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Abstract: This study explores the multistage differential transformation method (MsDTM) as an efficient approach for
solving non-autonomous differential equations. The proposed method demonstrates wide-ranging applicability in fields
such as computer graphics, quantum optics, biomathematics, and image processing. Specifically, the Bloch equations,
which describe the interaction of a spin-1/2 system (or two-level atom) with a mono- or bichromatic laser field in the
presence of an off-resonant broad-band squeezed vacuum (SV), are examined. As a system of non-autonomous ordinary
differential equations, the Bloch model captures the quantum dynamics between matter and electromagnetic fields,
offering insights into more complex and experimentally relevant models. The MsDTM is employed to obtain numerical
solutions with high precision and computational efficiency, outperforming the classical 4th-order Runge-Kutta (RK4)
method. A key advantage of the MsDTM is its adaptability; its accuracy can be further enhanced by either increasing the
number of iterations or refining the time-step in the numerical scheme. Consequently, MsDTM emerges as a robust tool
for computing solutions to a broad class of non-autonomous equations.

Keywords: the multistage differential transformation method, optical quantum, numerical solution, non-autonomous
bloch equation

MSC: 65L05, 34K06, 34K28

1. Introduction
Mathematical modeling plays an important role across many scientific fields such as biochemistry, natural sciences,

and social sciences. Ordinary differential equations (ODEs) are commonly used to model both dynamic processes and
evolutionary systems in these areas [1]. Various methods exist to solve ODEs, including numerical techniques like
the Tanch method [2], the shifted Gegenbauer spectral method [3], modified Lucas polynomials [4], and the Legendre-
Galerkin spectral method [5]. Other methods include the Eighth-Kind Chebyshev Polynomials Collocation Algorithm [6]
and the Modal Shifted Fifth-Kind Chebyshev Tau Integral Approach [7].

The Taylor series method is another widely used approach, but it involves calculating many derivatives, making
it computationally difficult. To overcome these challenges, Zhou introduced the Differential Transformation Method
(DTM) [8], which has since become a powerful tool in mathematical computation [9]. DTM is a semi-analytical approach
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that can solve both partial differential equations and ordinary equations by generating a convergent series with easily
computed terms [10]. This method is particularly useful in analyzing both linear and nonlinear initial value problems,
especially in electrical circuits. When applied to a system with boundary conditions (BCs), DTM efficiently calculates
the derivatives of an analytic function at specific points, and creates a numerical solution for differential equations in the
form of a polynomial.

Unlike the conventional high-order Taylor series method, which requires time-consuming symbolic computations
for function derivatives, DTM is less computationally intensive. As a result, a solution to differential equations can be
derived faster with DTM compared to the Taylor series approach [10]. DTM is also a versatile technique that can handle a
wide variety of functional problems [11], including the Schrödinger equation [12], KdV-type equations [13], differential-
algebraic equations [14], two-point boundary value problems [15], and fractional differential equations [16].

The form of the infinite series corresponding to the solution is known, DTM can closely approximate the numerical
solution. However, for practical purposes, the series is usually plotted in a finite form, and its solution converges only
within a limited area around the initial point, due to the nature of the local Taylor expansion [17]. The Padé approximation,
developed by Her-Moths and Padé, has been widely applied in various scientific fields. More recently, this approximation
has been combined with DTM to enhance its ability to provide solutions over extended domains [18]. Amultistage version
of DTM (MsDTM) has also been developed by authors in recent works [17]. According to these studies, the MsDTM
offers faster and more precise results than the fourth-order Runge-Kutta (RK4) method, as well as improved performance
compared to the Padé-DTM (PDTM).

One advantage of the MsDTM is that it allows for greater control over the accuracy of the method by adjusting
the step size and number of iterations, achieving high precision without using extremely small step sizes. In extended
domains, the MsDTM yields an approximate solution [19, 20]. Although MsDTM has been applied to various types of
equations, it has not yet been used to solve non-autonomous equations. Thus, the novelty of this paper lies in applying
MsDTM to solve autonomous equations, particularly Bloch equations.

This paper presents an analytical approach for solving a non-autonomous linear system of ODEs (Bloch equations),
which model the interaction between a spin-1/2 system (representing a two-level atom) and a monochromatic laser field
in an off-resonant broad-band normal vacuum (NV) field. The Bloch equations are derived based on certain physical
assumptions and approximations. We closely follow the derivation presented by Hassan et al. [21] in both the Heisenberg
and Schrödinger frameworks. The model involves coupling nonlinear complex conjugate absorption and dispersion of
atoms, along with a third equation representing atomic inversion. These equations are widely used in fields such as
quantum optics, quantum information, and signal processing. The Bloch equations have previously been explored using
the iterative perturbation method for both monochromatic and bichromatic cases [22], but no exact solutions have been
found due to the periodic nature of the system. Additionally, these equations have not been solved numerically. This study
aims to explore the use of MsDTM to solve the Bloch equations.

The structure of the paper is as follows: Section 2 describes the multistage differential transformation method
(MsDTM). Section 3 introduces the Bloch model as applied in the optical quantum field. Section 4 discusses the quantum
mechanics of the model. Section 5 presents the results and discussion, followed by the conclusion in Section 6.

2. The methodology
Assume the analytical function v(x), where x ∈ X and X is the given domain. The function v(x) transforms to ϕ(x, h)

using differential transformation (DT) as follows

dhv(x)
dxh = Φ(x, h), ∀x ∈ X , (1)

for x = x j, Φ(x, h) = Φ(x j, h), where h ∈ H and H is the domain belongs N. Thus, the differential transform is defined
by
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Vj(h) = Φ(x j, h) =
[

dhv(x)
dxh

]
x=x j

, (2)

for all h ∈ H where Vj(h) is the spectrum of v(x) at x = x j.
On the other hand, the inverse transformation of V (h) is given as

V (h) = B(h)
[

dhu(x)v(x)
dxh

]
x=x j

, (3)

where h = 0, 1, 2, ..., ∞, the function v(x) is described as:

v(x) =
1

u(x)

∞

∑
h=0

(x− x j)
h

h!
V (h)
B(h)

, (4)

where B(h) ̸= 0, u(x) ̸= 0. The functions B(h) and u(t) are weighting factor and and we will assume B(h) =
1
h!

and
u(t) = 1. Then, Eq. (3) becomes

V (h) =
1
h!

[
dhv(x)

dxh

]
, where h = 0, 1, ..., ∞. (5)

A differential equation can be converted into an algebraic equation in the H domain using the DT as in the Table 1
[23–25]. One of the ways to improve DTM is by splitting the given domain into subdomains and then, applying the DTM
for each sub-domain. Thus, the accuracy of the method is based on the iteration number and a time step, for more details
see the references [19, 20].

Table 1. Differential transformations’ primary operations

Original domain DT domain

v(x) = w(x)+u(x) V (h) =W (h)+U(h)

v(x) = cw(x) V (h) = cW (h)

v(x) = w(x) ·u(x) V (h) = ∑h
q=0 W (q)U(h−q)

v(x) =
w(x)
u(x)

V (h) =
W (h)−∑h

q=0 W (q)V (h−q)

U(0)

v(x) =
dw(x)

dx
V (h) = (h+1)W (h+1)

v(x) =
d2w(x)

dx2 V (h) = (h+1)(h+2)W (h+2)

v(x) =
dnw(x)

dxn V (h) =
(h+n)!

h!
W (h+n)

v(x) = xm V (h) = δ (h−m) =

{
1 h=m
0 h̸= m
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3. The approximate solution
3.1 Non-autonomous bloch equation

We discuss the foundations and framework of quantum mechanics (QM) to derive the non-autonomous Bloch
equation [21]. In the presence of an off-resonant SV (q ̸= 0) field and a monochromatic laser field, the model Bloch
equations for a single two-level atom have the form.

⟨Ŝ+⟩· =−(Γ+ i∆)⟨Ŝ+⟩− γMeiqt⟨Ŝ−⟩+Ω⟨Ŝz⟩, (6)

= (⟨Ŝ−⟩·)∗, (7)

⟨Ŝz⟩· =−γ
2
−2Γ⟨Ŝz⟩−

Ω
2
(⟨Ŝ+⟩+ ⟨Ŝ−⟩). (8)

Where ⟨Ŝ±, z⟩ =
d
dt
⟨Ŝ±, z⟩, is the derivative relative to time t. The variables ⟨Ŝ±, z(t)⟩ are the averaged atomic

polarization elements and the inversion, with Ŝ±, z being the spin
1
2
-Pauli operators according to the algebra

[Ŝ+, Ŝ−] = 2Ŝz, [Ŝ±, Ŝz] =∓Ŝ±, (9)

Ŝ±
2
= 0 Ŝ±Ŝ∓ =

1
2
± Ŝz. (10)

The notations in Eqs. (6-8) are Ω is the laser field associated with the (real) Rabi frequency, ∆ = ω1 −ω0 is the
atomic detuning, where ω1 and ω0 represent the laser field and the atom’s corresponding frequencies, q = 2(ωp −ω1) is

the SV detuning parameter, and ωp is the SV field’s central frequency, Γ=
γ(1+2N)

2
, γ is the A-coefficient for Einstein

damping.M =| M | ei∅ and N are the characteristics of the SV field: N is the average photon number, M (complex) is
a squeezing strength indicator, and is the SV field’s phase about the laser field. According to Eqs. (6-8) the physical
parameters are specified as follows:

In Eq. (6) the term −(Γ+ i∆)⟨Ŝ+⟩ explains the damping process (Γ⟨Ŝ+⟩) (section includes the processes for both
spontaneous and stimulated radiation damping −γ

2
, −γN respectively) process, and dispersion (−i∆⟨Ŝ+⟩) for atomic

detuning with non-zero (∆ ̸= 0). The term (−γMeiqt⟨Ŝ−⟩) reflects the interaction between the atomic polarization
components in quadrature ⟨Ŝ±⟩ a result of the SV field (M ̸= 0). The driving term (Ω⟨Ŝ±⟩) resulting from the laser
field

In Eq. (8), the term (−2Γ⟨Ŝz⟩) is a representation of the naturally occurring and induced radiation damping processes,
and the inhomogeneous term (−γ

2
) is an eigenvalue that represents the equilibrium value (the lowest energy level’s

eigenvalue). The last term, (−Ω
2
(⟨Ŝ+⟩+ ⟨Ŝ−⟩)), depicts the interaction between the laser field and the atomic polarized

field.
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3.2 Numerical solutions in the resonant case (q = 0)

The resonance case (q= 0), Eq. (6-8) are of constant coefficients, making it possible to find precise solutions [26]. In
a normalized form we let γ = 1 and hence it is appropriate to consider the system parameters ∆, Ω, and q to be normalized

parameters
∆
γ
,

Ω
γ
and

q
γ
where t is a normalized time γt. Thus, Eq. (6-8) for q = 0 in normalized form is given by:

⟨Ŝ+(t)⟩· =−(Γ+ i∆)⟨Ŝ+(t)⟩− γM⟨Ŝ−(t)⟩+Ω⟨Ŝz(t)⟩, (11)

⟨Ŝ−(t)⟩· =−(Γ− i∆)⟨Ŝ−(t)⟩− γM∗⟨Ŝ+(t)⟩+Ω⟨Ŝz(t)⟩, (12)

⟨Ŝz(t)⟩· =−γ
2
−2Γ⟨Ŝz(t)⟩−

Ω
2
(⟨Ŝ+(t)⟩+ ⟨Ŝ−(t)⟩). (13)

Using the MsDTM:

⟨Ŝ+(h+1)⟩· =− 1
h+1

[(Γ+ i∆)⟨Ŝ+(h)⟩− γM⟨Ŝ−(h)⟩+Ω⟨Ŝz(h)⟩], (14)

⟨Ŝ−(h+1)⟩· =− 1
h+1

[(Γ− i∆)⟨Ŝ−(h)⟩− γM∗⟨Ŝ+(h)⟩+Ω⟨Ŝz(h)⟩], (15)

⟨Ŝz(h+1)⟩· =− 1
h+1

[
γ
2
−2Γ⟨Ŝz(h)⟩−

Ω
2
(⟨Ŝ+(h)⟩+ ⟨Ŝ−(h)⟩)]. (16)

for h = 1

⟨Ŝ+(2)⟩· =−1
2
[(Γ+ i∆)⟨Ŝ+(1)⟩− γM⟨Ŝ−(1)⟩+Ω⟨Ŝz(1)⟩], (17)

⟨Ŝ−(2)⟩· =−1
2
[(Γ− i∆)⟨Ŝ−(1)⟩− γM∗⟨Ŝ+(1)⟩+Ω⟨Ŝz(1)⟩], (18)

⟨Ŝz(2)⟩· =−1
2
[
γ
2
−2Γ⟨Ŝz(1)⟩−

Ω
2
(⟨Ŝ+(1)⟩+ ⟨Ŝ−(1)⟩)]. (19)

for h = 2
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⟨Ŝ+(3)⟩· =−1
3
[(Γ+ i∆)⟨Ŝ+(2)⟩− γM⟨Ŝ−(2)⟩+Ω⟨Ŝz(2)⟩], (20)

⟨Ŝ−(3)⟩· =−1
3
[(Γ− i∆)⟨Ŝ−(2)⟩− γM∗⟨Ŝ+(2)⟩+Ω⟨Ŝz(2)⟩], (21)

⟨Ŝz(3)⟩· =−1
3
[
γ
2
−2Γ⟨Ŝz(2)⟩−

Ω
2
(⟨Ŝ+(2)⟩+ ⟨Ŝ−(2)⟩)]. (22)

for h = 3

⟨Ŝ+(4)⟩· =−1
4
[(Γ+ i∆)⟨Ŝ+(3)⟩− γM⟨Ŝ−(3)⟩+Ω⟨Ŝz(3)⟩], (23)

⟨Ŝ−(4)⟩· =−1
4
[(Γ− i∆)⟨Ŝ−(3)⟩− γM∗⟨Ŝ+(3)⟩+Ω⟨Ŝz(3)⟩], (24)

⟨Ŝz(4)⟩· =−1
4
[
γ
2
−2Γ⟨Ŝz(3)⟩−

Ω
2
(⟨Ŝ+(3)⟩+ ⟨Ŝ−(3)⟩)]. (25)

4. Computational results
Here, we present the figures of the results for the approximation solutions and compare them with the solution by

RK4 method. Initial atomic conditions are considered (ground state). Results are shown for the SV parameters N =

1, |M|=
√

N(N +1).

Where the ground state is,
⟨
Ŝz(0)

⟩
= −1

2
,
⟨
Ŝ±(0)

⟩
= 0, and classify the discussions in strong laser, fields Ω = 10

and non-resonant detuning ∆ = 5. The atomic inversion behavior
⟨
Ŝz(t)

⟩
identical with the numerical (RMK4) solution.

For the dispersive, Im
⟨
Ŝ+(t)

⟩
, and absorptive, Re

⟨
Ŝ+(t)

⟩
, polarization components, the behavior oscillates towards the

steady state values, and the difference of the oscillations is up to (10−4), both absorptive and dispersive polarization
components exhibit irregular oscillation at early time (see the blue curves in (Figure 1)). For stronger field (Ω = 10)
at non-resonance (∆ = −5), the proposed method and the numerical solutions coincide exactly for large t, Figure 2 and
Figure 3, both the appropriate and the numerical solutions for the atomic inversion

⟨
Ŝz(t)

⟩
coincide for all times, (Figure

1, 2, 3a). For early time, the polarization components Re
⟨
Ŝ+(t)

⟩
show oscillations due to the Strong Rabi frequency (Ω),

(Figure 1, 2, 3(b, c)). Changing the frequency from Γ from 0.1 in Figure 1 to 0.5 in Figure 3 give the same results.
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Figure 1. (a) The atomic inversion,
⟨
Ŝz(t)

⟩
(red line) and the approximate solutions (blue line) against the normalized time t and for Ω = 10, ∆ = 5, SV

parameters N = 1, |M|=
√

N(N +1). (b) Same as (a) but for the dispersive polarization components, Im
⟨
Ŝ+(t)

⟩
. (c) Same as (a) but for the absorptive

polarization components, Re
⟨
Ŝ+(t)

⟩
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Figure 2. Same as Figure 1 but for ∆ =−5
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Figure 3. Same as 1 but for Γ = 0.2
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5. Conclusion
The core focus of this paper is the application of the MsDTM (Modified series Decomposition Transformation

Method) to numerically solve non-autonomous linear systems of ordinary differential equations, specifically the Bloch
equations, which model the dynamics of a two-level atom interacting with a monochromatic laser field. This scenario
includes an off-resonant broad-band normal vacuum (NV) field with N = 0. The MsDTM provides accurate numerical
solutions even for large detuning parameters (SV), as demonstrated by the results. Additionally, the method is effective
for arbitrary values of the laser field strength ω . Numerical solutions are presented for various parameter values and
compared to results obtained using the classical RK4 (Runge-Kutta) method. The approximation of the Bloch equations
using MsDTM for non-zero SV detuning parameters shows that the solutions are nearly identical to those from RK4,
with discrepancies as small as O(104). The MsDTM could also be extended to address fractional differential equations in
future work such as equations in the refrences [27] and [6].
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