[owa. 0

§4y< sup
qe[[h [2]

+/[:2w<q, OR(S, Bul£))dS /lfzw(q, O)| (S, u(§)dl ~ Ra(£, Bu(0))

swp [ wla, 0)d¢

qelly, L]Vh

RS, u(8)) = Ru(E, Bu(8))

<7’< sup sup
qelly, L] Cell, k]

[ wia, O we)at+ s sup

qelly, L] Celly, k]
)2

<Y<\f sup  \/h(B, &, n)[¥u—2Bu| sup

qelly, ] qelly, ]

)2

1 ) 2

<g7 s ([ via 0ag) | s VA CnE - 2] s
1 qe

qelly, b [0, B qelly, k]
>2

£a(E, Wu(§)) — Ra(E, Bu(C))‘

[ wla 16 A [ g

[t ©a¢ [ wia, aC. B

+ [ wla, O BN [ wla, D1t

/Ifw(q, O)Ra(C, Wal(0))dE

163
+ / w(a, $)R1(S, Bul($))dC
h
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2
s;y< sup /h(B. L. n)I‘Pu—Qﬁu>

qe(ly, ]

2
S;( sup ] V h(B7 Ca n)PPU_QﬁU)
qe

S (I, &2

<3h(B. Cm(2 s - QB) a0 ¢ (2 sup [Bu-Qnl)’

qe(ly, b qe(ly, b

1 2
+3h(B. ¢ m)(2 swp [%.—Qnil)
qelly, ]

—2h(B, ¢, n)(%(wu, QBu: Q) +9(Boy QM QM)+ (Fa, QM Qnu)>-

Hence

hB. €, m) (% (¥, QBu, QB) +(Bu, QMu, QM)+ (¥a, Qlu, QL))

W | =

T+ 7 (9(Q%, QBu, QM) <

where F(r) = Int and 7 € (0’ ln(%h(ﬁ’ &, m)(#(Yu, QBu, le}zz);%(g% le;7 ?nu)+g(‘l’u, Q1 Qnu))))

All conditions of Theorem 2 with 3, = 1, are satisfied. Which enables us to know that a fixed point for Q exists.
Thus, the solution of the integral equation exists. Hence, we obtain that Equation (20) gives a unique solution, where the

. .. . 1
sequence satisfies the convex condition with L, € (0, 4> . O

5. Conclusion

* In 2022, Yildirim [18] presented certain fixed point results using Mann’s iterative scheme tailored with b-metric
spaces.

* In the present research, the existence and uniqueness of the fixed points are established with Mann’s iterative scheme
in convex ¥,-metric spaces using .% -contraction of Hardy Rogers type.

» This task is achieved by further weakening the conditions of Wardowski’s . mappings.

* An example is provided to support our results. Eventually, an application is given for the validity of our results.

* The obtained results are generalizations of several existing results in the literature [28, 29].

* Future research endeavors may focus on establishing the above result:

(i) in the setting of controlled ¥},-metric spaces and double controlled ¥,-metric spaces.

(ii) by using the Picard-Mann hybrid iterative scheme.
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