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Abstract: In the present era, the concepts of neutrosophic set theory are essential for handling uncertain data with three
distinct components. Researchers across various fields widely use these concepts due to their significant applications. Our
world is filled with unpredictability, ambiguity, and vagueness, making it crucial to replace items at the appropriate time.
This research paper focuses on the importance of addressing the replacement issue to improve reliability in maintenance
scheduling. Ambiguity and uncertainty were present challenges in resolving maintenance issues. For example, the group
replacement model has been solved using single-valued unique hexagonal neutrosophic numbers and the enhanced score
function for hexagonal neutrosophic numbers (HNN) discussed in this paper. Additionally, the removal area method is
used to determine the de-eutrophication of the linear neutrosophic hexagonal number, showing significant improvement in
the clarification of HNN. MATLAB code is employed for de-eutrophication and to assess the effectiveness of this method.
Numerical examples are provided to validate the proposed method. Using this enhanced score function, the replacement
problem has been solved in a hexagonal neutrosophic environment. A comparative study was conducted between the
established and proposed methods, which will benefit researchers in the field of neutrosophic domain in the future.
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SVLPNN Single Valued Pentagonal Neutrosophic Number
USVHNN Unique Single Valued Hexagonal Neutrosophic Number
SVNWA single-valued neutrosophic weighted average
SVNHN Single Valued Neutrosophic Hexagonal Number

1. Introduction
The replacement problem requires prompt decision-making to replace deteriorating equipment. This involves

determining the best time to replace machines, equipment, and other components at risk of sudden failures. When
the replacement time is uncertain, a replacement model can be established using neutrosophic numbers. Hexagonal
neutrosophic numbers provide precise and informative descriptions of data, allowing for accurate and reasonable models.
They also enable more accurate classification of facts and data, which helps decision-makers keep track of details and
make well-informed choices. This approach can offer advantages in decision-making, scheduling maintenance, and
addressing economic issues [1]. If each of the three components is represented by six numbers, then triangular or trapezoid
neutrosophic numbers may not be the best choice. Using hexagonal neutrosophic numbers can effectively tackle problems
and offer solutions. Furthermore, the application of hexagonal neutrosophic numbers extends beyond mere replacement
decisions; it can significantly enhance the overall management of operational systems [2]. By incorporating this advanced
mathematical framework, organizations can better quantify the uncertainty and imprecision inherent in their data. This
leads to more robust models that can adapt to changing conditions and unforeseen challenges.

In practice, the implementation of hexagonal neutrosophic numbers allows for a nuanced analysis of various
scenarios, enabling decision-makers to weigh the risks associated with equipment failure against the costs of premature
replacement [3]. This balance is crucial in optimizing resource allocation and minimizing downtime, thereby improving
productivity and operational efficiency. Moreover, the application of these advanced mathematical constructs enables
organizations to simulate various scenarios, allowing for a deeper understanding of how different variables interact. For
instance, decision-makers can evaluate the effects of varying maintenance schedules, operational conditions, and resource
availability on equipment longevity. This capability empowers them to devise tailored maintenance strategies that align
with both budgetary constraints and operational demands [4].

In addition, using hexagonal neutrosophic numbers fosters collaborative decision-making among stakeholders by
providing a common language for discussing uncertainties. This inclusivity can lead to more comprehensive evaluations,
as diverse perspectives contribute to a richer understanding of the challenges at hand. As a result, organizations can
cultivate a culture of proactive risk management, where potential issues are identified and addressed before they escalate
into costly disruptions [5].

Ultimately, the adoption of hexagonal neutrosophic numbers in decision-making processes represents a significant
advancement in the quest for operational excellence. By embracing this innovative approach, organizations can not only
enhance their ability to navigate uncertainties but also position themselves to capitalize on opportunities for continuous
improvement. In an increasingly competitive landscape, such strategic agility is paramount for sustaining long-term
success and resilience.

Currently, a significant experimental study of this era focuses on unpredictability and uncertainty [6]. In this case,
Zadeh introduced the concept of the fuzzy set as a more effective method for dealing with ambiguity and clarifying
vagueness [7]. Belatedly, Atanassov proposed the study of intuitionistic fuzzy numbers, which help us make decisions
even when we are unsure. They are used in various ways to help us understand things better. This exploration of fuzzy
sets and intuitionistic fuzzy numbers has opened new avenues for research and application across multiple disciplines
[8]. In particular, these concepts have been found to be relevant in areas such as artificial intelligence, decision-making
processes, and control systems. By allowing for degrees of truth rather than the binary true/false dichotomy, fuzzy logic
enables systems to operate more effectively in real-world scenarios characterized by uncertainty. His flexibility not only
enhances the modeling of complex systems but also aligns more closely with human reasoning, which often involves
nuance and uncertainty. Researchers are increasingly leveraging fuzzy sets and intuitionistic fuzzy numbers to refine
algorithms, optimize processes, and create more resilient frameworks that adapt to varied inputs and conditions. For
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instance, in the realm of artificial intelligence, these mathematical tools facilitate machine learning models that better
interpret ambiguous data, aligning their outputs with human-like decision-making.

As the research community continues to expand the horizons of fuzzy mathematics, the potential applications seem
boundless. Future investigations may delve deeper into the synthesis of fuzzy logic with other emerging technologies,
such as quantum computing and neural networks, possibly leading to even more sophisticated forms of reasoning and
problem-solving. As we unlock these new frontiers, it becomes evident that fuzzy sets and intuitionistic fuzzy numbers
are not merely theoretical constructs but vital instruments for grappling with the complexities of our increasingly intricate
world.

1.1 Survey of literature
In the field of mathematical modeling, researchers have been exploring innovative approaches to solve replacement

problems using various forms of fuzzy intuitionistic and fuzzy sets. Prof. Florentin Samandrance introduced the concept
of neutrosophic sets in 1998, which effectively combine elements of traditional fuzzy and intuitionistic fuzzy sets.
Ongoing research in the field of neutrosophic environments has led to numerous models and methods being applied
in diverse fields such as economy, medicine, engineering, optimization, and decision-making. Neutrosophic sets provide
a broader framework that encompasses classical sets, FS, and IFS, enabling the analysis of different types like uncertainty,
vagueness, and ambiguous data. Nivatha and Varadharajan introduced a new approach to address fuzzy replacement
method issues, including factors like maintenance, salvage, and initial costs [9]. Additionally, Shanmuga Sundari and
Saranya proposed methods to identify optimal solutions for equipment replacement without affecting its fundamental
characteristics [10]. Chakraborty et al. introduced the concept of bipolar neutrosophic numbers and the linear pentagonal
neutrosophic number and its divisions [11]. They have successfully devised a method to convert linear pentagonal
neutrosophic numbers using the removal area technique and have effectively applied it to solve a minimal spanning
tree problem [12]. They also conducted a comparative analysis with existing methods. Rajkumar and Richard developed
MATLAB built-in functions for the de-eutrophication technique, which are used to solve optimization models involving
single-valued linear neutrosophic numbers. These functions can obtain a feasible ideal solution using optimization
programming for the neutrosophic number under constrained conditions, taking into account practical production
scenarios [13–15]. Khalifa and Kumar developed a model for assignment problems using inter-valued neutrosophic
numbers. They employed order relations to optimize the objective function expressed in interval form, transforming
the model into a multi-objective one based on the decision-makers’ preferences regarding interval profits or costs [16].

Chakraborty and Broumi et.al, examined the pentagonal fuzzy number, covering its diverse representations,
properties, ranking, defuzzification, and application in-game problems. Additionally, they introduced the foundational
concept of bipolar triangular neutrosophic numbers, thereby expanding the understanding of bipolar neutrosophic numbers.
Both linear and nonlinear forms were examined, incorporating truth, false, and hesitant functions to connect membership
functions [17]. Avishek Chakraborty and Broumi provided properties for pentagonal neutrosophic numbers. Their study
included the introduction of logical scores and accuracy functions for pentagonal neutrosophic numbers and they applied it
to solve transportation problems, shortest path, networking, and machine inventory problems which were addressed using
pentagonal neutrosophic numbers in this study [18–22]. The newly designed neutrosophic membership function [23]
and a multi-attribute decision-making (MADM) technique contingent on neutrosophic trapezoid linguistic weighting for
information analysis and decision-making [24–27]. Murshid Kamal examined the issue of multi-faceted disparities in a
neutrosophic setting. By incorporating fuzzy parameters, they successfully identified the required system maintenance
and replacement of components [28, 29].

Using MATLAB built-in functions, researchers developed neutrosophic numbers to address optimization models.
They successfully found a feasible best solution for the optimization program using neutrosophic numbers within practical
constraints [30]. Rajesh and Sunay proposed a novel approach for evaluating safety and risk in intricate systems utilizing
neutrosophic logic [31]. A mathematical programming strategy has been introduced to address the selective maintenance
issue in systems operating in uncertain environments. The goal is to enhance system reliability by creating a model that
accounts for different uncertainties within the system [32]. Various techniques for calculating the system’s reliability
function were discussed, such as estimators based on maximum likelihood and methods that minimize variance while
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remaining unbiased. This study introduces a combined method for optimizing reliability allocation and examines the
ideal quantity of components for a specific system [33]. Caglar Karamasa and Ezgi Demir proposed a novel approach
utilizing the neutrosophic Analytic Hierarchy Process (AHP) to identify the variables influencing third-party logistics
(3PL) outsourcing [34].

In observation, the envisioned technique was suggested to recognize the athletes who made the greatest contributions
to the winning team through their exceptional efforts. The new players are rated using the weighted averaging operator
[35]. Recently, the introduction of Plithogenic sets by Smarandache had a profound impact on contemporary research
in diverse areas including IoT-based dilemmas, hybrid MCDM problems, and forecasting difficulties [36–39]. Several
researches in the field of neutrosophic theory have been published across various domains, including dynamic intervals,
Q-rung linguistic variables, and the MCDM method to assess safety and risk in complex systems [40–44]. In the present
era, neutrosophic set theory is utilized in various aspects of the replacement method to assess the optimal path for selecting
deteriorating inventory. Replacement stands as a crucial concept in the realm of operations research [45–49]. A few more
articles published in the neutrosophic domain are discussed here, highlighting its significant role in addressing uncertainty
within the optimization and inventory model research arena [50–54]. A comprehensive review study was conducted to
highlight the advantages of the replacement policy method utilizing neutrosophic environment optimization of machine
selection over the period. The study drew upon diverse sources, including research articles, academic journals, and
book chapters, to demonstrate the merits of utilizing replacement theory in such an optimization framework problems
[55]. The findings indicated that the integration of neutrosophic logic within the replacement policy framework not only
enhances decision-making processes but also accommodates the inherent uncertainty and imprecision often encountered
in real-world scenarios. By applying this method, decision-makers can effectively assess the performance and viability of
different machines based on fluctuating operational conditions and financial considerations [56]. Furthermore, the study
advocates for the continuous adaptation of replacement policies as a proactive measure to mitigate risks associated with
equipment failure and operational downtimes. Scalability and computational complexity are critical considerations when
designing and managing large systems, particularly in fields like distributed computing, big data, and machine learning.
In conclusion, the embracing of replacement theory coupled with neutrosophic optimization presents a promising avenue
for research and practical application, paving the way for more resilient and efficient industrial practices in the face of
uncertainty.

1.2 Motivation

In our daily lives, the ability tomake the right decision is often uncertain, so a neutrosophic environment is an essential
part of analyzing our decisions in uncertainty, and it helps in constructing mathematical models, statistical problems, and
big data analysis. The construction of neutrosophic numbers deals with the concept of uncertainty, which is a significant
part of the neutrosophic environment. Uncertainty is a common factor in various aspects of life; often making decisions is
a challenging task. The neutrosophic theory aims to reduce different forms of uncertainty in the decision-making process.
Researchers are actively exploring and expanding the neutrosophic concept to be applicable across various disciplines like
Decision-Making, image processing, Engineering and Optimization, andMedical diagnosis [6]. The distinct neutrosophic
single-valued number is a particular example of a neutrosophic single-valued number. Can we define this unique case?
How would a visual depiction of this figure appear? In what areas can it be utilized? These are some of the inquiries that
arise when delving into this subject, and this article provides answers to these questions.

1.3 Novelty
Numerous studies have been conducted on the topic of neutrosophic theory [22–24]. Researchers from diverse fields

have applied this concept to a wide range of areas and delving into uncharted territories with ongoing explorations. The
concept of Hexagonal neutrosophic numbers is new to the domain, with limited research in neutrosophic environments.
Our goal is to explore unpublished points on this topic and apply them to various fields, which are described below.

• Enhanced score function for unique hexagonal single-valued neutrosophic numbers.
• Removal area method for unique hexagonal single-valued neutrosophic numbers.
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• Practical execution in replacement problems with MATLAB software.

1.4 Structure of the paper
The research layout is structured as follows: it begins with an introduction to the topic, followed by a literature review

and a discussion of the motivation and novelty in Section 1. Section 2 presents the necessary preliminary. The third section
focuses on aggregator operations for single-valued unique hexagonal neutrosophic numbers. In Section 4, a proposed score
function is introduced. Section 5 outlines a replacement model formulation and procedure for machine selection using the
Removal Area Method (RAM). Section 6 includes a case study on machine selection, demonstrating the use of RAM and
the score function with MATLAB code. Section 7 provides a comparative analysis of single-valued neutrosophic numbers
(SVNN) and unique single-valued hexagonal neutrosophic numbers (USVHNN). Finally, the results are discussed, and
the research concludes with suggestions for future directions.

2. Preliminaries
This section outlines the essential concepts of FS, IFS, and NS along with the relevant terminology. It also presents

a combined score function for the SVNNs, which is vital for the systematic review.
Definition 2.1 [9] A set Ã in a universe of discourse X is defined by

Ã =
{

α, µÃ(α) | α ∈ X
}

where µÃ(α) : X → [0, 1] is called the membership functioof Ã, and µÃ(α) is the degree of membership to which α ∈ Ã.
Thus, the set Ã is defined as a fuzzy set.

Definition 2.2 [11] Intuitionistic fuzzy sets are defined on a non-empty set X as objects having the form

Ã = {(α, µÃ(α), γÃ(α)) | α ∈ X}

where the functions µÃ(α) : X → [0, 1] and γÃ(α) : X → [0, 1] denote the degree of membership and the degree of
non-membership of each element α ∈ X to the set Ã, respectively. Furthermore, the following condition holds for all
α ∈ X :

0 ≤ µÃ(α)+ γÃ(α)≤ 1

Definition 2.3 [14] A neutrosophic set Ã in a set X is characterized by three functions: a truth membership
function TÃ(α), an indeterminacy membership function IÃ(α), and a falsity membership function FÃ(α). Each of these
functions, TÃ(α), IÃ(α), and FÃ(α), can be real standard or real nonstandard subsets of the interval [0, 1]. There are no
constraints on the sum of these functions, so it holds that

0 ≤ TÃ(α)≤ sup IÃ(α)≤ FÃ(α)≤ 3.

Definition 2.4 Single Valued Linear Neutrosophic Set (SVLNS): A neutrosophic set Ã is defined as a single-valued
linear neutrosophic set (denoted as sneuÃ) when a is a single-valued independent variable. It is represented as:
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sneuÃ = {α : < [βÃ(a), δÃ(a), γÃ(a)]>| a ∈ X}

where βÃ(a), δÃ(a), and γÃ(a) denote the membership functions related to truthiness, indeterminacy, and falsity, respectively.
When the neutrosophic set Ã is continuous, it can be expressed as:

Ã =
∫

a
< TÃ(α), IÃ(α), FÃ(α)> da ∀ a ∈ X .

This formulation encompasses the continuous nature of the neutrosophic set, integrating over the independent variable
a.

Definition 2.5 Single Valued Linear Pentagonal Neutrosophic Number: A single-valued pentagonal neutrosophic S̃
number is defined and described as S̃ =

⟨[
(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5); ρ][(δ1, δ2, δ3, δ4, δ5); σ ][(γ1, γ2, γ3,

γ4, γ5); ω]
⟩
. Where β , γ, α ∈ [0, 1]. The truth membership function (ϕS̃) : R̃ → [0, β ], indeterminacy membership

function (θS̃) : R̃ → [γ, 1] and membership function (ψS̃): R̃ → [α, 1] are given as:

ϕS̃(x) =



ϕS̃1(x), ϕ1 ≤ x ≤ ϕ2

ϕS̃2(x), ϕ2 ≤ x ≤ ϕ3

β , x = ϕ3

ϕS̃3(x), ϕ3 ≤ x ≤ ϕ4

ϕS̃4(x), ϕ4 ≤ x ≤ ϕ5

0, Otherwise

θS̃(x) =



θS̃1(x), θ1 ≤ x ≤ θ2

θS̃2(x), θ2 ≤ x ≤ θ3

γ, x = θ3

θS̃3(x), θ3 ≤ x ≤ θ4

θS̃4(x), θ4 ≤ x ≤ θ5

1, Otherwise

ψS̃(x) =



ψS̃1(x), ψ1 ≤ x ≤ ψ2

ψS̃2(x), ψ2 ≤ x ≤ ψ3

α, x = ψ3

ψS̃3(x), ψ3 ≤ x ≤ ψ4

ψS̃4(x), ψ4 ≤ x ≤ ψ5

1, Otherwise

The numerical computation of Single Valued Linear Pentagonal Neutrosophic Numbers is mentioned below. These
examples highlight how truth, indeterminacy, and falsity values are structured and applied in decision-making contexts.
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Table 1 systematically categorizes these values to reveal interrelations among parameters. The computational approach
follows neutrosophic logic principles, enabling detailed analysis of uncertainty and vagueness in practical scenarios.

Table 1. Numerical computation of SVLPNN

S.No SVLPNN De-eutrophication value

1 < 3, 5, 9, 11, 13; 5, 7, 9, 11, 13; 1, 3, 5, 7, 9 > 12.1966

2 < 0.8, 0.9, 1.0, 1.1, 1.2; 0.2, 0.3, 0.4, 0.5, 0.6; 1.5, 1.6, 1.7, 1.8, 1.9 > 1.0333

3 < 0.15, 0.25, 0.35, 0.45, 0.55; 0.36, 0.46, 0.56, 0.66, 0.76; 0.52, 0.62, 0.72, 0.82, 0.92 > 0.54333

Definition 2.6 Unique Single Valued Hexagonal Neutrosophic Number: A single-valued unique hexagonal

neutrosophic Number Ñ is defined as Ñ=
⟨
(κ11, κ22, κ33, κ44, κ55, κ66); Ψ, Φ, Ω

⟩
on R̃ where truth,

falsity, indeterminacy membership functions are specified as follow below. Where ηS̃(x) : X → [0, ψ], ϑS̃(x) : X →
[ϕ , 1], ζS̃(x) : X → [ω, 1].

ηS̃(x) =



(x−κ11)

(κ22 −κ11)
Ψ κ11 ≤ x ≤ κ22

(x−κ22)

(κ33 −κ22)
Ψ κ22 ≤ x ≤ κ33

(x−κ33)

(κ44 −κ33)
Ψ κ33 ≤ x ≤ κ44

ψ x=κ44

(κ55 − x)
(κ55 −κ44)

Ψ κ44 ≤ x ≤ κ55

(κ66 − x)
(κ66 −κ55)

Ψ κ55 ≤ x ≤ κ66

0 otherwise
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ϑS̃(x) =



(x−κ11)

(κ22 −κ11)
Φ+(κ22 − x) κ11 ≤ x ≤ κ22

(x−κ22)

(κ33 −κ22)
Φ+(κ33 − x) κ22 ≤ x ≤ κ33

(x−κ33)

(κ44 −κ33)
Φ+(κ44 − x) κ33 ≤ x ≤ κ44

ϕ x=κ44

(κ55 − x)
(κ55 −κ44)

Φ+(x−κ55) κ44 ≤ x ≤ κ55

(κ66 − x)
(κ66 −κ55)

Φ+(x−κ66) κ55 ≤ x ≤ κ66

1 otherwise

ζS̃(x) =



(x−κ11)

(κ22 −κ11)
ω +(κ22 − x) κ11 ≤ x ≤ κ22

(x−κ22)

(κ33 −κ22)
ω +(κ33 − x) κ22 ≤ x ≤ κ33

(x−κ33)

(κ44 −κ33)
ω +(κ44 − x) κ33 ≤ x ≤ κ44

ω x=κ44

(κ55 − x)
(κ55 −κ44)

ω +(x−κ55) κ44 ≤ x ≤ κ55

(κ66 − x)
(κ66 −κ55)

ω +(x−κ66) κ55 ≤ x ≤ κ66

1 otherwise
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3. Single-valued neutrosophic weighted average aggregation operators
This section presents two aggregation operators: the single-valued neutrosophic weighted averaging (SVNWA)

operator and the operator for single-valued neutrosophic hexagonal numbers (SVNHNs). These operators have been
specifically designed to handle single-valued neutrosophic numbers with precision and effectiveness.

3.1 Operational laws for SVNNs
Definition 3.1 The Single-Valued Neutrosophic Weighted Average (SVNWA) operator for a collection of Single-

Valued Neutrosophic Numbers (SVNNs) is denoted by s j = ⟨t j, i j, f j⟩. This set comes with an associated weighting
vectorW = (w1, w2, . . . , wn). The SVNWA operator is defined as follows:

SVNWA(s1, s2, ..., sn) =
n

∏
j=1

w ja j =

(
1−

n

∏
j=1

(1− t j)
w j ,

n

∏
j=1

(i j)
w j ,

n

∏
j=1

( f j)
w j

)
.

where: w j is the element j of the weighting vector, w j ∈ [0, 1], and ∏n
j=1 w j = 1.

Definition 3.2 Let S̃k = (T ,I ,F ) and S̃k11 = (T11, I11, F11) and S̃k12 = (T12, I12, F12) are three SVNNs over the
universe X , and here’s how the following operations are defined:

(i) S̃k11 ⊕ S̃k12 = (T11 +T12 −T11 +T12, I11I12, F11F12)

(ii) S̃k11 ⊙ S̃k12 = (
T11T12

2
, I11 + I12,

I11I12

2
, F11 +F12,

F11F12

2
)

(iii) γ S̃k = (1− (1−T ), I, F)

(iv) S̃γ
k = (T, 1− (1− I)γ , 1− (1−F)γ)

Definition 3.3 Let, S̃kuv = (Tuv, Iuv, Fuv) (s = 1, 2, ..., m; t = 1, 2, ..., n) which represents a definitive collection of
weight vectors for the parameters et ’s and expert yt ’s. These vectors must satisfy t ≥ 0, s ≥ 0, such that ∏n

v=1 t = 1, and
∏m

u=1 s = 1. In this context, we define the single-valued neutrosophic soft weighted averaging (SVNWA) operator as the
functionSVNWA : S̃n → S̃, where

SVNWA(S̃k11, S̃k12, ..., S̃kmn) =
n

∏
v=1

Πt

(
m

∏
u=1

θsS̃kuv

)
.

The following theorem is derived regarding the properties of the SVNWA operator.
Theorem 1 Let S̃kuv = (Tuv, Iuv, Fuv) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a set of SVNHNs. Then, the aggregated

components’ values utilizing the SVNWA operator are also an SVNHN and can be depicted as

SVNWA(Sk11, Sk12, . . . , Skmn)

=

1−
m

∏
t=1

(
m

∏
u=1

(1−Tuv)
θs

)Πt

,
m

∏
t=1

(
m

∏
u=1

Iθs
uv

)Πt

,
m

∏
t=1

(
m

∏
u=1

Fθs
uv

)Πt
 (1)

Proof. For m = 1, we have θ1 = 1. According to Definition 7 using operational law,
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SVNWA(Sk11, Sk12, . . . , Skmn) = ∏
n

Πt [Sk1t ]

=

[
1−

n

∏
v=1

(1−T1t)
Πt ,

n

∏
v=1

IΠt
1t ,

n

∏
v=1

FΠt
1t

]

=

1−
n

∏
v=1

(
m

∏
u=1

(1−Fuv)
θs

)Πt

,
n

∏
v=1

(
m

∏
u=1

Iθs
uv

)Πt

,
n

∏
v=1

(
m

∏
u=1

Fθs
uv

)Πt
 .

(2)

Similarly, for n = 1 and Π1 = 1,

SVNHWA(Ce11, Ce12, . . . , Cemn) = ∏
m

θs1Ckuv

=

[
1−

n

∏
v=1

(1−Ts1)
θs ,

m

∏
u=1

Iθs
s1 ,

m

∏
u=1

Fθs
s1

]

=

1−
m

∏
t=1

(
m

∏
u=1

(1−Tuv)
θs

)Πt

,
m

∏
t=1

(
m

∏
u=1

Iθs
uv

)Πt

,
m

∏
t=1

(
m

∏
u=1

Fθs
uv

)Πt
 .

(3)

Assuming (5) is true for n = p1 +1, m = p2 and n = p1, m = p2 +1, we can deduce that

[
p

p+1

∏
1

Πt

][
∏
p2

θsCkuv

]
=

1− p1 +1
p2

∏
t=1

(
p2

m

∏
u=1

(1−Tuv)
θs

)Πt

, p1 +1
p2

∏
t=1


(p2

m

∏
u=1

Iθs
uv

)Πt

, p1 +1
p2

∏
t=1

(
p2

m

∏
u=1

Fθs
uv

)Πt
 .

(4)

Similarly,

[
∏
p1

Πt

][
p

s

∏
2+1

θsCkuv

]
=

1− p1

p2+1

∏
t=1

(
p2 +1

m

∏
u=1

(1−Tuv)
θs

)Πt

, p1

p2+1

∏
t=1


(p2 +1

m

∏
u=1

Iθs
uv

)Πt

, p1

p2+1

∏
t=1

(
p2 +1

m

∏
u=1

Fθs
uv

)Πt


(5)
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By induction, for n = p1 +1 and m = p2 +1, we obtain

[
p

p+1

∏
1

Πt

][
p

s

∏
2+1

θsCkuv

]
=

1− p1 +1
p2+1

∏
t=1

(
p2 +1

m

∏
u=1

(1−Tuv)
θs

)Πt

, p1 +1
p2+1

∏
t=1


(p2 +1

m

∏
u=1

Iθs
uv

)Πt

, p1 +1
p2+1

∏
t=1

(
p2 +1

m

∏
u=1

Fθs
uv

)Πt


(6)

Thus, the result holds for all m, n ≥ 1. Since 0 ≤ Tuv ≤ 1 implies 0 ≤ ∏s=1(1−Tuv)
θs ≤ 1, and similarly for Iuv and

Fuv, we have

0 ≤ 1−∏
t=1

(
∏
u=1

(1−Tuv)
θs

)Πt

+∏
t=1

(
∏
s=1

Iθs
uv

)Πt

+∏
t=1

(
∏
s=1

Fθs
uv

)Πt

. (7)

The proof is completed.
CorollaryWhen there is only one parameter m = 1, the SVNWA operator simplifies to SVNWA.
The SVNWA operation for m SVNHNs, denoted by SVNWA(S̃k11, S̃k21, ..., S̃km1), is given by:

SVNWA(S̃k11, S̃k21, ..., S̃km1) =

(
1−

m

∏
u=1

(1−Ts)

)
,

(
m

∏
u=1

Is

)
,

(
m

∏
u=1

Fs

)
.

Consequently, it can be asserted that the aggregation operator defined within the SVNS environment can be viewed
as a specific instance of the proposed operator.

Theorem 2 (Idempotency Property) Let S̃kuv = (Tuv, Iuv, Fuv) (u = 1, 2, . . . , m; v = 1, 2, . . . , n) be a number of
SVNHNs that are all equal, i.e., S̃kuv = S̃e for all s, t, then SVNHWA(S̃k11, S̃k12, . . . , S̃kuv) = S̃k.

Proof. Since S̃kuv = S̃k = (T , I , F ) for all u, v, then,

SVNHWA(S̃k11, S̃k12, . . . , S̃kuv) =

(
1−

n

∏
v=1

(
m

∏
u=1

(1−T )θs

)φt)
,

n

∏
v=1

(
m

∏
u=1

I θs

)φt

,
n

∏
v=1

(
m

∏
u=1

F θs

)φt

=
(

1− (1−T )∏m
u=1 θs ∏n

v=1 φt
)
,
(
I ∏m

u=1 θs
)∏n

v=1 φt
,
(
F ∏m

u=1 θs
)∏n

v=1 φt

= (1− (1−T , I , F ))

= (T , I , F )

Hence the proof is completed.
Theorem 3 (Homogeneity Property) For any real number λ > 0, we have
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SVNWA(λ S̃k11, λ S̃k12, . . . , λ S̃kmn) = λSVNWA(S̃k11, S̃k12, . . . , S̃kuv).

Proof. Let S̃kuv = (Tuv, Iuv, Fuv) (u = 1, 2, . . . , m; v = 1, 2, . . . , n) be a number of SVNSNs and λ > 0 be any
real number. Then, λ S̃kuv =

(
1− (1−Tuv)

λ , (Iuv)
λ , (Fuv)

λ ). Thus,
SVNWA(λ S̃k11, λ S̃k12, . . . , λ S̃kuv) =

(
1−

n

∏
v=1

(
m

∏
u=1

(1−Tuv)
λθs

)φt)
,

n

∏
v=1

(
m

∏
u=1

(Iuv)
θsλ

)φt

,

n

∏
v=1

(
m

∏
u=1

(Fuv)
θsλ

)φt

=

(
1−

n

∏
v=1

m

∏
u=1

(1−Tuv)
θsφt λ

)

=

(
1−

n

∏
v=1

m

∏
u=1

(1−Tuv)
θsφt λ

)
,

n

∏
v=1

m

∏
u=1

(Iuv)
θsφt λ ,

n

∏
v=1

m

∏
u=1

(Fuv)
θsφt λ

=

(
1−

n

∏
v=1

m

∏
u=1

(1−Tuv)
θsφt λ

)

= λSVNWA(S̃k11, S̃k12, . . . , S̃kuv)

Hence the proof is completed.
Theorem 4 (Shift-invariance property): If S̃k = h(T , I , F ) be another SVNHN, then

SVNHWA(S̃k11 ⊕ S̃k, S̃k12 ⊕ S̃k, . . . , S̃kuv ⊕ S̃k) = SVNHWA(S̃k11, S̃k12, . . . , S̃kuv)⊕ S̃k.

Proof. Since S̃e and S̃uv are SVNHNs, we have S̃e ⊕ S̃uv = (1− (1−T )(1−Tuv, Iuv, Fuv)). Hence,
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SVNHWA(S̃k11 ⊕ S̃k, S̃k12 ⊕ S̃k, . . . , S̃kuv ⊕ S̃k)

=
n

∏
t=1

(
m

∏
s=1

(1−Tuv)
θs(1−T )θs

)φt n

∏
t=1

(
m

∏
s=1

(Iuv)
θs(I )θs

)φt

·
n

∏
t=1

(
m

∏
s=1

(Fuv)
θs(F )θs

)φt

=

(
1−

n

∏
t=1

(
m

∏
s=1

(1−Tuv)
θs

)φt

, I ∏m
s=1 θs ∑n

t=1 φt , F ∏m
s=1 θs ∑n

t=1 φt

)

=

(
1−

n

∏
t=1

(
m

∏
s=1

(1−Tuv)
θs

)φt

, I ∏m
s=1 θs ∑n

t=1 φt , F ∏m
s=1 θs ∑n

t=1 φt

)
⊕ (T , I , F )

= SVNHWA(S̃k11, S̃k12, . . . , S̃kuv)⊕ S̃k.

Hence the result.
The proof is completed.

4. Materials and methods
4.1 De-eutrophication of a linear neutrosophic hexagonal number

By developing the de-eutrophication method, researchers have found a way to convert outcomes into a specific
numerical value using the hexagonal neutrosophic number and its membership functions [12]. The developers have
consistently created convenient methods for converting a fuzzy number into a precise number [13]. Some of these
approaches are listed below.

• Defuzzification Basic Distributions (DBAD)
• Area of Bisector (AOB)
• Area of Center (AOC)
• Quality Extended Method (QEM)
• Defuzzification Fuzzy Clustering (DFC)
In hexagonal neutrosophic numbers, there are three distinct membership functions, making it difficult to convert them

into crisp numbers. A new method called the “removal area method” has been proposed in recent research to address this
issue. This method enables us to delineate crisp values from the hexagonal representation by calculating the effective
areas that each sector of the hexagon covers. To derive crisp numbers, we implement an area removal strategy, whereby
we successively subtract the areas that do not contribute to the desired truth value. In doing so, we achieve a more precise
determination of the neutrosophic number’s essences, thus allowing us to convert the complex membership structure into
actionable data. Suppose we assume a linear neutrosophic hexagonal number as follows graphical presentation: The
hexagonal numbers, represented visually, display a unique geometric formation where concentric hexagons converge to
form a harmonious lattice. In this framework, each hexagonal layer contributes to a cumulative sum, with the neutrosophic
elements introducing degrees of uncertainty and indeterminacy. The vertices of each hexagon become pivotal points within
this multidimensional space, where the interplay of truth, indeterminacy, and falsehood generates a spectrum of potential
outcomes.

The score function value of the single-valued unique hexagonal neutrosophic number is represented with a graphical
presentation is given below.
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ÃSVUHNN(Ẽ, 0) = (κ11, κ22, κ33, κ44, κ55, κ66); ΨT , ΦI , ΩF

Figure 1 visually represents a single-valued hexagonal neutrosophic number. The red outline represents truthfulness,
the green outline represents falsity, and the purple outline indicates the indeterminacy of membership functions. For the
given value of δ, the relation value falls within the range 0 ≤ δ ≤ 1. The hexagonal number can be transformed into a
triangular neutrosophic number when δ is either 0 or 1. We then conducted a brief analysis of the de-eutrophication value
of the linear hexagonal numbers, which is cited from the data source available at [19]. Furthermore, our exploration delves
into various mathematical properties, such as the stability of the membership function across different values of δ, which
is vital for ensuring consistent decision-making outcomes. It is essential to highlight that as δ transitions between 0 and
1, the influences of truth, falsity, and indeterminacy interlace, providing a comprehensive framework to evaluate complex
problems. As we proceed, further investigations into the practical implications of de-eutrophication elucidate how these
methodologies can be applied to optimize decision-making processes across diverse domains.

Figure 1. A pictorial presentation of single-valued unique hexagonal neutrosophic number

4.2 Proposed method
A score function has been proposed for Single-Valued Hexagonal Neutrosophic Numbers utilizing the ‘removal

area method’. Additionally, the de-eutrophication value of a Single-Valued Hexagonal Neutrosophic Number has been
formulated, and its graphical representation is presented below.

The truth-membership depicted in Figure 2 illustrates the relationship between the varying degrees of
truth, indeterminacy, and falsity, allowing for a comprehensive representation of complex systems where traditional
binary logic falls short. In this graphical representation, we observe the interplay of these components, reinforcing the
significance of a balanced perspective in evaluating data. The Indeterminacy membership function shown in Figure 3
captures the nuances of uncertainty, highlighting the spectrum of indeterminate values that exist between truth and falsity.
This representation emphasizes the complexity inherent in situations where information is incomplete or ambiguous. By
visualizing indeterminacy, we gain a clearer understanding of its pivotal role in assessing data and making informed
decisions in multifaceted scenarios.
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Figure 2. Truth-Membership function of unique hexagonal number

ÃSVUHNN(P̃l , 0) =
(κ11 +κ22)

2
ΨT +

(κ22 +κ33)

2
ΨT +

(κ33 +κ44)

2
(1−ΨT )

ÃSVUHNN(P̃r, 0) =
(κ44 +κ55)

2
(1−ΨT )+

(κ55 +κ66)

2
ΨT

ÃSVUHNN(P̃, 0) =
(κ11 +2κ22 +κ33 +κ55 +κ66)ΨT +(κ33 +2κ44 +κ55)(1−ΨT )

4

Figure 3. Indeterminacy-Membership function of unique hexagonal number

The falsity membership function in Figure 4 illustrates the spectrum of falseness, from somewhat false to entirely
false, concerning truth and indeterminacy. This highlights the importance of considering falsity along with truth and
indeterminacy for a more nuanced evaluation of complex datasets, avoiding oversimplification.
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Figure 4. Falsity-Membership function of unique hexagonal number

Similarly calculating for the indeterminacy and falsity from Figure 3 and Figure 4, we obtain

ÃSVUHNN(Q̃, 0) =
(κ11 +2κ22 +κ33 +κ55 +κ66)(1−ΦI)+(κ33 +2κ44 +κ55)ΦI

4

ÃSVUHNN(R̃, 0) =
(κ11 +2κ22 +κ33 +κ55 +κ66)(1−ΩF)+(κ33 +2κ44 +κ55)ΩF

4

ÃSVUHNN(Ẽ, 0) =
ÃSVUHNN(P̃, 0)+ ÃSVUHNN(Q̃, 0)+ ÃSVUHNN(R̃, 0)

3

The scoring function’s estimated value for a unique hexagonal neutrosophic single-valued number is provided below.

ÃSVUHNN(Ẽ, 0) = (κ11, κ22, κ33, κ44, κ55, κ66); ΨT , ΦI , ΩF

ÃSVUHNN(Ẽ, 0) =
1
12

{(κ11 +2κ22κ33 +2κ44 +κ66)ΨT − (κ11 +2κ22 −2κ44 +κ66)ΦI

− (κ11 +2κ22 −2κ44 +κ66)ΩF +(2κ11 +4κ22 +κ11 +3κ33 +2κ44 +3κ55 +2κ66)} (8)

The implementation of a unique hexagonal neutrosophic single-valued number within scoring functions facilitates
advanced evaluations in multidimensional decision-making scenarios, yielding insights that reflect the true complexities
of the evaluated alternatives. Future research will undoubtedly expand upon these foundational principles, culminating in
more refined methodologies that harness the strengths of neutrosophic logic in real-world applications.

5. Replacement model formulation
Our goal is to determine the optimum replacement time for an item whose running or maintenance cost rises with

time, while the value of money remains constant throughout the period. For calculation purposes, the machine’s purchase
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cost is ⊐i and maintenance cost is κii, as well as its scarp value κiii. The average cost over n years is represented by a
single-valued unique hexagonal neutrosophic number.

The procedures to resolve the replacement problem are as follows:
Step 1 Consider the problem and create a group of expert decisions to determine the possibilities and criteria.
Step 2 Use the linguistic variable given in Table 2 to convert the problem.
Step 3 The machine’s cost value is calculated using the aggregated operation of a single-valued hexagonal

neutrosophic weighted average method using Theorem 1 and 2 the cost values are expressed as a single-valued hexagonal
neutrosophic number.

Step 4 Applying equation (8) which clarifies the process of converting a neutrosophic number into a precise number.
Step 5Utilizing Matlab code for converting the neutrosophic number into a precise number, and solving the problem

with standard methods.
Step 6 Analyze the data to determine the optimal year for replacing an item before it fails.
The flowchart presentation of the replacement formulation is shown in Figure 5. This visual representation outlines

the key steps involved in identifying potential replacement formulations, evaluating their effectiveness, and implementing
the most viable options.

Figure 5. Flowchart process of replacement model

6. Illustrations
6.1 Example 1

A steel manufacturing company, operating at full scale, recently integrated a new type of loader machine into its
operations to enhance efficiency and productivity. The purchase cost of the machine, represented by the neutrosophic
number C̃, encapsulates the inherent uncertainties associated with market fluctuations, additional costs, and potential
discounts or surcharges. This cost is given by:

[
< (51,000, 51,300, 51,700, 62,000, 62,300, 62,700); 0.83, 0.44, 0.22 >

]
.

Here, the values represent the potential ranges of themachine’s cost, accompanied by degrees of truth, indeterminacy, and
falsity, reflecting the company’s confidence, uncertainty, and skepticism about each range.
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Table 2. Failure severity ratings

S. No Linguistic description Description

1 Very small problem [0.1-0.2]
2 Small problem [0.2-0.3]
3 Slight problem [0.3-0.4]
4 Noticeable problem [0.4-0.5]
5 Average problem [0.5-0.6]
6 Serious problem [0.6-0.7]
7 Quite serious problem [0.7-0.8]
8 Major problem [0.8-0.9]
9 Very major problem [0.9-1.0]

Table 2 illustrates the cost-effective rate or failure time cost, enabling the conversion of linguistic variables into
codes that optimize the SVUHNN for improved decision-making across various scenarios. Utilizing the SVUHNNmodel
allows for a systematic analysis of cost implications related to different failure times, enhancing our understanding of the
associated trade-offs. The conversion of linguistic variables into codes facilitates a more nuanced interpretation of the
data, enabling clearer comparisons and more informed decisions.

Table 3. Maintenance cost of neutrosophic numbers

Years (n) Maintenance cost of loader for six years

1 < (750, 800, 850, 900, 950, 1,000; 0.76, 0.53, 0.24)>

2 < (1,050, 1,100, 1,150, 1,200, 1,250, 1,300; 0.68, 0.4, 0.32)>

3 < (1,350, 1,400, 1,450, 1,500, 1,550, 1,600; 0.53, 0.44, 0.43)>

4 < (1,650, 1,700, 1,750, 1,800, 1,850, 1,900; 0.57, 0.3, 0.4)>

5 < (2,000, 2,100, 2,250, 2,300, 2,600, 2,680; 0.43, 0.5, 0.53)>

6 < (3,800, 4,100, 4,440, 4,600, 4,750, 5,000; 0.2, 0.3, 0.5)>

Table 4. Scrap cost of neutrosophic numbers

Years (n) Scrap cost of loader for six years

1 < (4,200, 4,000, 3,800, 3,000, 2,400, 2,200; 0.83, 0.63, 0.37)>

2 < (1,850, 2,000, 1,800, 1,550, 1,320, 1,270; 0.74, 0.64, 0.22)>

3 < (1,340, 1,200, 1,100, 1,000, 680, 620; 0.67, 0.43, 0.47)>

4 < (600, 650, 580, 540, 520, 500; 0.57, 0.43, 0.63)>

5 < (500, 550, 480, 440, 420, 400; 0.42, 0.32, 0.67)>

6 < (400, 350, 380, 340, 320, 300; 0.37, 0.25, 0.72)>

To calculate the maintenance and salvage costs, we will use Theorem 1 and Theorem 2, along with the linguistic
variables listed in Table 2. Next, we will employ a score function to convert the USVHNN numbers from Tables 3 and 4
into a precise numerical value using Equation (8). This conversion process will transform ambiguous neutrosophic data
into exact numerical information, which will then be computed and presented in Table 5. As a result, the machine cost is
determined to be 282,449.
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Table 5. The crisp value of maintenance and scrap cost

Years (m) Maintenance cost Scrap cost

1 < 3,876 > < 16,932 >

2 < 4,726 > < 7,562.8 >

3 < 4,637.5 > < 4,261.2 >

4 < 6,013.5 > < 1,983.6 >

5 < 5,796.4 > < 1,209.6 >

6 < 5,240 > < 769.6 >

In the previous section, we discussed the generalized replacement approach and now we are tackling the machine
replacement issues. The numerical results presented in Table 5 will help in making strategic decisions and improving
efficiency. By using MATLAB software, we can determine the best year to replace the machine, that the average annual
total cost is at its lowest during the fourth year. To achieve this, we will first define the total cost function, which includes
the fixed and variable costs associated with the machine, along with any expected maintenance and operational expenses
over time. We denote the fixed costs as C f , the variable costs per year as Cv, and the expected maintenance costs as Cm.
The total costCtotal(n) for owning the machine over n years can be expressed as.

Ctotal(n) =C f +n ·Cv +
n

∑
i=1

Cm(i)

where Cm(i) represents the maintenance costs incurred in year i. For simplicity, we can assume that maintenance costs
increase linearly with the age of the machine, such that:

Cm(i) =Cm0 + k · (i−1)

Here,Cm0 is the initial maintenance cost in the first year, and k is the incremental cost added each subsequent year.
Substituting this into our total cost function gives:

Ctotal(n) =C f +n ·Cv +n ·Cm0 + k · (n−1)n
2

The term k · (n−1)n
2

accounts for the cumulative increase in maintenance costs over n years.
Next, we can implement this function in MATLAB to analyze the total cost for each year of operation. We will

calculate the total cost for a range of years, say from 1 to 10, and then plot the results to visually identify the year with
the lowest average annual total cost. The MATLAB code for this analysis would look like this. Using MATLAB, we can
set up a cost analysis model that takes into account the initial purchase cost, annual operational costs, and any anticipated
repairs or replacements needed as the machine ages. By iterating over a range of years, we can calculate the average
annual total cost for each year. Therefore, it is recommended to replace the machine after the 4th year. The bar plot in
Figure 6 illustrates that replacing the machine at the end of the fourth year is optimal.
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Figure 6. Bar plot visualization of the most effective period for machine replacement

The data shows that efficiency decreases significantly beyond this point, highlighting the cost-effectiveness of
upgrading the machinery at this time. When compared to intuitionistic fuzzy and fuzzy numbers applied with the standard
replacement method, we obtain the closest solution to the problem. This method has not been explored in the neutrosophic
field.

6.2 Example 2
The electronic equipment company has 1,000 resistors in stock. In case of a resistor failure, it is replaced for Rs. 7 per

resistor. At the same time, replacing all transistors at once would cost Rs. 4 per transistor. The percentage of surviving
components, denoted as S(i), is now tabulated in Table 6 at the end of each month i. The task is to find the optimal
replacement policy, i.e., whether individual replacement policy or group replacement policy is better. To determine the
optimal replacement policy, we will analyze the costs associated with both individual and group replacement strategies
over a defined period. The individual replacement policy involves replacing each failed resistor at a cost of Rs. 7, while
the group replacement policy entails replacing all resistors at once, incurring a cost of Rs. 4 per transistor.

Table 6. The percent of surviving each month

Month (i) Percent of surviving S(i)

1 < 90 >

2 < 85 >

3 < 65 >

4 < 35 >

5 < 15 >

6 < 0 >

To analyze the effectiveness of the replacement strategies, we need to consider the costs associatedwith each approach
in conjunction with the data provided in Table 6. Using MATLAB code snippet analyze the effectiveness of the strategies
by calculating the total costs and visualizing them through a bar graph.

The output displayed in Figure 7 will provide a clear overview of the financial implications of each approach, aiding
decision-makers in selecting the most viable replacement strategy. From Table 6, we demonstrate the group replacement
issues faced by the electronic company. The graphical representation in Figure 7 was generated using MATLAB
software, based on the reproducibility code referenced in Table 9 found in the Appendix.
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6.3 Explication
Based on Figure 7 above, it is reasonable to adopt the group replacement policy after the third month of resistor

installation. When comparing the individual cost, it is found to be more cost-effective than the group replacement cost of
5,607. Therefore, the unique hexagonal single-valued neutrosophic number can be utilized to assess the replacement item’s
reliability and uncertainty. The output is generated through MATLAB code, which saves time, and the time complexity
of the MATLAB program is calculated to be 0.564 seconds. In the future, this can be expanded to include bipolar and
hesitant neutrosophic numbers. Additionally, incorporating new number systems allows for the accurate representation
of uncertain information in various applications and fields.

Figure 7. Graphical presentation of group and individual replacement cost or failure rates over time

7. Comparison analysis
A comparative assessment was carried out to compare the recommended approaches for dealing with the replacement

policy problem. The study compared a single-valued neutrosophic number with a newly developed unique single-valued
hexagonal neutrosophic number. After analyzing the data, it was determined that the newly developed single-valued
hexagonal neutrosophic number offers a more precise estimation compared to the single-valued neutrosophic number. As
a result, the score function value transforms the single-valued neutrosophic number into a precise one.

S̃ =
1
3
{(T − I −F +2)} (9)

The above-derived formula (9) is used to convert SVUHNN into a clear numerical value. The replacement policy is
determined based on the surviving probability shown in Table 7, which is a key factor in the comparison process. In our
work, we compare our results with an established algorithm. The data in Table 8 is sourced from [15]. By analyzing the best
possible outcome achieved in comparison to the work performed, we can determine themost effective replacement method.
Figure 8 illustrates the comparison between SVNNs and single-valued unique hexagonal neutrosophic numbers, along
with their respective survival probabilities.
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Table 7. The surviving probability of each month

Month (x) surviving probability S(n)

1 < 0.06 >

2 < 0.17 >

3 < 0.31 >

4 < 0.48 >

5 < 0.68 >

6 < 1.00 >

Table 8. Comparison of neutrosophic number

SVNNs Precise number

< (0.123, 0.81, 0.1)> < 0.1027 >

< (0.33, 0.82, 0.7)> < 0.2566 >

< (0.46, 0.74, 0.39)> < 0.3311 >

< (0.5, 0.41, 0.12)> < 0.5937 >

< (0.6, 0.2, 0.1)> < 0.7330 >

< (0.8, 0.23, 1)> < 0.84 >

Figure 8. Comparison of neutrosophic numbers with other types of specialized neutrosophic numbers

Utilizing a score equation (9), the MATLAB code function converts a single-valued neutrosophic number into
a crisp number. Comparisons with results in Tables 7 and 8 show that the proposed method offers superior
approximation, demonstrating the robustness of the approach. While MATLAB code has been employed for replacement
models in previous research, our developed score function analytically assesses the time required for optimal machine
replacement, proving to be more efficient than other studies in this field.
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7.1 Real life applications
The Replacement Problem (RP) is a crucial aspect of economic decision-making, as it determines the optimal

replacement period for assets to prevent production disruptions. The replacement technique is versatile and can be applied
in various domains, including infrastructure projects and equipment lifespan estimation, as shown in Figure 9. The
deterioration of machinery and increasing operational costs emphasize the need for efficient replacement policies to
maintain system performance. In operations research, the replacement theory concept is used to determine when to replace
old equipment with new ones, especially when the existing equipment is no longer viable due to wear and tear or failure.
It is also applicable in situations where the item has been damaged or destroyed.

Figure 9. Real-life application usage of replacement management

8. Conclusion
This paper introduces the innovative concept of hexagonal neutrosophic numbers (SVUHNN) and demonstrates

their potential in solving complex replacement policy problems, particularly in industrial settings. The study highlights
the de-eutrophication process, which effectively converts hexagonal neutrosophic numbers into precise real values
through the removal area method, ensuring enhanced clarity and usability in practical applications. By employing
the newly developed score function S̃, the method achieves more accurate estimations than traditional single-valued
neutrosophic numbers (SVNN). Through comparative analysis using established methods, this study underscores the
advantages of the SVUHNN approach. The results, validated through MATLAB implementation, reveal significant
improvements in computational efficiency, reduced complexity, and time savings. The proposed approach is particularly
robust, as evidenced by its superior approximation capabilities, illustrated in tables and graphical representations
of survival probabilities and replacement scenarios. Moreover, the integration of SVUHNN into decision-making
processes empowers organizations to simulate various operational scenarios. Decision-makers can evaluate the effects of
differing maintenance schedules, operational conditions, and resource constraints on equipment longevity. This deeper
understanding facilitates the development of customized maintenance strategies that align with budgetary and operational
demands, ultimately driving cost-effective and reliable system management. In conclusion, this work represents a
significant advancement in the application of neutrosophic theories to industrial replacement problems, offering precise,
computationally efficient, and practically applicable solutions.
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8.1 Drawbacks and limitations
While this paper introduces the innovative concept of hexagonal neutrosophic numbers (SVUHNN) and demonstrates

their effectiveness in addressing replacement policy problems, some limitations should be noted. The reliance on
the de-eutrophication process, although effective, may lead to a loss of inherent neutrosophic uncertainty, potentially
oversimplifying certain complex scenarios. Additionally, the approach’s robustness and accuracy heavily depend on
the defined score function and removal area method, which may not generalize well to all problem contexts. Another
drawback is the computational dependency on MATLAB, which could limit accessibility for practitioners without access
to proprietary software. Future studies could explore more generalized frameworks and extend the method’s applicability
to a broader range of decision-making environments.

8.2 Future scope
In the future, the research could expand to include inventory and replacement issues using bipolar neutrosophic

numbers and bipolar soft sets, addressing the two-sided nature of problems and enhancing precision through inclination
sequencing. This approach shows promise for tackling complex reliability issues, such as dual component failures, by
evaluating component integrity and optimizing system availability considering downtime and uptime. Integrating single-
valued hexagonal neutrosophic numbers with machine learning models can enhance decision-making by processing
uncertain and incomplete data, improving predictions in interrelated failure scenarios. Further exploration may involve
machine learning models for selective maintenance schedules and randommission intervals, providing adaptive strategies
for optimizing reliability under uncertainty.
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Appendix

Table 9. Reproducibility MATLAB code

MATLAB Code II

function [k K Z U Iv Gv] = group replacement(Mc Q11 Q22 Q33 Q44 Q55 Q66 iv gv)
q11 = Q11 / 100; K11 = Q11 / 100; Z11 = Mc * K11;

q22 = Q22 / 100; K22 = (Q22 - Q11) / 100; Z22 = (Mc * K22) + (Z11 * K11);
q33 = Q33 / 100; K33 = (Q33 - Q22) / 100; Z33 = (Mc * K33) + (Z22 * K11) + (Z11 * K22);

q44 = Q44 / 100; K44 = (Q44 - Q33) / 100; Z44 = (Mc * K44) + (Z33 * K22) + (Z22 * K33) + (Z11 * K44);
q55 = Q55 / 100; K55 = (Q55 - Q44) / 100; Z55 = (Mc * q55) + (Z44 * K33) + (Z33 * K44) + (Z22 * K55) + (Z11 * K55);

q66 = Q66 / 100; K66 = (Q66 - Q55) / 100; Z66 = (Mc * q66) + (Z55 * K44) + (Z44 * K55) + (Z33 * K66) + (Z22 * K66) + (Z11 * K66);
k = [q11 q22 q33 q44 q55 q66];

K = [K11 K22 K33 K44 K55 K66];
Z = [Z11 Z22 Z33 Z44 Z55 Z66];

Z111 = Z11 + 0;
Z222 = Z22 + Z111;
Z333 = Z33 + Z222;
Z444 = Z44 + Z333;
Z555 = Z55 + Z444;
Z666 = Z66 + Z555;

Z = [Z111 Z222 Z333Z444 Z555 Z666];
Disp (‘INDIVIDUAL VALUE (iv = 7)’);

i11 = Z111 * iv;
i22 = Z222 * iv;
i33 = Z333 * iv;
i44 = Z444 * iv;
i55 = Z555 * iv;
i66 = Z666 * iv;

I = [i11 i22 i33 i44 i55 i66];
Disp (‘GROUP REPLACEMENT VALUE (gv = 4)’);

Disp (‘k K Z U Iv Gv’);
G = Mc * gv;
hold on;

X = [1 2 3 4 5 6];
Y = [i11 i22 i33 i44 i55 I66];

Scatter(x y ‘o’);
Line(x y);

Plot(x y ‘-o’ ‘linewidth’ 3);
hold on;

X = n ; Y = Gv;
Stem (X Y);
hold off;

Xlabel (‘Month’);
Ylabel (‘Cost of Individual Item’);

Legend (‘GROUP REPLACEMENT COST’ ‘Cost of Individual Item’);
end
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