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Abstract: We characterize the structure of graphs of a given order that maximize the number of connected induced
subgraphs across seven different graph classes, each with specific parameters such as minimum degree, independence
number, vertex cover number, vertex connectivity, edge connectivity, chromatic number, and the number of bridges.
This work contributes to filling a gap in the existing literature.
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1. Introduction
Let G be a simple graph (i.e., undirected, with no loops or multiple edges) with a finite vertex set V (G) and edge

set E(G), so we are considering labeled graphs in the sense that we are not working with isomorphism classes of graphs,
which corresponds to “unlabeled graphs”. The order of G is defined as the cardinality |V (G)|. The degree of a vertex
u ∈V (G) is the number of vertices adjacent to u in G; we denote by δ (G) the minimum degree among all vertices of G.

A subgraph of G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). We write G− e (respectively, G− u or
G− S) for the subgraph of G obtained by deleting an edge e (respectively, a vertex u, or a set of edges/vertices S). An
induced subgraph of G is a subgraph obtained by deleting a set of vertices; specifically, we denote by G− (V (G) \ S)
the subgraph induced by S, which consists of S and all edges whose endpoints are contained within S.

An independent set in G is a set of vertices such that no two vertices in the set are adjacent. Thus, a set S of vertices
is independent if and only if the subgraph induced by S has no edges. The maximum size of an independent set in G is
called its independence number, denoted by α(G).

The graph G is said to be connected if every pair of vertices in G is part of a path; otherwise, G is disconnected. A
bridge (or cut-edge) of G is an edge whose deletion increases the number of connected components of G. It is known
(see, e.g., [1]) that an edge of G is a bridge if and only if it does not belong to any cycle in G.
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The vertex connectivity of G, denoted by c(G), is the minimum size of a vertex set S such that G− S is either a
single-vertex graph or has more connected components than G. The edge connectivity of G, denoted by c′(G), is the
minimum size of an edge set S such that G−S has more connected components than G.

A vertex cover of G is a set S ⊆ V (G) that contains at least one endpoint of every edge in G; in other words, the
vertices in S cover the edges of G. The vertex cover number, denoted by β (G), is the minimum size of a vertex cover
of G.

A graph G is l-colorable if we can assign one of l colors to each vertex such that adjacent vertices receive different
colors. If G is l-colorable but not (l − 1)-colorable, we say that the chromatic number of G is l. In other words, the
chromatic number of G is the minimum number of colors needed to color the vertices of G such that adjacent vertices
have different colors.

A graph G is said to be complete if every pair of distinct vertices in G is adjacent; the complete graph of order n is
denoted by Kn.

For all the notation defined on a graph G, the context determines the usage, whether it explicitly references the graph
G or not.

An extremal problem seeks the minimum or maximum value of a function over a certain class of objects. In graph
theory, the term “extremal problem” typically refers to finding an optimum value over a class of graphs. In our context,
we are concerned with determining the maximum number of connected induced subgraphs, denoted by (G), for simple
graphs G with a given order and other structural parameters.

The problem of counting the number of connected subgraphs in a graph has applications in various fields. In the study
of network reliability, connected induced subgraphs are used to assess the resilience of a network, helping to understand
how robust a network is to the removal of vertices or edges. In biology, this concept aids in analyzing molecular structures
and interactions within protein-protein interaction networks. In computer science, connected induced subgraphs serve as
essential substructures for designing efficient algorithms to analyze graph data, among other applications.

Several upper and lower bounds on the number of connected subgraphs or connected induced subgraphs, in terms
of other graph parameters, have been investigated (see, for example, [2–10]). Research on extremal problems in this area
seems to have originated with Pandey and Patra [10], who studied the number of connected (not necessarily induced)
subgraphs in both general graphs and unicyclic graphs, as a natural extension of counting subtrees in trees. By a unicyclic
graph, we mean a connected graph containing exactly one cycle.

Among other results, it is established in [3] that the path uniquely achieves the minimum number of connected
induced subgraphs among all connected graphs of a given order, while the maximum is attained only by the complete
graph. Moreover, the findings in [3] can be generalized to graphs with a given order and a specified number of components.
On the other hand, the work in [5] focuses on the class of all connected graphs with a given order and a specified number
of cut vertices, as well as the class of all connected graphs with a given order and a specified number of pendant vertices.

Additionally, in [7], we studied inequalities that relate the sum of a graph invariant to the same invariant in its
complement. These inequalities, known as Nordhaus-Gaddum type inequalities, were explored in the context of the
number of connected induced subgraphs of graphs of a given order.

In this note, we characterize the unique extremal graph of a given order that maximizes the number of connected
induced subgraphs in certain graph classes that have not been considered thus far, specifically for each of the following
parameters: minimum degree, independence number, vertex cover number, vertex connectivity, edge connectivity,
chromatic number, and number of bridges.

Observation: Adding an edge between a pair of non-adjacent vertices in a graphG increases the number of connected
induced subgraphs by at least one.

Indeed, let u and v be non-adjacent vertices in G. By adding an edge e = {u, v}, we create a new graph G′ with
E(G′) = E(G)∪{e}. The addition of e does not eliminate any existing connected induced subgraphs and forms at least
one new subgraph: the one consisting of u, v, and e. This ensures that the number of connected induced subgraphs
increases by at least one.

We will sometimes use this observation implicitly, without further notice.
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2. Main results
For a graph G and u ∈V (G), we denote by η(G)u the number of connected induced subgraphs of G that contain the

vertex u.
Let n, δ be positive integers such that n−2 ≥ δ . We construct the graph Gn, δ by taking one copy of Kn−1 and adding

another vertex that is adjacent to exactly δ vertices of Kn−1. Note that Gn, δ has order n and minimum degree δ .
Proposition 2.1 For a graph G with order n and minimum degree δ , we have

η(G)≤ η(Gn, δ ) = 2n −2n−1−δ ,

with equality if and only if G ≃ Gn, δ .
Proof. Let G be a graph with order n and minimum degree δ . Fix a vertex u of degree δ in G. For G to achieve the

maximum η(·), the subgraph G−u must be complete, since otherwise, we could increase η(·) by adding an edge between
every pair of non-adjacent vertices. Thus, Gn, δ uniquely realizes the maximum η(·) among all graphs with order n and
minimum degree δ .

Let w be the unique vertex of Gn, δ that does not belong to the Kn−1 part. Consider η(Gn, δ )w, the number of those
connected induced subgraphs of Gn, δ that contain w. Every such subgraph either consists of w only, or w and a nonempty
subset of vertices of Kn−1. In the latter case, the subgraph must also contain a nonempty subset of those δ vertices of Kn−1

which are the neighbors of w. Their count is given by (2δ −1)2n−1−δ . Thus, η(Gn, δ )w = 1+(2δ −1)2n−1−δ . It follows
that

η(Gn, δ ) = η(Gn, δ )w +η(Gn, δ −w) = η(Gn, δ )w +η(Kn−1)

= (1+(2δ −1)2n−1−δ )+(2n−1 −1) = 2n −2n−1−δ .

The graph Hn, α is obtained by taking disjoint copies of Kn−α and Kα (i.e., α independent vertices), and then adding
an edge between every vertex of Kn−α and every vertex of Kα .

Proposition 2.2 For a graph G with order n and independence number α , we have

η(G)≤ η(Hn, α) = α +2n −2α ,

with equality if and only if G ≃ Hn, α .
For a graph G with order n and vertex cover number β , we have

η(G)≤ η(Hn, n−β ),

with equality if and only if G ≃ Hn, n−β .
Proof. Let G be a graph with order n and independence number α . Fix a set S of α independent vertices in G. For G

to achieve the maximum η(·), the subgraph G−S must be complete, and every vertex in S must be adjacent to all vertices
in G−S. Thus, Hn, α is the unique graph that realizes the maximum η(·) among all graphs with order n and independence
number α .
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The union of any nonempty subsets of vertices of Kn−α and Kα induces a connected subgraph of Hn, α . Their count
is given by (2n−α −1)(2α −1). Thus, we have

η(Hn, α) = η(Kn−α)+η(Kα)+(2n−α −1)(2α −1)

= (2n−α −1)+α +(2n−α −1)(2α −1) = α +2n −2α .

For the second statement of the proposition, it is known (see, e.g., [1] Lemma 3.1.21) thatα+β = n, which completes
the proof.

Our next theorem concerns vertex connectivity and edge connectivity.
Theorem 2.3 For a graph G with order n and vertex connectivity c, we have

η(G)≤ η(Gn, c),

with equality if and only if G ≃ Gn, c.
For a graph G with order n and edge connectivity c′ < n−1, we have

η(G)≤ η(Gn, c′),

with equality if and only if G ≃ Gn, c′ .
Proof. Let G be a graph with order n and vertex connectivity c. Fix a set S of c vertices in G such that G− S is

disconnected. For G to achieve the maximum η(·), the subgraph G−S must have precisely two components, say G1 and
G2, each of which is a complete graph, and every vertex in S must be adjacent to all vertices in G−S = G1 ∪G2.

Now, we need to determine the orders n1 and n2 of G1 = Kn1 and G2 = Kn2 , respectively. Without loss of generality,
assume n1 ≤ n2. Suppose that n1 > 1. Fix a vertex u1 ∈V (G1) and construct a new graph G′ by deleting u1 and adding a
new vertex u2 adjacent to all vertices in S∪V (G2). Note that G−u1 and G′−u2 are isomorphic graphs.

By construction, every subset of V (G) that contains u1 and at least one vertex in S, as well as every subset of V (G′)

that contains u2 and at least one vertex in S, induces a connected graph. The number of such subgraphs of G and G′ is
given by:

(2c −1)2n1−1 ·2n2 and (2c −1)2n2 ·2n1−1,

respectively. Here, there are 2c −1 non-empty subsets of elements in S, 2n1−1 subsets of elements in V (G1)\{u1}, and
2n2 subsets of elements in V (G2).

Thus, we have:

η(G)u1 = η(Kn1)u1 +(2c −1)2n1−1 ·2n2 = 2n1−1 +(2c −1)2n1−1+n2 ,

and
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η(G′)u2 = η(Kn2+1)u2 +(2c −1)2n2 ·2n1−1 = 2n2 +(2c −1)2n2+n1−1.

Therefore, we obtain:

η(G′)−η(G) = η(G′)u2 −η(G)u1 = 2n2 −2n1−1 > 0,

which shows that η(G′) > η(G). Hence, for G to have the maximum η(·), we must have n1 = 1. Additionally, S must
induce a complete graph, implying that the graph realizing the maximum η(·) is indeed Gn, c.

For the second statement of the theorem, consider a graph Gn, x where u is the unique vertex of degree x < n− 2.
Note that Gn, x −u = Kn−1, and

η(Gn, x)u = 1+(2x −1)2n−1−x = 1+2n−1 −2n−1−x,

counts the number of u-containing connected induced subgraphs of Gn, x. Thus,

η(Gn, x) = η(Kn−1)+η(Gn, x)u,

is a strictly increasing function in x.
Now, let G be a graph with order n and edge connectivity c′. Let c denote the vertex connectivity of G. Then, we

have:

η(G)≤ η(Gn, c)≤ η(Gn, c′),

where the first inequality follows from the first statement of the theorem, and the second inequality holds by Whitney’s
theorem [11], which states that c ≤ c′. This completes the proof of the theorem.

The Turàn graph Tn, l is a complete l-partite graph of order n in which any two partition sets differ in cardinality by
at most one [12, 13]. This famous graph appears in many extremal graph theory problems. For instance, it is known that
Tn, l has more edges than any other simple l-partite graph on n vertices, and that Tn, l−1 has more edges than any other
simple graph on n vertices containing no Kl .

Theorem 2.4 For a graph G with order n and chromatic number l, we have

η(G)≤ η(Tn, l),

with equality if and only if G ≃ Tn, l .
Denote by n1, n2, . . . , nl the respective sizes of the partite sets of Tn, l . We have

η(Tn, l) = n+ ∑
S⊆{1, 2, ..., l}

|S|≥2

∏
j∈S

(2n j −1) .
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In particular, for n1 = n2 = · · ·= nl = n/l, we have

η(Tn, l) = n+2n −1− l ·2n/l + l .

Proof. Let G be a graph with order n and chromatic number l. Partition the vertices of G according to their colors.
Each of the l partition sets (color classes) forms an independent set with sizes n1, n2, . . . , nl , such that n1+n2+ · · ·+nl = n.
Thus, for G to achieve the maximum η(·), it must be a complete l-partite graph with these partition sets. In particular,
only Kn = Tn, n realizes the maximum when l = n.

Assuming l < n, let A and B be two partite sets with the greatest and smallest cardinalities, respectively, among all
the l partite sets of G. Thus, we have |A|> 1. We want to show that |A|−1 ≤ |B| ≤ |A|.

Suppose this is not the case. Fix a vertex a ∈ A. Construct a new graph G′ by deleting vertex a, introducing a new
vertex b with the same color as those in B, and adding edges between b and every vertex in V (G)\ (B∪{a}). Note that:

η(G′)−η(G) = η(G′)b −η(G)a,

since G−a and G′−b are isomorphic by construction.
Additionally, every subset of vertices in G that contains both a and an element of V (G)\A, as well as every subset

in G′ containing both b and an element ofV (G′)\ (B∪{b}), always induces a connected graph. Moreover, A and B∪{b}
are independent sets in G and G′, respectively. Thus, we have:

η(G)a = 1+(2|V (G)|−|A|−1)2|A|−1,

and

η(G′)b = 1+(2|V (G′)|−|B|−1 −1)2|B|.

Indeed,V (G)\A is the neighborhood of every element in A in G, andV (G′)\ (B∪{b}) is the neighborhood of every
element in B∪{b} in G′. Thus, we obtain:

η(G′)−η(G) = η(G′)b −η(G)a = 2|V (G′)|−1 −2|B|+2|A|−1 −2|V (G)|−1,

which simplifies to:

η(G′)−η(G) = 2|A|−1 −2|B| > 0,

given the inequality |B|< |A|−1. This contradicts the assumption that G maximizes η(·).
Therefore, for G to maximize η(·), it must be a complete l-partite graph with |A|−1 ≤ |B| ≤ |A|. By the choice of

sets A and B, we conclude that the graph realizing the maximum η(·) is indeed the Turán graph Tn, l .
Denote byV1, V2, . . . , Vl the partite sets of Tn, l , and by n1, n2, . . . , nl their respective sizes such that n1 ≤ n2 ≤ ·· ·≤ nl .

Thus n1 = ⌊n/l⌋ and nl = ⌈n/l⌉. We enumerate the connected induced subgraphs of Tn, l according to the number of partite
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sets that are involved. Let S be a subset of {1, 2, . . . , l} such that |S| ≥ 2. Then ∏ j∈S(2n j −1) counts precisely the number
of those connected induced subgraphs of Tn, l that contain at least an element from Vj for all j ∈ S. On the other hand,
there are precisely ni number of those connected induced subgraphs of Tn, l that contain elements of Vi only. Therefore,
we obtain

η(Tn, l) =
l

∑
j=1

n j + ∑
S⊆{1, 2, ..., l}

|S|≥2

∏
j∈S

(2n j −1) = n+ ∑
S⊆{1, 2, ..., l}

|S|≥2

∏
j∈S

(2n j −1) .

The formula in Theorem 2.4 can be simplified for equal partite sets, i.e.

n1 = n2 = · · ·= nl = n/l .

In this case, we have

η(Tn, l) = n+
l

∑
k=2

∑
S⊆{1, 2, ..., l}

|S|=k

∏
j∈S

(2n/l −1) = n+
l

∑
k=2

∑
S⊆{1, 2, ..., l}

|S|=k

(2n/l −1)k

= n+
l

∑
k=2

(
l
k

)
(2n/l −1)k = n+

l

∑
k=0

(
l
k

)
(2n/l −1)k −1− l(2n/l −1)

= n+2n −1− l ·2n/l + l .

For our next theorem, we begin with a lemma, which can also be found in [4, 6].
Lemma 1 (Lemma 2.1 [4], Lemma 1 [6]) Let L, M, R be three non-trivial (i.e., each has at least two vertices)

connected graphs whose vertex sets are pairwise disjoint. Let l ∈ V (L), r ∈ V (R), and u, v ∈ V (M) be fixed vertices
such that u ̸= v. Denote by G the graph obtained from L, M, R by identifying l with u, and r with v. Similarly, let G′

(respectively, G′′) be the graph obtained by identifying both l, r with u (respectively, both l, r with v); see Figure 1 for a
diagram of these graphs. Then, it holds that:

η(G′)> η(G) or η(G′′)> η(G).

An edge of a graph G with an end vertex of degree 1 is called a pendant edge of G. The star of order n is denoted
by Sn.

For positive integers b, n such that b < n−2, define Jn, b to be the graph obtained by identifying one vertex of Kn−b

with the central vertex of Sb+1.
Theorem 2.5 For a graph G with order n and b < n−2 bridges, we have

η(G)≤ η(Jn, b) = 2n−1 +b+2n−b−1 −1,

Contemporary Mathematics 1894 | Audace A. V. Dossou-Olory



with equality if and only if G ≃ Jn, b.

l, u v, rL R

l, u, r v

L

R

u v, l, r

R

M

M M

L

G

G′ G′′

Figure 1. The graphs G, G′, G′′ described in Lemma 1

Proof. Let G be a graph with order n > 2 and b bridges. Fix a bridge with end vertices u, v in G. Then, specializing
M = uv (i.e., taking M to be the edge uv) in Lemma 1 shows that all edges of G preserve their status (bridge/non-bridge)
in both G′ and G′′. Moreover, the bridge uv becomes a pendant edge in both G′ and G′′.

Thus, it suffices to prove the theorem for G in the class of graphs with order n and b pendant edges (or pendant
vertices).

Fortunately, it was determined in [5, Theorem 3] and [7] that the graph structure which maximizes the number of
connected induced subgraphs, given both order and the number of pendant vertices, is as follows: If b< n−2, the extremal
graph is obtained by identifying one vertex of Kn−b with the central vertex of Sb+1.

The first part of the theorem follows from these results.
First note that for any u ∈ V (Km), we have η(Km)u = 2m−1. Let w be the unique vertex common to Kn−b and Sb+1

in the graph Jn, b. Since w is the central vertex of Sb+1, it holds that

η(Jn, b)w = η(Kn−b)w ·η(Sb+1)w = 2n−b−1 ·2b = 2n−1 .

The graph Jn, b −w consists of b copies of K1 and one copy of Kn−b−1. Thus.

η(Jn, b −w) = b+η(Kn−b−1) = b+2n−b−1 −1 .

Altogether, we obtain

η(Jn, b) = η(Jn, b)w +η(Jn, b −w) = 2n−1 +b+2n−b−1 −1 .
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3. Concluding comments
Among all connected graphs with order n and minimum degree δ , the minimum number of connected induced

subgraphs is attained by the path if δ = 1 [3] and by the cycle if δ = 2 [3, 5]. This motivates the following problem:
What is the minimum number of connected induced subgraphs among all graphs with a given order and minimum degree
δ > 2? Recall that Proposition 2.1 addresses the maximization counterpart of this problem.

Theorem 2.3 establishes that for a graph with a given order and connectivity, the graph that maximizes the number
of connected induced subgraphs is the same for both vertex-connectivity and edge-connectivity. As noted in [3, 5], the
path (respectively, the cycle) also attains the minimum number of connected induced subgraphs among all graphs with
order n and connectivity 1 (respectively, connectivity 2).

However, other relationships between the number of connected induced subgraphs and graph connectivity have not
yet been established. Therefore, a natural question that arises is to determine the general case where the connectivity is
greater than 2. It seems to us that even the case of connectivity 3 could be very challenging.

Statements and declarations
The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

The author has no relevant financial or non-financial interests to disclose.

Data availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Conflict of interest
The authors declare no competing financial interest.

References
[1] West DB. Introduction to Graph Theory. 2nd ed. University of Illinois, Urbana: Pearson Education; 2002.
[2] Alokshiya M, Salem S, Abed F. A linear delay algorithm for enumerating all connected induced subgraphs. BMC

Bioinformatics. 2019; 20(S12): 319. Available from: https://doi.org/10.1186/s12859-019-2837-y.
[3] Dossou-Olory AAV. Graphs and unicyclic graphs with extremal number of connected subgraphs. Indian Journal of

Discrete Mathematics. 2022; 8(2): 47-67. Available from: https://doi.org/10.48550/arXiv.1812.02422.
[4] Dossou-Olory AAV. Maximising the number of connected induced subgraphs of unicyclic graphs. Turkish Journal

of Mathematics. 2022; 46(8): 3359-3372. Available from:https://doi.org/10.55730/ 1300-0098.3337.
[5] Dossou-Olory AAV. Cut and pendant vertices and the number of connected induced subgraphs of a graph. European

Journal of Mathematics. 2021; 7: 766-792. Available from: https://doi.org/10.1007/s40879-020-00443-8.
[6] Dossou-Olory AAV. Cut vertex and unicyclic graphs with the maximum number of connected induced subgraphs.

arXiv:2002.04411. 2020. Available from: https://arxiv.org/abs/2002.04411.
[7] Andriantiana EOD, Dossou-Olory AAV. Nordhaus-Gaddum inequalities for the number of connected induced

subgraphs in graphs. Quaestiones Mathematicae. 2022; 45(8): 1191-1213. Available from: https://doi.org/10.2989/
16073606.2021.1934178.

[8] Komusiewicz C, Sommer F. Enumerating connected induced subgraphs: Improved delay and experimental
comparison.Discrete Applied Mathematics. 2021; 303: 262-282. Available from: https://doi.org/10.1016/j.dam.202
0.04.036.

Contemporary Mathematics 1896 | Audace A. V. Dossou-Olory



[9] Maxwell S, Chance MR, Koyutürk M. Efficiently enumerating all connected induced subgraphs of a large molecular
network. In: Dediu AH, Martín-Vide C, Truthe B. (eds.) Algorithms for Computational Biology First International
Conference, AlCoB 2014. Heidelberg: Springer; 2014. Available from: https://doi.org/10.1007/978-3-319-07953-
0_14.

[10] Pandey D, Patra KL. On the number of connected subgraphs of graphs. Indian Journal of Pure and Applied
Mathematics. 2021; 52(2): 571-583. Available from: https://doi.org/10.1007/s13226-021-00061-4.

[11] Whitney H. Congruent graphs and the connectivity of graphs. American Journal of Mathematics. 1932; 54(1): 150-
168. Available from: https://doi.org/10.2307/2371086.

[12] Bollobás B. On Complete Subgraphs of Different Orders. United Kingdom: Cambridge University Press; 2008.
[13] Turán P. On an extremal problem in graph theory. Matematikai és Fisikai Lapok. [Mathematical and Physical

Journal]. 1941; 48: 436-452.

Volume 6 Issue 2|2025| 1897 Contemporary Mathematics


	Introduction
	Main results
	Concluding comments

