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Abstract: The dynamics of the parabolic-trough solar collectors are described by a differential equation model. Based
on this model, different control strategies have been proposed to manage the heat production. However, the time delay
between the solar irradiance (input) and the outlet temperature (output) has not yet been incorporated into the model.
Considering this parameter will improve the model-based control techniques that strongly depend on the solar irradiance
function. This paper develops a mathematical model for the parabolic-trough solar collectors in which the time delay
is included. Since this parameter is unknown in practice, a method based on a cross-convolution approach is proposed
to estimate it accurately. Moreover, the efficiency of the proposed method is improved by combining it with a filtering
methodology. The proposed model’s effectiveness and the estimation method’s performance are demonstrated through
numerical simulations.
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1. Introduction
The need to reduce CO2 emissions from conventional electricity generation, such as fossil fuels, is driving the

development and research in renewable energy sources [1]. Solar energy stands out as themost abundant renewable energy
resource. This study focuses on Parabolic-Trough Collectors (PTC). One of the significant features of these solar plants is
their ability to store energy, which can be utilized later, such as during nighttime [2]. PTC plants utilize concentrated
sunlight to generate thermal energy through heat transport along collector tubes. Parabolic mirrors are employed to
concentrate solar irradiance onto a central tube, where it is absorbed and carried by a heat carrier fluid to the collector
outlet (refer to Figure 1). A differential equation model has been developed to provide a comprehensive depiction of
the solar field regarding the fluid’s internal energy variation [3–5]. Based on this model, extensive research has been
conducted to design control strategies for managing and enhancing heat production. The control problem is to establish
a law based on the fluid flow rate to maintain the outlet temperature around a specified desired reference [6]. Most of
the model-based control techniques strongly depend on the solar irradiance, which is in the model a function of time
[3–5, 7, 8]. However, the model does not consider the time delay between the solar irradiance (input) and the outlet

Copyright ©2024 Sharefa Asiri.
DOI: https://doi.org/10.37256/cm.5420245727
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Contemporary Mathematics 6082 | Sharefa Asiri

http:~//ojs.wiserpub.com/index.php/CM/
http:~//ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0001-9602-9462
https://doi.org/10.37256/cm.5420245727
https://creativecommons.org/licenses/by/4.0/


temperature (output). This delay is primarily due to the thermal inertia of the receiver tube and the heat transfer fluid.
When the solar irradiance increases, it takes time for the receiver tube and the fluid to absorb and reach higher temperatures.
Similarly, when solar irradiance decreases, it takes time for the temperature of the fluid to decrease. Therefore, considering
this time delay in PTC’s mathematical model is necessary to improve the control strategies, that consequently enhances
the efficiency of heat production.

Figure 1. A diagram illustrating the hydraulic circuitry of a PTC

Nevertheless, the value of this time delay is uncertain or unknown due to changes in many factors, such as inlet
temperature, fluid flow rate, ambient temperature, and mirror reflectivity. This motivates the estimation of the time delay
using accessible measurements. Several approaches have been applied to identify time delays, such as a high-order sliding
mode technique [9], recursive gradient method [10], variable structure observer [11], and variation of the least square
method [12]. These approaches and most of the existing ones are either asymptotic or off-line. However, the time delay
in PTC should be estimated during the plant operation. Asiri and Liu combined an algebraic approach with the Gauss-
Newton method to estimate the time delay in a class of linear time-delay systems [13]. Although the method is fast and
robust against noise, its performance is significantly affected by an initial guess.

In this work, the mathematical model is adapted to consider the time delay between the input and the output. In
addition, the algebraic approach in [14, 15] is proposed for estimating this delay. By employing this method, the delay can
be estimated through integral formulas without the need for iterative techniques or knowledge of initial conditions, leading
to fast convergence. Furthermore, it is robust against noise in the outlet temperature due to the inclusion of integral terms
[16]. It also operates in real-time, making it suitable for PTC. Moreover, the time delay can be estimated without knowing
the optical efficiency of the mirrors, which is usually uncertain or unknown.

The rest of the paper is organized as follows. Some necessary formulas are recalled in Section 2. The adapted model
and problem formulation are given in Section 3. Section 4 presents the time delay estimation approach. The results are
investigated numerically in Section 5. Finally, the work is concluded in Section 6.
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2. Preliminaries
This section revisits essential formulas that will play a crucial role in attaining themain results. Through the paper, the

notation Dn and D−n refer to the nth derivative and the nth integral, respectively.
Lemma 1 [17] Let n, m ∈ N with n ≥ m and f ∈Cm([0, t f ]) [The space of functions that are m times continuously

differentiable on [0, t f ].], then

D−n {Dm f (t)}= Dm−n
t f (t)−Ψ−n, m { f (t)} , (1)

where

Ψ−n, m { f (t)}=
m

∑
i=1

1
Γ(1+n− i)

tn−i [Dm−i f (t)
]

t=0 , (2)

and Γ(.) is the well known Gamma function [∀ z ∈ C with R(z)> 0, Γ(z) : =
∫ ∞

0 e−ttz−1dt].
Lemma 1 can be seen as a repeated application to the fundamental theorem of calculus. The next theorem shows the

act of the integral operator on convolution.
Theorem 1 [15, 18] Let n ∈ N and f , g ∈ L1([0, t f ]) [L1([0, t f ]) = { f : [0, t f ]→ R| f is measurable on [0, t f ]

and
∫ t f

0 | f (t)|dt < ∞}], then

D−n {g(t)∗ f (t)}=
∫ t

0
D−ng(τ) f (t − τ) dτ = D−n {g(t)}∗ f (t), (3)

where ∗ is the convolution operator [ f (t)∗g(t) =
∫ t

0 f (t − τ)g(τ)dτ].
Remark 1 Lemma 1 and Theorem 1 have been stated in their references in the context of fractional calculus, more

specifically, Riemann-Liouville type. Here, they were presented in terms of classical calculus on which this study is based.
This adjustment is valid because the Riemann-Liouville integral generalizes the repeated antiderivative for positive integer
orders.

3. Mathematical model and problem formulation
The overall description of the solar field in terms of the fluid internal energy variation is modeled by [3]

Cloop
dTout

dt
= Koptn0S I(t)−qPcp(Tout −Tin)−HlS(Tmean −Ta), (4)

where Cloop is loop heat capacity in J/◦C, Tout is outlet temperature in ◦C, Kopt is optical efficiency, n0 is geometric
efficiency, S is the total reflective surface in m2, I is direct solar radiation in W/m2, q is loop oil flow rate in m3/s, Pcp

is fixed factor based on loop geometrical and thermal properties in J/m3 ◦C, Tin is inlet temperature in ◦C, Hl is thermal
loss global coefficient in W/(m2 ◦C), Tmean is the mean temperature between inlet and outlet temperature in ◦C, and Ta is
ambient temperature in ◦C.

In this paper, the time delay between the solar irradiance (input) and the outlet temperature (output) is considered;
hence, the following modified model is proposed

Contemporary Mathematics 6084 | Sharefa Asiri



Cloop
dTout

dt
= Koptn0S I(t −δ )−qPcp(Tout −Tin)−HlS(Tmean −Ta), (5)

where δ is a constant representing the delay.
The objective of this study is to solve the following Estimation Problem:
EP: Given the output Tout(t), find the delay δ .

4. Delay estimation using cross-convolution approach
This subsection presents algebraic integral formulas for solving EP using a cross-convolution approach.
For convenience, Equation (5) will be written in the form:

a1DTout +a2(Tout −Tin)+a3(Tmean −Ta) = b I(t −δ ), (6)

where D : =
d
dt
, a1 =Cloop, a2 = qPcp, a3 = HlS, and b = Koptn0S.

In the next theorem, the unknown delay δ is found using the cross-convolution approach (see the main steps of the
approach in the flowchart in Figure 2).

Theorem 2 Let δ be unknown in (5), then it can be calculated as follows: ∀t ∈ [0, t f ]

δ =
ln(

√µ)
γ

, (7)

where

µ =

∫ t
0
[
Y (θ)∗ e−γθ I(θ)

]2 dθ∫ t
0 [e−γθY (θ)∗ I(θ)]2 dθ

, (8)

such that Y (t) represents the left hand side (L.H.S) of (6), and γ is a tuning parameter.
Proof. First, let’s write Equation (6) in the following short form:

Y (t) = b I(t −δ ) (9)

Step 1: Multiplying (9) by a continuous function α(t −δ ):

α(t −δ ) Y (t) = b (αI)(t −δ ), (10)

Step 2: Convolving the L.H.S of (10) with the R.H.S of (9) and the R.H.S of (10) with the L.H.S of (9):
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α(t −δ )Y (t)∗b I(t −δ ) = Y (t)∗b (αI)(t −δ ), (11)

which can be written as

α(t −δ )Y (t)∗b I(t) = Y (t)∗b (αI)(t). (12)

Notice that by this step, δ is neither in the input I nor in the output Tout .
Step 3: Let α(t) = e−γt , then α(t −δ ) = e−γt eγδ . Hence,

eγδ {e−γt Y (t)∗b I(t)
}
= Y (t)∗b e−γt I(t). (13)

Therefore,

eγδ =
Y (t)∗ e−γt I(t)
e−γtY (t)∗ I(t)

. (14)

Step 4: Taking the natural logarithmic function to both sides of (14), then squaring and integrating (to avoid
singularities that might result from the zero crossing of the denominator) complete the proof.

Figure 2. Main steps of cross-convolution approach

Note that in Theorem 2, δ is calculated without knowing or estimating the input coefficient b, which represents the
product Koptn0S. This is one of the features of the proposed method because Kopt is usually unknown in practice.

The expression (7) includes the derivative of the output signal Tout . However, numerical differentiation of noisy
signals is an ill-posed problem [19]. To overcome this ill-posedness, the following theorem is introduced.

Theorem 3 Let δ be unknown in (5), then it can be calculated as follows: ∀t ∈ [0, t f ]

δ =
ln(

√
λ )

γ
, (15)
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where

λ =

∫ t
0 F2(θ)dθ∫ t
0 G2(θ)dθ

, (16)

such that

F(t) =
[
a1D−n+1Tout −ψ−n, 1{Tout}+D−n [a2(Tout −Tin)+a3(Tmean −Ta)]

]
∗ e−γt I(t), (17)

G(t) =

[
a1

[
D−n+1{e−γtTout

}
−ψ−n, 1{Tout}+ γD−n{e−γtTout}

]

+D−n{a2e−γt(Tout −Tin)+a3e−γt(Tmean −Ta)
}]

∗ I(t), (18)

ψ−n, 1{Tout}=
1

Γ(n)
tn−1[Tout(t)]t=0, (19)

and n ≥ 1.
Proof. The key point is to apply D−n to (14). First, applying D−n to the numerator of (14) and using (3) lead to:

D−n [Y (t)∗ e−γt I(t)
]
= D−n [Y (t)]∗ e−γt I(t). (20)

However,

D−n [Y (t)] = D−n [a1DTout +a2(Tout −Tin)+a3(Tmean −Ta)]

(using Lemma 1) = a1D−n+1Tout −ψ−n, 1{Tout}+D−n [a2(Tout −Tin)+a3(Tmean −Ta)] , (21)

where ψ−n, 1{Tout} is given in (19). Second, applying D−n to the denominator (14) and using (3) gives:

D−n [e−γtY (t)∗ I(t)
]
= D−n [e−γtY (t)

]
∗ I(t) (22)

=
[
a1D−n{e−γtDTout}+D−n{a2e−γt(Tout −Tin)+a3e−γt(Tmean −Ta)

}]
∗ I(t). (23)

But by using the product rule for derivative, one can write

D
{

e−γtTout(t)
}
= e−γtDTout − γToute−γt . (24)
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Hence, the first term in the R.H.S of (23) can be written as:

D−n{e−γtDTout
}
= D−n{D

{
e−γtTout

}
+ γToute−γt}

(Using Lemma 1)= D−n+1{e−γtTout
}
−ψ−n, 1{e−γtTout}+ γD−n[e−γtTout ], (25)

where ψ−n, 1{e−γtTout}= ψ−n, 1{Tout} which is given in (19). Collecting the results in (21), (23), and (25) gives

eγδ =
F(t)
G(t)

, (26)

where F and G are those in (17) and (18), respectively. Finally, squaring, integrating, and then taking the natural
logarithmic function to (26) completes the proof.

5. Numerical simulation
This section presents a numerical demonstration of the efficiency and robustness of the proposed method. Firstly, the

proposed model given in (5) is solved numerically by using the MATLAB package ode 45 where the model parameters
and functions are set based on their real ranges as follows [20]:Cloop = 3.287×106, Pcp = 1.868×106, S = 3,427, q =

0.0093, Ta = 20, Tin = 12, n0 = 1, Hl = 500, Kopt = 0.6, and I(t) = 10t. The step size and final time are set to ∆t = 0.01
and t f = 300, respectively.

5.1 Adapted mathematical model

Figure 3 depicts the outlet temperature when the time delay is not considered, δ = 0, and when it is involved in the
model. The figure demonstrates the effect of the time delay on the PTC. The impact of the time delay on the control
problem of tuning the outlet temperature through the fluid flow rate will be presented and discussed in a forthcoming
paper.

Figure 3. Outlet temperature with respect to different time delay values
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5.2 Delay estimation

The efficiency of the estimation method given in Section 4 will be numerically demonstrated through different values
for δ . For each value, noisy data is generated by adding a zero mean white Gaussian random noise to the measurement
Tout , where the variance is chosen such that the Signal-to-Noise Ratio (SNR) has the values 40 dB and 25 dB.

The trapezoidal numerical integrationmethod is used to numerically approximate integrals that appear in the proposed
estimators. The tuning parameters γ and n are fixed to γ = 10−4 and n = 1.

Figure 4 depicts the exact and noisy measurements when δ = 0.5. Figure 5 (a) and Figure 5 (b) show the estimated
time delay in noise-free case using Eq. (7) (Theorem 2) and Eq. (15) (Theorem 3), respectively, where δ = 0.5. One can
see that both estimators gave good results in the noise-free case.

In the noisy case, Figure 6 shows that the estimator in (7) failed to converge due to the differentiation of noisy data,
see the paragraph before Theorem 3. Figure 7 shows that the estimator in (15) produced satisfactory results, even with a
high level of noise, because it avoids differentiating noise measurements.

In Figure 8, the estimator in (15) has been examined in noisy cases for other time delay values: δ = 1, 1.5, and 3.
The results presented here confirm the robustness and effectiveness of the filtered cross-convolution-based estimator

for estimating delays in PTC, even when the measurements are corrupted by noise.

Figure 4. Exact and noisy outlet temperature (measurement), where δ = 0.5

Figure 5. Estimated delay in noise-free case using: (a) Eq. (7) (Theorem 2), (b) Eq. (15) (Theorem 3), where δ = 0.5
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Figure 6. Estimated delay in noisy case using Eq. (7): (a) SNR = 40, (b) SNR = 25, where δ = 0.5

Figure 7. Estimated delay in noisy case using Eq. (15): (a) SNR = 40, (b) SNR = 25, where δ = 0.5
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Figure 8. Estimated delay in noisy case using Eq. (15): (a) SNR = 40, (b) SNR = 25

5.3 Comparing with modulating function-based method

In this subsection, the delay estimation using the proposed cross-convolution method in (15) is compared with the
modulating function-based method (MFBM) in [13]. In brief, the MFBM for estimating δ comprises the following steps:

(i) An initial guess for δ is chosen.
(ii) The MFBM is applied, and a nonlinear equation in δ is obtained.
(iii) The Gauss-Newton method is iterated to solve the nonlinear equation.
Figure 9 displays the comparable results of the two methods. One can observe that the MFBM converges faster; on

the other hand, the cross-convolution approach is an initial guess-free method.

Figure 9. Exact delay δ = 0.5 and estimated ones using the MFBM in [13] (red) and the filtered cross-convolution approach in (15) (black)

6. Conclusion
In this study, the mathematical model of the parabolic-trough solar collectors was extended by incorporating the

possible time delay between the solar irradiance (input) and the outlet temperature (output). Since this time delay is
uncertain or unknown in PTC, amethod based on a cross-convolution approach was proposed to estimate it. Moreover, the
efficiency of the proposed approach has been enhanced by integrating a filtering methodology. Numerical simulations
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highlighted the significance of considering the time delay in the mathematical model as well as the robustness and
effectiveness of the proposed estimation approach.

In future works, the extended mathematical model will be validated with real data. In addition, the effect of the time
delay on model-based control techniques will be demonstrated.
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