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Abstract: This paper introduces the Kolmogorov-Arnold Credit Informed Network Orchestration (KACINO), a novel
framework proposed to comprehensively structure and analyze the carbon dynamic system. By synthesizing dynamic
processes such as carbon emission and sequestration, a credit information of carbon dynamics is accumulated. KACINO
provides a holistic approach to model the complexities inherent in carbon dynamics. Through systematic analysis and
scenario simulations, KACINO facilitates informed policy recommendations aimed at optimizing carbon credit utilization
and achieving sustainable environmental outcomes. This paper outlines the theoretical foundation, methodology, and
practical applications of KACINO, highlighting its potential to support transformative strategies in climate change
mitigation and sustainable development.
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1. Introduction

Climate change poses a significant threat to global ecosystems and human societies, making the development of
effective emission reduction solutions imperative [1]. In this context, carbon credits have emerged as a crucial tool [2, 3].
Each carbon credit represents the reduction of one metric ton of CO, or its equivalent in greenhouse gases, enabling
organizations and individuals to offset their emissions by investing in emission reduction projects [4]. This market-based
mechanism incentivizes greenhouse gas reduction initiatives, fostering investment in sustainable practices [5].

However, while carbon credits support the advancement of sustainable practices, they face scrutiny regarding
verification accuracy and the risk of greenwashing [6, 7], a practice of misleading consumers regarding the environmental
benefits of a product, service, or company practices. It often involves exaggerating or fabricating claims about
sustainability to create a false impression of environmental responsibility. This can include vague language, unsubstantiated
claims, or showcasing minor eco-friendly initiatives while ignoring larger, harmful practices [8]. Greenwashing poses
significant risks, as it can undermine genuine sustainability efforts, mislead consumers, and lead to regulatory scrutiny.
Thus, it is essential to establish rigorous standards and ensure transparency to mitigate these concerns [9].
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Research into the dynamics of carbon emissions and sequestration is vital for enhancing verification accuracy and
addressing greenwashing within the carbon credit system [10, 11]. By developing precise models and tools for tracking
carbon fluxes, we can improve the accuracy of carbon credit assessments and minimize discrepancies between reported
and actual emission reductions. Additionally, enhancing transparency through detailed reporting on the factors influencing
carbon sequestration helps stakeholders verify that carbon credits represent genuine emission reductions [12—-14].

The intricate relationship between carbon emissions and sequestration has complicated the creation of a comprehensive
and accurate unified model. Despite considerable efforts to develop robust measurement models for these processes-
covering emissions [15—17], sequestration [18-20], and integrated carbon emission-sequestration modeling [21, 22]
current models remain relatively static, failing to adapt to new data or changing conditions. They often rely on linear
numerical logic and assume constant emission and sequestration factors, overlooking the dynamic interactions and decay
of these processes. Consequently, they fail to account for the fundamental physical laws and temporal variations inherent
in carbon exchange systems, leading to inadequate predictions of long-term trends and policy effectiveness.

To address these limitations, the Physical Information Neural Network (PINN) offers significant advantages by
integrating physical laws directly into the neural network training process. This integration enhances both the physical
consistency and reliability of the model [23]. By incorporating physical constraints, PINNs can generate accurate
predictions even when data is scarce, thus reducing the dependence on extensive datasets. They are particularly adept
at solving complex scientific and engineering challenges that involve multi-physics interactions or nonlinear phenomena,
naturally incorporating boundary and initial conditions [24].

Moreover, PINNs enhance computational efficiency by minimizing reliance on conventional numerical methods
while simultaneously improving model interpretability. Because the predictions of PINNs align with physical laws, the
outcomes remain consistent with fundamental principles [23]. By integrating physical knowledge into the training process,
PINNSs not only maintain statistical validity but also ensure physical relevance, making them a robust tool for addressing
intricate problems [24].

Research on carbon credits, particularly regarding the dynamic interplay of various factors, remains limited. While
there is a growing body of work on PINNs, most current studies focus on methodologies such as Gated Recurrent Units
(GRUgs) [25-28], Feedforward Neural Networks (FNNs) [29, 30], Residual Gain (REG, Residual Gain) Strategy [31-33],
Deep Neural Networks (DNN) [34, 35], and Multilayer Perceptron (MLP) [36, 37]. However, a comparative analysis of
these methodologies are notably lacking.

In our research, we explore PINNs and design a framework for Carbon Informed Neural Networks (CINNs) to address
the challenges present in carbon physical systems. Our comparative studies reveal that these methods often necessitate
more complex network structures, leading to longer training times to achieve convergence and accuracy, especially in
intricate systems. To overcome these challenges, we have reviewed and contrasted these approaches and proposed a new
framework that utilizes the Kolmogorov-Arnold Representation to organize data, thereby simplifying network architecture
and potentially reducing training complexity.

In this paper, we present an orchestration framework with CINNSs to synthesize diverse dynamics of carbon emissions
and sequestration into a unified model, illustrated through a case study on Carbon Balance Dynamics. We introduce
the Kolmogorov-Arnold Carbon Informed Network Orchestration (KACINO), which comprehensively considers decay
rates and the interactions between carbon emissions and sequestration as an integrated system. KACINO dynamically
orchestrates all necessary factors to reinforce the CINN framework, enhancing efficiency in modeling and analyzing
carbon dynamics. This synthesis allows for a comprehensive understanding of how different emissions and sequestration
processes interact within a single model, integrating various factors influencing carbon behavior into a cohesive
framework.

2. Related works

Although classical numerical methods, such as the finite element method (FEM [38—40]) and spectral methods [41,
42], have demonstrated maturity and effectiveness in solving partial differential equations (PDEs), but they exhibit
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significant limitations. One of the primary challenges is the curse of dimensionality [43, 44]. As dimensionality increases,
the computational costs associated with these methods escalate exponentially, rendering them unsuitable for complex that
necessitate extensive computational resources and mesh sizes that reach hundreds of thousands when addressing high-
dimensional PDE applications [45, 46]. In contrast, Physics-Informed Neural Networks (PINNs) leverage the inherent
flexibility of neural networks, which are particularly adept at approximating high-dimensional functions [47], thereby
enabling efficient handling of complex high-dimensional problems with less increase in computational cost [48]

Additionally, classical numerical methods heavily depend on structured meshes [49, 50], complicating computations
in the presence of intricate geometries. The mesh generation process can be both time-consuming and error-prone,
particularly when navigating complex boundary conditions [51, 52]. PINNs, however, do not require predefined meshes;
instead, they learn directly over the defined domain [53, 54]. This mesh-free approach allows them to seamlessly adapt
to arbitrary geometries, offering significant advantages in computational efficiency and ease of implementation.

Another notable limitation of traditional methods pertains to their treatment of physical laws. These classical
techniques often necessitate extensive preprocessing and meticulous attention to boundary conditions, which can introduce
additional complexity and potential sources of error [55-57]. In contrast, PINNs incorporate physical laws directly into
the training process, enabling simultaneous approximation of solutions while enforcing physical constraints [58, 59]. This
end-to-end learning framework facilitates effective performance even in the absence of large labeled datasets.

In scenarios demanding rapid computation-such as real-time simulations or optimization tasks-PINNs exhibit a
remarkable ability to accelerate the solution process [60, 61]. By leveraging existing physical information, PINNs can
converge to accurate solutions with fewer iterations than traditional methods, which often require extensive computational
resources and numerous iterations.

Moreover, the integration of physical principles into the training of PINNs not only enhances predictive performance
but also improves interpretability [62—64]. In fields such as engineering, finance and healthcare, where model outputs
require justifiable explanations, understanding model decisions becomes crucial. PINNs provide a clearer pathway for
verification and validation, as their solutions are closely aligned with governing physical laws.

It can be seen that while classical numerical methods like FEM and spectral methods excel in accuracy for well-
defined problems, they face significant limitations in high-dimensional spaces, complex geometries, and real-time
applications. PINNs present a valuable alternative, effectively addressing these shortcomings with their flexibility,
efficiency, and interpretability. They outperform traditional methods in scenarios that demand rapid solutions or involve
complex physical systems. As computational challenges continue to evolve, integrating PINNs into numerical computing
represents a promising direction for future research and practical applications.

While Physics-Informed Neural Networks (PINNSs) typically demonstrate considerable advantages in computational
efficiency, their performance can be uncertain or inconsistent in specific scenarios. This variability arises from the
inherent characteristics of PINNs, which depend on minimizing a loss function that incorporates both the governing
partial differential equations (PDEs) and boundary conditions [65]. In complex anisotropic or spatially varying settings,
the optimization landscape can become intricate, posing challenges for the training process [66, 48]. Consequently, this
complexity can hinder the algorithm’s ability to converge to a solution that accurately reflects the underlying physics of
the problem.

This study aims to identify a simple and stable computational structure that can effectively adapt to complex carbon
dynamics and optimization landscapes. We propose KACINO, a structure designed to ensure consistent computational
stability while accommodating various conditions and constraints. Before detailing KACINO, we will first discuss the
carbon credit model and its associated computational assembly.

3. Orchestration modeling of carbon credits

The model of carbon credits involves examining the dynamics of carbon emissions, sequestration, and the
accumulation of carbon credits over time. Understanding these dynamics is fundamental for managing carbon emissions,
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developing administration schemes, evaluating carbon offset projects, and assessing compliance with emissions reduction
targets.

3.1 Carbon emission modeling

In the context of carbon emissions, as economic activity, population, and energy consumption increase, emissions
tend to rise at a rate proportional to their current level [67, 68]. Meanwhile, as industrialization and urbanization progress,
increased carbon emissions can lead to a feedback loop where more emissions promote further economic growth (e.g.,
through increased energy demand). This creates a cycle that can often be approximated by exponential growth [69,
70]. In addition, empirical data on carbon emissions often shows a consistent upward trend, particularly in periods of
rapid industrialization and technological advancement. This historical behavior aligns well with the characteristics of
exponential growth [71, 72]. Therefore, the carbon emission rate can be modeled using an exponential growth model as

P(t)="Py-e", €]

where P(¢) refers to the rate at which carbon dioxide (CO;) or other greenhouse gases emission into the atmosphere over
a specific period of time, P(¢) is the are emitted rate at time ¢, P, is the initial emission rate at t = 0, r is the growth rate
of emissions, e is the base of natural logarithm, ¢ is time. This model describes how the emission rate changes over time
assuming a constant growth rate r.

The accumulated carbon emission E represents the cumulative amount of carbon dioxide (CO;) or its equivalent
greenhouse gases released into the atmosphere over a specified period. It is typically measured in units of metric tons of
CO; or CO,-equivalent gases emitted within a defined timeframe, such as annually or over a specific project duration,
which can be formulated as

E(T) = /0 Py ar, @)

where E is the total carbon emission over time T, P(z) is the emission rate at time ¢. This integral model sums up the
emissions over time based on the emission rate function E(¢). to calculate the total carbon emission E over a period from
t =0tot =T, as an integration of the accumulated emission rate P(¢) over time.

Substituting the exponential growth model (1) into (2), the accumulated emission can be formulated as

T " erT_l
E(T):Po/oe dr=nS—, 3)

where E(T) is the total carbon emission over time 7', P, is the initial emission rate atz = 0, r is the growth rate of emissions,
T is the duration over which emissions are accumulated.

These mathematical models provide a framework for understanding both the rate at which carbon emissions occur
over time (carbon emission rate) and the cumulative total emissions over a specified period (total carbon emission).

They are essential tools for analyzing emission trends, projecting future impacts, and informing policy decisions
aimed at mitigating climate change and promoting sustainability.

Carbon emissions are the release of carbon dioxide (CO,) or its equivalent greenhouse gases into the atmosphere,
primarily from human activities such as burning fossil fuels, deforestation, and industrial processes. The decay rate of
carbon emission can be conceptualized as the rate at which the emission intensity or emission rate changes over time due
to factors such as technological advancements, policy interventions, and shifts in energy sources.
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In a natural emission environment unaffected by external factors, its dynamics directly correlate with P(r). However,
when measures or environmental changes are implemented, these emissions are influenced by a factor related to the carbon
emission level on the basis of P(¢). Then the rate of change of carbon emissions E(¢) over time ¢ is given by

dE

?:P(f)*yE(f% “)
t

where E(t) represents the amount of carbon emissions at time #, P(¢) is the carbon emission rate at time ¢, and ¥ is the

decay rate or removal rate of carbon emissions, accounting for processes such as carbon capture or natural absorption.

3.2 Carbon sequestration

The carbon sequestration rate R(¢) represents the rate at which carbon dioxide (CO;) or its equivalent greenhouse
gases are removed from the atmosphere or stored in carbon sinks. In saturation, carbon sequestration processes (e.g., plant
growth, soil absorption) have a maximum capacity [73, 74], as carbon is sequestered over time, the rate of sequestration
approaches this maximum but never exceeds it [75]. Many studies of ecological systems and carbon cycling have shown
that sequestration rates often follow a logistic pattern [76, 77], and the logistic growth model is well-suited for representing
carbon sequestration because it captures the saturation effects, and realistic ecological behavior associated with carbon
uptake in natural systems [78—80].

Considering the upper limit of the rate of sequestration, the rate can be formulated with a logistic growth model base
on an initial increase as

Rmﬂ.x
R(t) = e ki) (5)

where Ryax is the maximum sequestration rate, k is the growth rate constant, and 7y is the time of inflection where the rate
starts to level off.

This model provides frameworks for understanding how the carbon sequestration rate changes over time in various
environmental and policy contexts.

The Accumulated Carbon Sequestration S(¢) represents the total amount of carbon sequestered up to time 7. It is
obtained by integrating the sequestration rate R(¢) over time, which can be formulated as

S(T) = /TR(t) di = /TA d )
0 0 ]—|—e*k(’*’0) ’

where Ry is the maximum sequestration rate, k is the growth rate constant, and 7y is the time when sequestration starts to
level off. The integral (6) typically lacks a straightforward analytical solution For practical purposes, it is often evaluated
using numerical methods or suitable analytical techniques, depending on the specific values of Ryax, k, and 1.

Carbon sequestration refers to the process of capturing and storing carbon dioxide from the atmosphere, primarily
through natural processes (e.g., photosynthesis in plants and trees) or engineered solutions (e.g., carbon capture and storage
technologies). The decay rate of carbon sequestration refers to the rate at which carbon is removed or stored from the
atmosphere and how this rate may vary over time due to environmental factors, land use changes, and technological
developments.

Similar to carbon emission, when considering the decay rate of the sequestration, the rate of change of carbon
sequestration S() over time ¢ is described by
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— =R(t) — AS(z 7
where S(¢) denotes the amount of carbon sequestered (removed from the atmosphere) at time 7, R(¢) is the carbon
sequestration rate at time ¢, and A is the decay rate or loss rate of carbon sequestration due to processes like carbon
release from storage.

3.3 Modeling of carbon credits with carbon balance

Modeling carbon credits involves quantifying the reduction or removal of greenhouse gases (GHGs) to mitigate
climate change. Carbon credits represent the unit of measurement for these reductions or removals, typically measured
in metric tons of carbon dioxide equivalent (tCO,e) which is a measure of the effect of different greenhouse gases on the
climate. In essence, the net carbon balance determines whether an entity has a surplus (carbon credits) or deficit (carbon
debits) in greenhouse gas emissions compared to its emissions reduction and sequestration efforts, in which carbon credits
provide a means to incentivize and quantify activities that mitigate climate change by reducing net emissions or increasing
carbon removal from the atmosphere.

By introducing the carbon emission E(¢) and sequestration S(¢) into the balance, the net carbon balance at time ¢,
which determines the carbon credits, can be expressed as

B(t)=E(t) - S(t), (®)

Clt) = —2B(1) = ——F—, ©

where K is a scaling factor influenced by policy and market, representing the equivalence of carbon credits to metric tons
of COze. If the process of carbon dynamic is autonomous, then the balance accumulation can be formulated as

0= [P0 -k a1 (10)

where I'(¢) represents the net balance of emissions and sequestration up to time #. When considering the decay of the
emission and sequestration, the dynamics (4) and (7) need to be applied in carbon credit.

3.4 Carbon credit modeling orchestration

Carbon credit modeling orchestration involves integrating and analyzing various dynamic processes related to carbon
emission, sequestration, and credit accumulation. These models provide a comprehensive framework for modeling
the flow of carbon emissions, carbon sequestration, and the accumulation of carbon credits in environmental systems.
They are crucial tools for assessing carbon management strategies, guiding policy decisions, and ensuring environmental
sustainability.

To orchestrate carbon credit modeling effectively, we first define variables and dynamics by identifying key variables
such as carbon emission rates, sequestration rates, and credit accumulation rates, and construct a Coherent framework
based on the modeling of carbon emission, sequestration and credit as
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P(t)

dE(t)| |1 —vy E(r)

as(r) _[ 1 —l] R | (b
S(t)

c) = SW=E®) (12)

This framework formulates the system as a representation of the interactions between emission, sequestration, and
credits with the consideration of decay rates, external influences, and policy impacts. This orchestration models the
interactions between carbon emissions, sequestration, and credit accumulation to assess their interdependencies. It also can
be used to analyze how policy interventions, technological advancements, and natural variability impact carbon dynamics
over time. With the dynamic interaction, this framework can be used to forecast future carbon credit availability based
on different scenarios and policy implementations. By using insights gained from orchestration, we also can optimize
carbon credit trading mechanisms and enhance climate change mitigation efforts. Carbon credits are crucial in climate
change mitigation strategies as they incentivize reductions in greenhouse gas emissions and promote carbon sequestration
activities.

4. Kolmogorov anorld credit informed network ochestration
4.1 Kolmogorov-arnold representation

The Kolmogorov-Arnold representation (KAR) theorem states that any continuous multivariate function can be
expressed as a superposition of univariate functions. For a continuous function f(xj, x2, ..., x,), KAR asserts the
following representation:

=

SO, xo, ooy xn) =Y gilhi(xy), hi(x2), ..., hi(x,)), (13)

i=1

in which g; represents mappings that can take multiple inputs 4;, reflecting their dependence on the mappings, and N refers
to the number of mapping in the combination of functions, which can be finite or infinite.

With the superposition principle, KAR simplifies the representation of complex multivariate functions into a sum of
simpler univariate components of KAR. It simplifies the solving of complex differential equations by breaking them down
into simpler parts. In computational contexts, KAR reduces the computational complexity of high-dimensional problems
by decomposing them into lower-dimensional operations. It facilitates effective nonlinear approximations, where complex
relationships between variables can be approximated by simpler functions, aiding in interpretability and efficiency.

4.2 Minimal viable KACINO

Carbon Informed Neural Networks (CINNs) integrate carbon theories and constraints directly into a neural network
architectures to enhance predictive accuracy and model reliability in carbon applications. KACINO serves as a type of
Finance Informed Neural Networks (CINNs) with Kolmogorov-Arnold Representation (KAR), integrating carbon domain
knowledge and sophisticated mathematical frameworks to enhance the predictive capabilities and interpretability of carbon
models.

Consider a carbon system characterized by a set of differential equations representing carbon dynamics, such as
option pricing models or portfolio optimization:
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Flu(x, 1);x] =0, x€Q, re€l0, T, (14)

where % denotes the carbon differential operator, u(x, t) represents the carbon variable of interest (e.g., option price,
asset value), k includes parameters of the carbon model, Q represents the domain of carbon variables, [0, 7] denotes the
time period of interest.

In KACINO, the neural network ug(x, t) is constrcuted as a Kolmogrov Anorld Network (KAN) with parameters
0 to approximate the solution u(x, 7). Utilizing KAR, equation (13) can be represented as a network to reflect the
decomposition as

L, L
ug(x, 1) =Y gi o (Z hij, o(x;s t)) ; (15)
i=1 =

where g; ¢(-) and %;;, ¢(-) are learned by the network, L;, L are the number of the function units used in layers 1 and
2. By learning the parameters, KACINO that any continuous multivariate function can be decomposed into the sum of
univariate functions of linear combinations of the input variables.

In light of the absence of analytical solutions, the evaluation of the reliability of the derived approximate solution
necessitates the introduction of the concept of credit. This measure is quantified by establishing explicit criteria for the
understanding of the underlying mechanism and assessing the extent to which the approximate solution adheres to these
criteria. A straightforward approach involves defining credit through a loss function. The modeling credit is formulated
as the minimal loss, and the parameters 6, g; ¢(-) and /;; ¢(-) are optimized by minimizing the total loss function, which
can be formulated as

0~ :argrr}gin.;?(e), (16)

The loss function in the context of carbon constraints and system comprises several key components, including initial
value loss, boundary loss, and carbon governing loss.

.,2”(9) = ﬁnitial(e) +$b0undary(9) +$governing(9)a (17)

in which the initial value loss Zpitia1(0) ensures that the neural network’s prediction at the initial time r = 0 matches the
given initial condition; the boundary loss Z,oundary(0) ensures that the neural network solution satisfies the boundary
conditions of the carbon domain; the carbon governing loss Zyoveming €nforces adherence to the carbon models and
constraints.

The formulation of the loss function is crucial in developing a robust minimally viable KACINO. Integration of
convex learning mechanisms [81] ensure that all loss functions satisfy convex constraints related to Initial, Boundary,
and carbon considerations. The mean squared error (MSE) metric is particularly effective in this regard, as it precisely
measures the average disparities between estimated outputs and their true references, offering a straightforward and robust
framework for defining the loss function.

When confronted with a situation where the mechanism is partially understood yet lacks an analytical solution, we
infer through logical contradiction that any solution diverging from the known mechanism is inherently unreliable. This
approach gives rise to a modeling paradigm termed Credit Informed Modeling. In the context where the model takes the
form of a neural network, it specifically refers to a Credit Informed Neural Network (CINN).
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4.3 Generalization of deep KACINO

We can further generalise the KACINO neural network representation (15) to deeper cases. Let the first layer be
®;(-) =Y () and the second layer ®,(-) =Y g(-). The equation (15) can be represented as

Ly L,
ug(x, 1) =Y g o < hij, o (xj, f)) =®y0Pz (18)
i=1 =1
Dy =[g1(), &2(-), -+, &1, (*)] (19)
hii() hi2() o ()
ho 1(:)  ha2() -+ ho ()
o= T 5 (20)
hiy 1) iy 2() 0 iy, ()
T
2= [0, )00, 1) (1) Q1)
Similarly, ®; can be defined to perform the deep KACINO that can be formulated as
llg(X, t):@LodDL,l~--o<I>ko-~~oCI>lz, (22)
@ 1()  Pr20) 0 Pip()
D () Py 2() - Do p(0)
o= | P . (23)
CDLH]) 1) q)l/z~2('> chkﬂ,Lk(')

The general loss function can be formulated as a weighted measure of a series of sub loss functions .£;(0), which
can be formulated as

Z2(0) =) hZ(6), 24

Table 1 provides a comprehensive list of symbols utilized in the context of carbon modeling, as a reference of various
components related to carbon dynamics and neural network representations. The Kolmogorov Arnold Representation
employs univariate functions g; to decompose complex carbon systems into simpler, interpretable components, allowing
for a modular approach. Mappings /; define interactions among carbon physics, capturing nonlinear relationships essential
for carbon ecological modeling. The adjustable superposition of terms N enables the model to scale with data intricacies,
accommodating both simple and intricate relationships.

The carbon differential operator % formulates differential equations governing the dynamics of carbon variables
over time, while u(x, t) represents the core carbon variable of interest. The neural network model ug(x, t) leverages
machine learning to capture complex patterns and enhance predictive accuracy.
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Model parameters o are crucial for tuning and ensuring alignment with observed data, and the domain Q encompasses
all relevant variables. Finally, the time period [0, T facilitates temporal analysis, enabling researchers to evaluate trends
and impacts, particularly important for understanding climate change dynamics.

Table 1. List of symbols used in the carbon modeling context

Symbol Descriptio
gi Univariate functions in Kolmogrov Anorld Representation
hi Mappings that define how each univariate function interacts with each variable
N Number of terms in the superposition, which can be finite or infinite
F Carbon differential operator

u(x, t) Carbon variable of interest

ug(x, 1) Neurual Network Representation of the carbon variable of interest
o Parameters of the carbon model
Q Domain of carbon variables

[0, T] Time period of interest

By employing a combination of traditional mathematical representations and modern machine-learning techniques,
the models can effectively capture the nuances of interactions within carbon systems for quantitative analysis and
predictive simulations, contributing to more informed decision-making in environmental management and policy.

5. Case study: Carbon balance dynamics
5.1 KACINO for carbon balance

For balance, KACINO leverages the principles of carbon emission (4) and sequestration (7) while incorporating data-
driven neural network techniques to enhance prediction accuracy and model robustness. This case study illustrates how
KACINO can be employed to carbon balance effectively as a case in point for greenhouse gas (GHG) crediting program
application.

In the context of GHG credit, the KACINO model defines the carbon orchestration (CO) model through the
differential operator derived from the carbon balance differential equation. The CO equation can be expressed as:

fco=dD(t) —AG(t)dt =0, (25)
where
P(1)
|1 =y 0 0 _|E(1) _|E()
A=10 0 1 2al PO s CO= (ke
S(¢)

Matrix D(¢) represents the state of carbon dynamics, specifically the emissions E(¢) and sequestration S() at time
t. It captures the net effect of carbon emissions and storage. In contrast, G(¢) encapsulates the total carbon dynamics
involving emission rate P(t), emissions E(f), sequestration rate R(¢), and sequestration S(z). This vector serves as a
comprehensive representation of all contributing factors in the carbon cycle.

Volume 5 Issue 4|2024| 5045 Contemporary Mathematics



The coefficient A acts as a transformation matrix that relates the dynamics of the emissions and sequestration
represented in D(¢) to the broader dynamics captured in G(¢). The coefficients y and A are parameters that represent the
rates of interactions between the components of the carbon balance, defining how changes in production and respiration
influence emissions and storage

Thus, the equation (25) serves as the governing constraint for carbon balance in partial differential equation (PDE)
form, capturing the essential dynamics of carbon flows within the KACINO model.

By applying (22)-(24), we build the KACINO to learn the KAR to decompose the carbon orchestration of physics
D(G, t) using KAR into a series of simpler functions:

=

we(G, t) =) gi(hi(G), t) =~ D(G, 1), (26)

i=1

where g; are univariate functions, and /;(x) denote the mappings of these functions with respect to S and z, N refers to the
number of layers of the deep learning and 6 the parameters of the learning system. This decomposition allows for a more
granular and interpretable representation of the carbon balance dynamics. The neural network component of KACINO
is designed to learn the parameters of these univariate functions and their interactions. The network is trained using a
composite loss function that includes Initial Value Loss, Boundary Loss and Carbon Governing Constraint Loss. The
carbon governing constraint 10ss Zamon(0) is built based on the (25) as a constraint to enforce the CO PDE constraints
within the domain.

Based on (17), the corresponding initial value loss Znitai(0), boundary loss Z,oundary(6), and carbon governing
loss Ziarbon(0) can be formulated as follows

1 Ninit
Linitial (0) = Y g (xi, 0) —uo(xy)|?, 27
mit j—|
1 D 2
gboundary(e) = ﬁb Z |119(Xj, tj) *b(xj, tj)| ) (28)
=1
1Y
Learbon(0) = N Y [ Flug(xi, 1) Al (29)
[ k=1

In this context, Znitial(0) quantifies the difference between the neural network’s prediction at the initial time ¢ =
0, ug(x;, 0), and the known initial condition ug(x;) across Niy;; points. The boundary loss A undary(6) measures the
discrepancy between the predictions at boundary points ug (X, ;) and the known boundary conditions b(x;, ¢;), evaluated
over N, boundary points. Finally, the carbon governing loss Zahon(0) assesses how well the predictions satisfy the
carbon differential operator .%, with A representing the parameters of the carbon model, across Ny points used to enforce
the carbon constraints.

5.2 Governing loss for carbon orchestration

To mathematically model the governing loss for carbon dynamics using the CO model within a neural network
framework, we need to ensure that the network’s output adheres to the CO differential equation. The loss function should
penalize deviations from the CO model, thereby enforcing the carbon constraints.
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Let the neural network output for the call carbon balance be ug (G, ), where 6 denotes the network parameters. The
carbon governing loss can be constructed by computing the residual of the CO when applied to the network’s output. This
residual should ideally be zero across the domain of interest. The residual Z(G, t) is given by:

Z(G, t) = % —AG(t), (30)

The carbon governing 10ss -Z¢arpon can then be defined as the mean squared error of the residual over the sampled
points (G;, ;) in the domain:

1

N Z*(Gi, 1;), (31)

M=

«ipcarbon =
1

where N is the number of sample points. By integrating this carbon governing loss into the overall loss function of the
neural network, we ensure that the network’s output respects the carbon dynamics dictated by the CO model.

5.3 Initial condition for carbon balance

The initial value loss for carbon dynamics using a neural network ensures that the network’s output satisfies the initial
conditions of the option pricing model. For a carbon balance, the initial condition is determined by the payoff function at
the time of issuance (time r = 0).

If the carbon content in the land is saturated, then the system will no longer be able to absorb carbon, so it will take
its upper limit value Sk then the maximum will be Sk. The initial condition for a carbon sequestration balance att = 0 is
given by the:

S(G, 0) = min(S, Sk), (32)

where S(G, t) is the carbon sequestration, G is the underlying asset carbon dynamics, and Sk is the upper bound of the
sequestration dynamics. If considering the upper bound of carbon emission in a region, then the carbon dynamics presents
as a limited emission system, which means there is an upper limit Ex for the emission. Therefore, the initial condition for
a carbon emission balance at# = 0 is given by

E(G, 0) = min(E, Eg), (33)

The initial value loss Ziia ensures that the neural network output at 7 = 0 matches the initial condition min(E, Ek).
Mathematically, this loss can be defined as the mean squared error between the neural network’s predicted carbon balances
and the actual initial condition over a set of sampled carbon sequestration dynamics G;.

Let Dg = [Ek, Sk]T, D;i(t) = [Ei(t), Si(t)]" and ug(G, t) be the output of the neural network with parameters 0,
representing the carbon balance, and the initial loss can be formulated as

1 M

Linisal = 57 )., (0 (G, 0) —min(Di(0), D))’ (34)

=
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where M is the number of sampled carbon points G;.

5.4 Boundary loss for carbon dynamics

To mathematically model the boundary loss for carbon dynamics using a neural network, we ensure that the network’s
output satisfies the boundary conditions of the option pricing model. For a carbon balance, the boundary conditions are
determined by the behavior of the carbon balance as the underlying asset carbon dynamics approaches zero and infinity,
and at the expiration time.

The boundary conditions for a carbon balance include the zero boundary and the infinity boundary. For zero boundary,
as the underlying asset carbon G approaches zero, the carbon balance should also approach zero:

D(0,1)=0 Vi. (35)

For infinity boundary, as the underlying asset carbon dynamics G approaches infinity, the carbon balance should
asymptotically approach based on the dynamic processing during the emission and sequestration balance as min(D, Dg)
that

lim D(G, t) =min(D(t), Dg) Vt, (36)

G—o0

The boundary loss Z,oundary €nsures that the neural network output satisfies these boundary conditions. Mathematically,
this loss can be defined as the sum of the mean squared errors at the boundary points.
The zero boundary loss can be formulated as

No

1
gboundary, 0= ﬁ() Z (MG (0, ti))za (37)
i=1

where Ny is the number of sampled points #;. The infinity boundary can be formulated as

1 & .
Lhowdary, = = 1~ ., (uo(Gi, 1) —min(D; — D)), (38)

=1

where N.. is the number of sampled points G;.
The total boundary loss #,oundary i the sum of these individual losses:

o%oundary = D%oundary, o+ zboundary, oo- (39)

5.5 Implementation in the loss function

We collect the loss function results as a tensor ¢ that

L= [znitial %oundary, 0 %oundary, oo -=gcarbon]a (40)
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The corresponding weight for each loss is enclosed in a tensor ¢ that

o= [Ginitial Oboundary, 0 Oboundary, oo Gcarbon]a (41)

The total loss is obtained by

Dgefotal = GZT; (42)

The loss function (42) is convex because it is a quadratic function (sum of squares), and quadratic functions are
convex. Therefore, there exists at least one minimizer 6* such that £ (0*) < .Z(6) for all 6 in the parameter space
according to convex optimization theory.

6. Experiment and results
6.1 Experiment setting and implementation

In this section, we detail the experimental setup for evaluating the performance of our proposed KACINO framework
in the context of European call carbon. The key parameters and settings used in the experiments are outlined below in
Table 2.

Table 2. Parameter settings for carbon balance test

Parameter Value
Emission Upper Bound (Ek) 200
Emission Growth Rate (r) 0.05
Emission Decay () 0.05
Initial emission rate (Py) 10
Sequestration Upper Bound (Sk) 700
Maximum sequestration rate (Ryqx) 90
Sequestration growth rate (k) 0.1
Sequestration Decay (1) 0.05
Expiration (7') 10
Emission Range (E) E €0, 100]
Sequestration Range (5) S e [0, 100]
Time Range (r) tef0, T
Start time () 0
Number of Samples (Ngample) 10,000
Carbon Info Weight (Garpon) 0.1
Initial Value Weight (Giniriar) 1
Zero Boundary Weight (Gpoundary, 0) 1
Infinity Boundary Weight (Gpoundary, ) 1

The study generates sample data within specified asset prices and time ranges. Each data point includes the asset’s
carbon emission E, sequestration S, and the corresponding time . The CO model serves as the benchmark for the KACINO
training framework. The framework is trained using these data points, incorporating initial value, boundary, and carbon
governing losses to accurately model carbon dynamics.
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The evaluation compares the models’ loss, using metrics like mean squared error (MSE) to assess accuracy and
robustness according to the given governing rules. This setup aims to validate KACINO’s effectiveness in carbon balance
computation, showcasing its potential in carbon modeling and risk management. To further validate the effectiveness of
the KACINO model, we compare its performance with CINNO REG [31-33], CINNO FNN [29, 30, 82, 83], CINNO
DNN [34, 35, 84], CINNO MLP [36, 37, 85], and CINNO GRU [25-28] as baselines under the same experiment setting.
The following results show the performance after training with 5,000 epochs.

6.2 Results

In this section, we present the results of our KACINO-based approach to carbon dynamics.

Figure 1 illustrate the learning results as the outcomes of the KACINO system following 5,000 training epochs,
conducted under the conditions specified in Table 2. The results represent the solutions to the underlying partial differential
equations (PDEs) that govern the processes of carbon emissions and sequestration, incorporating relevant initial and
boundary conditions.

In this context, the “Time of Cycle” corresponds to the variable ¢, reflecting the temporal evolution of the system. The
designated point values, referred to as “Spot E” and “Spot S”, represent the specific values of emission and sequestration
at designated spatial locations and times. The calculations of emissions and sequestration are informed by the extensive
knowledge encapsulated within the KACINO model, which synthesizes various factors that influence carbon dynamics.

These calculations adhere to the constraints outlined in equation (17), thereby ensuring that the resulting solutions
are consistent with the physical principles governing the carbon cycle.

Table 3 provides an evaluation of six different methods-CINNO DNN, CINNO FFN, CINNO GRU, CINNO MLP,
CINNO REG, and KACINO-over 5,000 epochs, focusing on Total Loss and Sequestration. The metrics provided
include the mean, standard deviation (std), minimum (min), and maximum (max) values. This analysis offers a detailed
comparative assessment of these methods based on the performance metrics.

Figures 2 and 3 present the solutions derived from various methods after 5,000 training epochs. The results indicate
that KACINO has achieved more comprehensive solutions for carbon emission and sequestration when compared to the
other methods under the same training conditions. This superiority suggests that KACINO is more effective in capturing
the underlying dynamics of the partial differential equations (PDEs) governing these processes.

The enhanced performance of KACINO may be attributed to its structural design, which enables better adaptation
to the complexities inherent in carbon dynamics. In contrast, the other methods have not yet reached a comparable level
of solution completeness, highlighting potential limitations in their ability to model the intricate relationships within
the carbon emission and sequestration frameworks. These findings underscore the importance of selecting appropriate
computational structures when addressing complex PDEs in environmental applications.

We also analyze the convergence of CINNO models during the training process. All the loss function values
are monitored over successive training iterations. Figures 4 and 5 show the trajectories loss functions during training.
KACINO shows rapid convergence, with the stabilizing cross-all loss functions, reflecting the efficiency of the KACINO
approach in training neural networks for carbon applications.

Table 3 shows the evaluation of six different methods-CINNO DNN, CINNO FFN, CINNO GRU, CINNO MLP,
CINNO REG, and KACINO-over 5,000 epochs, focusing on Total Loss and Sequestration. Metrics provided include
mean, standard deviation (std), minimum (min), and maximum (max) values. This analysis offers a detailed comparative
assessment of these methods based on these performance metrics.

Table 4 presents performance metrics of different methods over 5,000 epochs in governing Loss. It can be seen in
Table 4 that the KACINO model outperforms existing deep CINN approaches in terms of accuracy within the limited
training epochs.
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Figure 5. Overall comparison of loss among CINNOs on emission

6.3 Emission analysis

CINNO REG achieves the lowest mean total loss of 3.82 x 10, demonstrating superior average performance in
minimizing total loss compared to other methods. This value is significantly lower than those of CINNO DNN and CINNO
FFN, indicating mean total losses of 9.01 x 103 and 9.41 x 10, respectively. Although CINNO DNN and CINNO FFN
are competitive, they are less efficient in minimizing total loss compared to CINNO REG. On the other hand, KACINO
exhibits a considerably higher mean total loss of 2.68 x 10%, indicating a significant performance gap compared to the
CINNO methods

Table 3. Total loss stats with 5,000 epochs

Emission CINNODNN CINNOFFN CINNOGRU CINNOMLP CINNO REG KACINO

mean 9.01 x 103 9.41 x 10 1.07 x 10* 1.03 x 10* 3.82 % 10° 2.68 x 108
std 7.84 x 10? 7.66 x 10? 4.08 x 10! 3.30 x 10? 3.26 x 102 1.77 x 1010
min 7.96 x 103 8.30 x 10 1.05 x 10* 9.74 x 103 3.31x 10 4.82 x 100
max 1.11 x 10* 1.11 x 10* 1.08 x 10* 1.10 x 10* 4.67 x 10° 1.26 x 10'2
Sequestration CINNODNN  CINNOFFN CINNOGRU CINNOMLP CINNOREG  KACINO
mean 7.93 x 10° 7.67 x 10° 8.39 x 10° 8.26 x 10° 7.83 x 10° 1.67x 103
std 3.40 x 10* 4.97 x 10* 3.79 x 103 1.08 x 10* 4.00 x 10* 1.17 x 101
min 7.21 x 10° 6.88 x 10° 8.22 x 10° 7.95 % 10° 7.03 x 10 5.09 x 10!
max 8.51 x 10° 8.52 % 10° 8.53 x 10° 8.51 x 10° 8.48 x 10° 8.32 % 106

However, despite KACINO’s higher mean total loss, it demonstrates remarkable convergence capabilities. The high
standard deviation (1.77 x 10'°) observed in KACINO, while indicating variability, also reflects its robustness in rapidly
reducing loss values over time. KACINQO’s ability to quickly bring the loss back towards zero, regardless of initial system
initialization, highlights its effectiveness in reaching optimal solutions faster and more stably. This characteristic allows
KACINO to recover from suboptimal initial conditions and converge to minimal loss levels efficiently.

In comparison, CINNO GRU shows the lowest standard deviation (4.08 x 10'), indicating its stable performance in
total loss across epochs as an advantageous application inconsistent outcomes. CINNO REG and CINNO MLP achieve
lower minimum total losses (3.31 x 10 and 9.74 x 103, respectively) compared to other methods, but their maximum total
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losses are relatively higher, with CINNO REG reaching 4.67 x 10> and CINNO MLP reaching 1.10 x 10*. KACINO’s
extensive range in total loss values, with a minimum of 4.82 x 10° and a maximum of 1.26 x 10'2, underscores its
variability. Nonetheless, the KACINO framework’s capacity to achieve rapid and effective convergence demonstrates its
superior ability to quickly stabilize performance and reach optimal solutions, regardless of initial performance challenges.

In terms of Governing Loss, CINNO REG exhibits the lowest mean emission Governing Loss at 1.22 x 10> among
the methods evaluated, indicating superior average performance in minimizing this metric. This is closely followed by
CINNO FFN with a mean loss of 1.23 x 103 and CINNO DNN with 1.35 x 103. The other CINNO variant, CINNO
GRU and CINNO MLP, show mean losses of 1.32 x 103 and 1.33 x 103, respectively, which are slightly higher but still
competitive within the evaluated methods.

CINNO DNN shows the lowest standard deviation (1.35 x 10'), which reflects its relatively stable performance
across epochs. CINNO GRU and CINNO MLP also demonstrate low standard deviations (1.19 x 10! and 1.17 x 10!,
respectively), indicating consistency in their loss performance. Conversely, CINNO FFN and CINNO REG have higher
standard deviations (6.95 x 10" and 7.84 x 10'), suggesting greater variability in their performance. The minimum
governing Loss values are relatively close across the CINNO methods, with CINNO FFN and CINNO REG achieving the
lowest minimum values of 1.08 x 10°. CINNO DNN and CINNO MLP have slightly higher minimum losses (1.30 x 10%).

KACINO’s minimum governing Loss (9.43 x 10°) is substantially lower but comes with a significantly higher
maximum value (3.29 x 10'%). 1t also exhibits an exceptionally high standard deviation (4.62 x 10'%) Despite the
significantly higher mean Governing Loss of 6.97 x 103 observed for KACINO, it is noteworthy for its rapid convergence
to minimal loss values. KACINO demonstrates strong convergence properties, achieving near-minimal losses relatively
quickly after 200 epochs, following its initially high loss values. This indicates that while KACINO starts with a higher
loss, its ability to converge efficiently over time is a key strength, highlighting its potential effectiveness in scenarios
where rapid improvement and convergence are critical.

6.4 Sequestration analysis

KACINO demonstrates an exceptionally high mean sequestration of 1.67 x 10'3, significantly surpassing the other
methods. This high mean value indicates KACINO’s substantial capacity in sequestration, highlighting its superior
performance in this regard. The CINNO methods, including CINNO DNN and CINNO FFN, have comparable but lower
mean sequestration values, making them competitive yet unable to match KACINO’s capacity.

Although KACINO’s mean sequestration is notably high, it also exhibits the highest standard deviation in sequestration
(1.17 x 101), reflecting considerable variability in its performance. This variability is contrasted by CINNO GRU,
which shows the lowest standard deviation (3.79 x 103), indicative of more consistent performance across epochs. Such
consistency is advantageous in applications demanding reliable and steady results.

Moreover, KACINO displays a broad range of sequestration values, with minimum and maximum values spanning
from 5.09 x 10! to 8.32 x 10'°, revealing the greatest variability among the methods. Despite this variability, it is
noteworthy that KACINO achieves rapid convergence to minimal loss values, demonstrating its effective convergence
capabilities. In contrast, CINNO DNN, CINNO FFN, and other CINNO methods show narrower ranges and more
consistent sequestration values, with CINNO GRU reaching the highest maximum sequestration of 8.53 x 10°. Thus,
while KACINO’s metrics are higher, its robust convergence to minimal loss illustrates its strong performance improvement
over time.

In terms of the governing loss in sequestration, KACINO stands out with a remarkably high mean sequestration
value of 1.80 x 10'2. This performance is orders of magnitude higher than that of the CINNO methods, which have mean
sequestration values ranging from 7.56 x 10° to 8.30 x 10°. Among the CINNO methods, CINNO GRU and CINNO
MLP show slightly higher mean sequestration values (8.30 x 103 and 8.16 x 10°, respectively) compared to CINNO
DNN, CINNO FFN, and CINNO REG.

KACINO also displays the highest standard deviation in sequestration governing loss (1.26 x 10'%), reflecting
considerable variability in its performance. In contrast, CINNO GRU shows the lowest standard deviation (3.79 x 10%),
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indicating greater stability in its sequestration performance. CINNO DNN and CINNO MLP have moderate standard
deviations (3.47 x 10* and 1.10 x 10%, respectively), while CINNO FFN and CINNO REG exhibit higher variability.

KACINO demonstrates the widest range in sequestration governing loss values, with a minimum of 3.44 x 10? and
a maximum of 8.98 x 10", This broad range underscores its highly variable performance. Conversely, the CINNO
methods have narrower ranges, with their maximum sequestration values reaching up to 8.43 x 10° for CINNO GRU.
The minimum values for the CINNO methods are more consistent, ranging from 6.76 x 103 to 8.12 x 10°.

6.5 Comparative discussion

KACINO shows impressive performance in sequestration but with substantial variability. This high performance in
magnitude comes with significant unpredictability, This suggests that KACINO may be effective in specific contexts, but
its overall reliability is questionable.

CINNO REG stands out due to its low average total loss and stable performance with a relatively low standard
deviation. However, its maximum total loss is higher than other CINNO methods, suggesting that while it performs
well on average, it may encounter higher losses in some cases. CINNO GRU and CINNO FFN offer more consistent
performance in both total loss and sequestration. This stability makes them suitable for applications where dependable
and predictable results are essential. CINNO DNN and CINNO MLP exhibit moderate performance, being outperformed
by CINNO REG in total loss and lagging behind KACINO in sequestration.

7. Conclusion

In this paper, we propose a KACINO framework for carbon dynamic system orchestration. Insights from the
orchestration framework enable policymakers, businesses, and stakeholders to derive actionable recommendations. These
recommendations are crucial for optimizing carbon credit utilization and advancing climate goals. Strategies may include
implementing policies that incentivize emission reductions, promoting investments in carbon sequestration projects, and
fostering innovative technologies to enhance efficiency in carbon trading mechanisms.

The orchestration framework enables stakeholders to assess the effectiveness of different interventions. This
analytical rigor supports evidence-based policy formulation and strategic planning aimed at mitigating climate change
impacts and fostering sustainable development pathways. Thus, carbon credit modeling orchestration enhances our
understanding of carbon markets and empowers decision-makers with insights to navigate toward a more sustainable
and resilient future.

Table 4. Governing loss stats with 5,000 epochs

Emission CINNODNN CINNOFFN CINNOGRU CINNOMLP CINNO REG KACINO

mean 1.35x 103 1.23x 10 1.32x 103 1.33x 103 1.22x 103 6.97 x 108
std 1.35x 10! 6.95 x 10! 1.19 x 10! 1.17 x 10! 7.84 x 10! 4.62 x 1010
min 1.30 x 10 1.08 x 10 1.27 x 103 1.30 x 10 1.08 x 103 9.43 x 100
max 1.39 x 103 1.36 x 103 1.36 x 10 1.39 x 103 1.37 x 103 3.29 x 1012

Sequestration ~CINNO DNN  CINNO FFN CINNO GRU CINNOMLP CINNO REG KACINO

mean 7.82 % 10° 7.56 x 10° 8.30 x 10° 8.16 x 10° 7.72 x 10° 1.80 x 10'2
std 3.47 x 10* 5.05 % 10* 3.79 x 103 1.10 x 10* 4.09 x 10* 1.26 x 10
min 7.09 x 10° 6.76 x 10° 8.12x 10° 7.84 x 10° 6.91 x 10° 3.44 x 107
max 8.41 x 10° 8.42 % 10° 8.43 x 10° 8.42 x 10° 8.39 x 10° 8.98 x 1013
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