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Abstract: This research investigates the impact of first-order slip conditions on the peristaltic flow of a pseudoplastic
fluid in the presence of a magnetic field, taking into the effects of suction and injection. Pseudoplastic fluids, which are
shear-thinning, undergo a reduction in viscosity as shear rate increases, as opposed to Newtonian fluids, which maintain
a constant viscosity regardless of applied shear stress. This characteristic is commonly found in fluids such as blood,
polymer solutions, and certain industrial slurries, making them well-suited for applications where efficient flow under
stress is critical. The analytical solution for frictional force and pressure rise was derived using perturbation techniques,
assuming a long wavelength and low Reynolds number. Matrix Laboratory (MATLAB) simulations provided visual
insights into how key parameters such as the magnetic field strength M, the slip parameter α , and the suction and injection
parameter k influence velocity profiles, pressure distribution, and friction forces. The findings indicate that a magnetic
field M increases the fluid’s pumping efficiency, while a higher slip parameter α enhances the perturbation parameter
Γ. Additionally, increasing the suction and injection parameters improves the overall pressure gradient, leading to more
effective fluid transport across the system.
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Symbols and abbreviations
b Amplitude
ϕ Amplitude ratio
α Slip parameter
a Half width of the channel
P Pressure
M Magnetic parameter
Re Reynolds number
Sxx, Sxy, Syy Stress component
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k Suction/injection parameter
Γ Perturbation parameter
t Time
v0 Velocity
(Ū , V̄ ) Velocity components in lab frame
(ū, v̄) Velocity components in wave frame
µ Viscosity
δ Wave
λ Wavelength
c Wavespeed

1. Introduction
Peristaltic transport, a mechanism where fluid is propelled through a channel by progressive wave-like contractions

along the walls, plays a critical role in both biomedical and industrial processes. The dynamics of this transport become
more intricate when considering pseudoplastic (shear-thinning) fluids, such as biological fluids or polymer solutions, due
to their non-Newtonian nature. Furthermore, the presence of a first-order partial slip condition at the walls significantly
impacts flow characteristics.

The introduction of permeable walls with suction and injection adds another layer of complexity. Suction and
injection are often used to control fluid influx and outflux in channels, which is vital for regulating flow rate and
pressure in applications like dialysis or industrial filtration systems. Together, these factors-pseudoplasticity, MHD effects,
partial slip, and wall permeability with suction/injection-create a complex interplay that directly impacts the efficiency of
peristaltic transport systems.

Ali et al. [1] explored the effects of rotational forces on peristaltic flow for pseudoplastic fluids, demonstrating how
rotation influences the velocity and pressure distributions in a wavy channel. While their study focuses on rotational
effects, our study builds upon similar fluid dynamics principles but focuses specifically on the impact of first-order partial
slip conditions on peristaltic transport. The results of our study provide further insight into how boundary slip conditions,
rather than rotational forces, can alter the flow behavior and pressure drop in pseudoplastic fluids.

Ramesh et al. [2] explored the MHD peristaltic flow of pseudoplastic fluids in a vertical asymmetric channel with
a porous substrate, incorporating heat and mass transfer effects. They examined the complexities induced by the porous
medium and shear-thinning fluid behavior. In this study, however, also considers MHD effects but in a simpler straight
channel configuration, focusing on the impact of first-order slip conditions rather than porous media. This contrast
highlights how different channel geometries and boundary conditions affect fluid dynamics in MHD peristaltic transport.

Noreen et al. [3] examined the combined effects of peristaltic and electroosmotic pumping in pseudoplastic fluids.
Their work emphasized how these two pumping mechanisms influence fluid behavior in a non-Newtonian fluid. Unlike
their focus on electroosmotic effects, In this paper concentrates on MHD peristaltic flow and the impact of boundary slip.
While both studies investigate non-Newtonian fluid flow, we delve deeper into the effects of slip conditions in an MHD
framework, which is absent in Noreen et al.’s research.

Jayavel et al. [4] focused on electroosmotic flow of pseudoplastic nanofluids under peristaltic pumping, exploring
the combined effects of electrokinetic forces, fluid rheology, and wall characteristics. Their study is particularly relevant
to microfluidic applications and biomedical devices. In this study diverges by examining MHD effects and first-order
slip conditions on pseudoplastic fluid flow, without considering electroosmotic forces. This difference marks our work as
more focused on the magnetohydrodynamic aspects of peristaltic flow, with implications for fields like drug delivery and
filtration systems.

Akhtar et al. [5] investigated the peristaltic flow of a Rabinowitsch fluid in an elliptical duct, focusing on thickening
and shear-thinning behaviors and the effects of duct shape and heating. Their use of special polynomials to solve the
governing equations contrasts with our analytical approach, which uses perturbation methods. While both studies consider
shear-thinning fluids, in this research examines the influence of first-order slip conditions on MHD peristaltic flow,
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offering insights into how slip at the boundaries affects flow in straight channels, a factor not considered by Akhtar
et al.

Choudhari et al. [6] conducted a comprehensive study on the integration of electroosmotic andmagnetohydrodynamic
effects in peristaltic transport, with particular emphasis on physiological systems and biomedical applications. Their work
highlights the synergy between electrokinetic and magnetic forces in enhancing flow control, providing a strong basis for
optimizing fluid transport in microfluidic devices. Although their study encompasses electroosmotic andMHD effects, the
present study focuses exclusively on the first-order slip condition in peristaltic transport of pseudoplastic fluids, with the
aim of understanding its impact on pressure rate, velocity profiles, and frictional forces. This distinction allows our work
to specifically address boundary-layer interactions in non-Newtonian flows under suction and injection effects, providing
complementary insights into fluid dynamics in biomedical contexts.

Gudekote et al. [7] extended the study of peristaltic motion to non-Newtonian fluids in irregular channels,
incorporating porous and convective boundary conditions. Their work addressed the impact of permeability and elasticity
on fluid movement under peristaltic waves. In this research differs by focusing on first-order slip conditions rather than
convective or porous boundaries. Additionally, while Gudekote et al. explored the effects of channel irregularity, we
consider a symmetric channel with suction and injection, making our analysis more relevant to practical applications such
as biomedical systems.

Goud et al. [8] investigated the influence of suction and injection on the peristaltic transport of pseudoplastic fluids
between permeable boundaries. Their study used low Reynolds number and long wavelength assumptions, to simplify
the governing equations. While both studies incorporate suction and injection. This research is different in addressing
the slip condition’s, MHD effects role in modulating velocity and pressure distributions, providing new insights into flow
dynamics in channels with slip at the walls.

Rajashekhar et al. [9] examined the unsteady peristaltic flow of a Rabinowitsch fluid in a non-uniform channel,
focusing on temperature-dependent viscosity and thermal conductivity. In this study diverges from this work by excluding
temperature-dependent properties and focusing instead on the effects of slip and suction/injection. While Rajashekhar et
al. analyze thermal effects, we provide a detailed investigation into velocity and pressure changes under slip conditions
in pseudoplastic fluids.

Misra et al. [10] focused on the mechanics of fluid flow in biological systems, particularly in digestion and blood
circulation, using non-Newtonian fluid models. They analyzed the role of peristalsis in fluid transport within biological
channels. In this work builds on this by extending the non-Newtonian fluid analysis to pseudoplastic fluids with suction
and injection, offering additional insights into industrial and biomedical systems where wall slip and suction/injection are
critical factors.

Shah et al. [11] extends the understanding of Williamson fluid flow by incorporating bio-convection and magnetic
field effects, using machine learning for fluid prediction and optimization. This study provides a detailed analysis of
peristaltic transport in pseudoplastic fluids under slip, suction, and injection, offering analytical insights.

Geetha et al. [12] studies the non-Newtonian fluids and MHD effects, but they differ in fluid type (Williamson
vs pseudoplastic), boundary conditions (peristaltic transport vs boundary layer flow), and focus (heat transfer vs
pressure/velocity distributions). But this study is unique in its focus on peristaltic transport and slip conditions, while
Geetha et al. deal with heat transfer and boundary layer effects in a porous medium.

Hasona et al. [13] explored the effects of varying thermal and electrical conductivity on pseudoplastic nanofluids
in asymmetric, non-uniform channels. In this study, however, does not incorporate thermal and electrical conductivity
variations but focuses on the influence of slip conditions and MHD effects on pseudoplastic fluid flow. This distinction
marks a clear difference in the physical factors considered in both studies, with ours offering a more focused exploration
of boundary conditions and fluid transport.

Rashid et al. [14] studied the peristaltic flow ofWilliamson fluid in a curved channel under an induced magnetic field.
While they explored the Lorentz forces in the fluid dynamics, in this study does not specifically examine the Williamson
fluid but instead focuses on pseudoplastic fluids under MHD conditions. Furthermore, our paper delves into the effects
of first-order slip boundary conditions, a factor not examined in Rashid et al.’s work.

Volume 6 Issue 1|2025| 1093 Contemporary Mathematics



Moatimid et al. [15] expands the understanding of MHD flow instabilities in viscoelastic Bingham fluids, offering
analytical insights into nonlinear stability mechanisms. The study focuses on the dynamics of peristaltic transport in
pseudoplastic fluids, providing analytical solutions for practical scenarios involving suction, injection, and slip.

Babu et al. [16] investigated the effects of wall suction and injection on peristaltic flow in porous media. While they
considered porous channels, the study looks at peristaltic transport with suction and injection effects in a straight channel,
under MHD conditions, with a focus on first-order slip boundary conditions. The comparison is insightful as both studies
examine flow modifications through boundary conditions, though in different geometries and fluid types.

Abbas et al. [17] examined the influence of wall injection and suction, Lorentz forces, and chemical reactions
on the peristaltic flow of Jeffrey fluid. In paper focuses on a similar boundary condition setup (suction and injection)
but specifically investigates the MHD peristaltic flow of pseudoplastic fluids under slip conditions, without considering
chemical reactions. This difference in the scope of physical factors highlights our unique contribution to the field.

Kumar et al. [18] studied the effect of total slip on peristaltic flow in tapered channels, demonstrating the impact
on velocity profiles and pressure distributions. While their work focuses on tapered geometries, our study uses a straight
channel configuration, emphasizing how first-order slip conditions influence fluid transport in a simpler geometry. The
slip conditions in both studies are similar, but the channel shape and flow characteristics differ.

Abbas et al. [19] examinedMHD slip flow in a diverging tube, focusing on entropy production. Their study provides
insights into how entropy generation is affected by magnetic fields and slip effects, while this paper focuses on peristaltic
flow in a straight channel under MHD conditions with slip boundary conditions. While both studies explore entropy and
flow efficiency, the geometries and fluid models differ, highlighting different aspects of flow dynamics.

Aman et al. [20] studied second-grade fluid flow under convective boundary conditions with suction and injection.
Unlike Aman et al., who analyzed second-grade fluids, the study focuses on pseudoplastic fluids under MHD and slip
conditions. This difference in fluid type and boundary condition setup contributes to a more specialized understanding of
peristaltic flow under MHD conditions and slip effects.

A gap in the literature is filled by first simulating the physical solution and then addressing it with typical perturbation
methods to obtain solutions that are analytical.

Peristaltic transport, characterized by wave-like contraction of the channel walls, is fundamental in applications
such as gastrointestinal fluid flow, reproductive systems, and industrial transport mechanisms. This paper focuses on a
specialized scenario involving pseudoplastic fluids, slipconditions, and magnetohydrodynamics (MHD), assuming a long
wavelength and low Reynolds number flow.

1.1 Pseudoplastic behavior

Pseudoplastic fluids are Non-newtonian, meaning their flow properties differ from those of simple newtonian fluids
like water. Specifically, Pseudoplastic fluid exhibit shear thinning behavior, where viscosity decreases as the shear rate
increases. This behavior is common in biological fluids (eg., blood, synovial fluid) and industrial suspensions (eg., paints,
polymer solutions) such properties are critical to understanding and predicting fluid motion in biomedical devices and
industrial processes, as shear-thinning can significantly alter the velocity profile and energy requirements for flow.

1.2 Slip condition

The classical no-slip boundary condition assumes that the fluid at the wall moves with the wall’s velocity, implying
zero relative motion. However in many real-world systems, this assumption breaks down due to surface roughness, porous
walls, or coatings (like lubricants or mucus). In such cases, the slip condition allows for partial movement of fluid at the
boundary. This study incorporates the first-order partial slip condition, which quantitavely measures the relative slip
between the fluid and the channel walls. Incorporating slip conditions is essential for analyzing flows in microscale and
nanoscale systems, such as lab-on-chip devices or microfluidic channels, where boundary effects dominate.
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1.3 Magnetohydrodynamic (MHD) effects

When an electrically conducting fluids moves through a maagnetic field, electromagnetic forces are generated.
These forces influence the flow dynamics, either suppressing or enhancing motion depending onthe alignment of the
magnetic field and the flow. In industrial processes. MHD effects are used for purposes such as controlling molten
metal flow or stabilizing plasma in fusion reactors. In biomedical applications, magnetic fields are employed to stear
magnetic nanoparticles or fluids for targeted drug delivery. This study examines how the magnetic field interacts with the
pseudoplastic fluid flow under peristaltic motion, providing insights into scenarios where such control mechanisms are
relevant.

1.4 Physical relavance of the study

By combining these phenomena-pseudoplastic behavior, partial slip conditions, and MHD effects. This study
addresses the complexities of peristaltic transport in both natural and engineered systems. The analytical solution
presented provides a framework for understanding how these parameters influence the velocity field, pressure difference,
and frictional forces. The findings are graphically illustrated, highlighting the impact of Non-newtonian characteristics
and boundary conditions on the system’s overall performance.

This comprehensive approach allows for the exploration of scenanarios ranging from biological processes, such as
nutrient transport in blood vessels, to engineering applications, such as nutrient transport in blood vessels, to engineering
applications, such as chemical transport in micro reactors. The inclusion of slip and magnetic effects broadens the
applicability of the study, making it valuable for designing efficient and controlled fluid transport systems.

2. Mathematical formulation
Consider the peristaltic transport of pseudoplastic fluid bounded by permeable walls of the channel width 2a. The

fluid is injected into the channel perpendicular to the lower permeable wall with a constant velocity (V0) and is sucked out
of the upper permeable wall with the same velocity (V0) as shown in Figure 1. For simplicity, we restrict our discussion
to the half width of the channel.

Figure 1. Physical model

The wall deformation is given by
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Y = H(X , t) = a+bcos
2Π
λ

(X − ct). (1)

Here, λ represents the wavelength, c denotes a wave speed, and b refers to the amplitude.
The transformation from fixed frame to wave frame are introduced as follows:

u =U − c, y = Y, x = X − ct, p(x, y) = P(X , Y, t), v0 =V0.

In order to write the governing equations and the boundary conditions in dimensionless form, the following non-
dimensional quantities are introduced by Goud and Reddy [8].

ū =
u
c
, x̄ =

x
λ
, ȳ =

y
a
, v̄0 =

v0

c
, δ =

a
λ
, t̄ =

ct
λ
, p̄ =

a2 p
µcλ

, p̄i =
b
a
, Re =

caρ
µ

, µ1 =
µ1c
a

,

S̄i j =
aSi j

µc
(for i, j = 1, 2, 3, ...), λ1 =

λ1c
a

, ᾱ =
α
a
, u =

∂ψ
∂y

, v =−δ
∂ψ
∂y

, M =

√
σc
µ

B0a.

δ denotes the wave amplitude, ψ the stream function, and Re the Reynolds number, non-dimensional relaxation times by
λ1 and µ1, and the slip parameter by α .

Under the assumptions of long wavelength and low Reynolds number (after dropping bars), we get

∂ p
∂x

=
∂Sxy

∂y
− k

∂u
∂y

−M2(u+1). (2)

∂ p
∂y

= 0. (3)

Here

k = Re.v0, (4)

Sxx = (λ1 +µ1)Sxy

(
∂u
∂y

)
.

Syy = (−λ1 +µ1)Sxy

(
∂u
∂y

)
.

Sxy =

∂u
∂y

1+Γ
(

∂u
∂y

)2 . (5)
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The corresponding dimensionless boundary conditions in wave frame of reference are given by

∂u
∂y

= 0 at y = 0. (6)

u =−1−α
∂u
∂y

at y = h = 1+ϕcos2πx. (7)

The volume flow rate q in a wave frame of reference is given by

q =
∫ h(x)

0
udy. (8)

The instantaneous flux Q(X , t) in a fixed frame is.

Q(X , t) =
∫ h

0
UdY =

∫ h

0
(u+1)dy = q+h. (9)

The time average flux Q̄ over one period T (where T =
λ
c
) of the peristaltic wave is defined by

Q̄ =
1
T

∫ T

0
Qdt =

∫ 1

0
(q+h)dx = q+1. (10)

3. Analytically solved by using perturbation method
The equation (4) is non-linear. We linearize this equation in terms of Γ, the small relaxation parameter for the flow.

So we expand u, p and q as

u = u0 +Γu1 +O(Γ2)

p = p0 +Γp1 +O(Γ2)

q = q0 +Γq1 +O(Γ2). (11)

Substituting (11) in the equation (2) and in the boundary conditions (6) and (7) and equating the coefficient of like
powers of Γ to zero and neglecting the of Γ2 and higher order, we get the following equations.

Equation of order Γ0

d p0

dx
=

∂ 2u0

∂y2 − k
∂u0

∂y
−M2(u0 +1). (12)
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and the respective boundary conditions are

∂u0

∂y
= 0, at y = 0. (13)

u0 =−1−α
∂u0

∂y
, at y = h. (14)

Using boundary conditions (13) and (14) to solve equation (12) yields the velocity equation.

u0 =−1+
[

P0

M2

][
ec1y

k1
+

ec2y

k2
−1

]
. (15)

Here

c1 =
k+

√
k2 +4M2

2
,

c2 =
k−

√
k2 +4M2

2
.

k1 = ec1h[1+αc1]−
c1

c2
ec2h[1+αc2].

k2 = ec2h[1+αc2]−
c2

c1
ec1h[1+αc1].

The volume flux q0 is given by

q0 =
∫ h

0
u0dy =−h+

[
P0

M2

][
ec1h −1

k1c1
+

ec2h −1
k2c2

−h
]
. (16)

From equation (16) we have p0 =
d p0

dx
.

d p0

dx
= P0 =

M2(q0)

k3
+h (17)

Here

K3 =

[
ec1h −1

k1c1
+

ec2h −1
k2c2

−h
]
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Equation of order Γ1

d p1

dx
=

∂ 2u1

∂y2 − ∂
∂y

[
∂u0

∂y

3]
− k

∂u1

∂y
−M2(u1 +1) (18)

and the respective boundary conditions are

∂u0

∂y
= 0, at y = 0. (19)

u0 =−1−α
∂u0

∂y
, at y = h. (20)

Evaluating equation (18) with boundary conditions (19) and (20) results in a velocity equation.

u1 =

[
− P1

M2 −1
][

ec1y

k1
+

ec2y

k2
−1

]
+

[
P0

M2

]3

k17

[
ec1y

k1
+

ec2y

k2

]

−
[

P0

M2

]3

k12ec1y +

[
P0

M2

]3 [
(3k4)k5e3c1y +(3k6)k7e3c2y +(3k8)k9e2c1yec2y

+(3K10)k11ec1ye2c2y
]

Here,

k4 =
c4

1

k3
1

k5 =
1

3(3c2
1 − kc1 − (1/3)(M2))

k6 =
c4

2

k3
2

k7 =
1

3(3c2
2 − kc2 − (1/3)(M2))

k8 =
c2

1c2(2c1 + c2)

k2
1k2
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k9 =
1

(2c1 + c2)2 − k(2c1 + c2)−M2

k10 =
c1c2

2(c1 +2c2)

k1k2
2

k11 =
1

(c1 +2c2)2 − k(c1 +2c2)−M2

k12 = 3(3k4)k5 +3(3k6)k7
c2

c1
+2(3k8)k9c2 +2(3k10)k11c2

k13 = [1+αc1]

k14 = [1+α3c1]

k15 = [1+α3c2]

k16 = [1+α2c1c2]

k17 = k12k13ec1h − (3k4)k5k14e3c1h − (3k6)k7k15e3c2h

− (3k8)k9k16e2c1hec2h − (3k10)k11k16ec1he2c2h

The volume flux through each cross-section is given by

q1 =
∫ h

0
u1dy =

[
− P1

M2 −1
]

k3 +

[
P0

M2

]3

[k18 − k19 + k20] . (21)

Then,

k18 = k17

[
ec1h −1

k1c1
+

ec2h −1
k2c2

]

k19 = k12

[
ec1h −1

k1c1

]

k20 = (3k4)k5
e3c1h −1

3c1
+(3k6)k7

e3c2h −1
3c2

+(3k8)k9
e2c1h −1

2c1

ec2h −1
c2

+(3k10)k11
ec1h −1

c1

e2c1h −1
2c2
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From equation (21) we have

d p1

dx
= P1 =−q1

k3
M2 −1+

[
P0

M2

]3

[k18 − k19 + k20]. (22)

Substitute equation (17) and (22) in equation (11) and using the relation

d p0

dx
=

d p
dx

−Γ
d p1

dx

And neglecting greater than 0(Γ2) terms we get

u = −1+
[

P
M2

][
ec1y

k1
+

ec2y

k2
−1

]
+Γ

[
P

M2

]3

k17

[
ec1y

k1
+

ec2y

k2

]
−
[

P
M2

]3

k12ec1y

+Γ
[

P
M2

]3 [
(3k4)k5e3c1y +(3k6)k7e3c2y +(3k8)k9e2c1yec2y

+(3K10)k11ec1ye2c2y
]

Similarly,

d p
dx

= M2 (q+h)
k3

+1+Γ[(q+h)]3
[k18 − k19 + k20]

(k3)3 . (23)

In a wave frame, the dimensionless pressure increase and frictional force are

∆P =
∫ 1

0

d p
dx

dx. (24)

F =
∫ 1

0
h(−d p

dx
)dx. (25)

4. Result and discussion
We disscused the variation for the graph are shown by using MATLAB Software. In Figure 2 demonstrates that

magnetic parameter M represents the strength of the magnetic field in the governing equations. When the magnetic field
is strong (M is high), the fluid experiences a braking effect due to electromagnetic drag. This is especially significant in
conducting fluids (e.g., MHD flows). Increasing themagnetic parameterM increased the velocity profile. The propogation
field is impacted by the current produced by the movement of conductive fluids across the magnetic field. On the other
side, a body force known as the lorentz force, which affects fluid flow, is connected to the flow of an electric current
through a magnetic field. Figure 3 the parameter k represents suction and injection at the channel walls. Stronger suction
and injection increases the flow rate, enhancing the velocity profile. As k increases, the velocity magnitudes across the
channel increases. The velocity profile is calculated based on k, which affects leading to a steeper or more enhanced
profile for higher k. With increasing k, the velocity curve shifts upward, showing higher velocity magnitudes. Suction
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and injection has practical applications in controlling fluid flow inmedical devices, industrial channels, or heat exchangers.
This simulation helps visualize how adjusting k changes the velocity distribution.

Figure 2. The variation in velocity for various M with ϕ = 0.33, α = 0.15, Γ = 0.51, k = 0.28

Figure 3. The variation in velocity for various k with M = 0.58, Γ = 0.45, α = 0.28, ϕ = 0.75

From Figure 4 it has shown that as Γ increases, it reflects an enhancement in nonlinearity, boundary perturbations,
or fluid property changes. The effects of increasing Γ can be linked to velocity profile enhancement, a higher Γ amplifies
the impact of nonlinearity, leading to more pronounced velocity distributions. A higher Γ typically leads to increased
velocity near the center of the channel. Greater deviation in the velocity profile, showcasing enhanced transport capability,
reduced maximum pressure at the boundaries, which can lower energy consumption in fluid systems for pseudoplastic
fluids (Γ > 0), increasing Γ reflects stronger pseudoplastic behavior, leading to more complex flow characteristics. In real
world application peristalsis is influenced by the perturbation parameter Γ, especially for biological fluids (eg.: mucus
or chyme). Increasing Γ ensures efficient fluid transport and mixing, critical for drug delivery, artificial pumps, and
diagnostics. From Figure 5 as α increases, the velocity distribution within the channel becomes more prominent. This
is because the fluid’s movement is heavily influenced by the wave-induced motion. The maximum velocity increases
near the centre of the channel, while near the boundaries, the flow may experience higher shearing effects. In real world
application it is used in biomedical system in artificial organs (eg., heart-lung machines or dialysis pumps), increasing
α ensures stronger pumping, mimicking the natural motion of biological organs. Higher α values represent stronger
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peristaltic contractions, improving food transport in the intestines or aiding in the study of digestive disorders. From
Figure 6 the amplitude ratio ϕ is a key parameter in the study of peristaltic or wave-induced flow. When ϕ increases,
Enhanced peristaltic action the oscillations of the channel walls becomemore pronounced leading to stronger compression
and expansion of the fluid. The increase in ϕ amplifies the net forward motion of the fluid, enhancing the efficiency of
peristaltic pumping. This is beneficial for transporting fluids, especially in low reynolds number regimes or in viscous
fluid. In real world application artificial pumps in devices like blood pumps or dialysis machines, increasing ϕ enhances
the pumping efficiency, mimicking natural peristalsis. Larger ϕ values can be used to optimize drug transport in systems
involving oscillatory motion or peristaltic mechanisms.

Figure 4. The variation in velocity for various Γ with M = 0.58, k = 0.28, α = 0.28, ϕ = 0.75

Figure 5. The variation in velocity for various ϕ with Γ = 0.35, M = 0.61, k = 0.71, α = 0.25
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Figure 6. The variation in velocity for various α with M = 0.58, k = 0.28, Γ = 0.45, ϕ = 0.75

From Figure 7 with increasing M, the magnetic field dampens the fluid motion, reduces velocity, and increases
viscosity, which collectively results in a decrease in pressure value. The pressure rate fluctation for various values of
suction and injection parameter k is shown in Figure 8. It has been observed that while the value k is increased but the
pressure rate is decreased. As the perturbation parameter increases, the pumping rate tends to increase as well, as shown
in Figure 9. This suggests that during peristalsis, a pseudoplastic fluid experiences a greater pressure rise than a viscous
fluid. From the Figure 10 it has shown that pressure rate increases as the values of the amplitude ratio ϕ decreases. From
Figure 11 shows the variation in the slip value decreases the pressure rate. This means that the fluid slippage at the wall
reduces the maximum pressure against which the peristalsis works as a pump. From Figure 12-16 represents the frictional
force is just behavior to the pressure rate.

Figure 7. The difference of ∆p with Q for various M with ϕ = 0.4, α = 0.20, k = 0.30, Γ = 0.01
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Figure 8. The difference of ∆p with Q for various Γ with ϕ = 0.4, α = 0.20, k = 0.30, Γ = 0.01, M = 0.4

Figure 9. The difference of ∆p with Q for various k with ϕ = 0.4, α = 0.20, k = 0.45, Γ = 0.01, M = 0.4

Figure 10. The difference of ∆p with Q for various ϕ with α = 0.4, k = 0.3, Γ = 0.01, M = 0.4
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Figure 11. The difference of ∆p with Q for various α with ϕ = 0.4, k = 0.3, Γ = 0.01, M = 0.4

Figure 12. The difference of F with Q for various M with ϕ = 0.4, α = 0.20, k = 0.30, Γ = 0.01

Figure 13. The difference of F with Q for various k with ϕ = 0.4, α = 0.20, Γ = 0.01, M = 0.4
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Figure 14. The difference of F with Q for various Γ with ϕ = 0.4, α = 0.20, k = 0.30, Γ = 0.01, M = 0.4

Figure 15. The difference of ∆p with Q for various ϕ with α = 0.4, k = 0.3, Γ = 0.01, M = 0.4

Figure 16. The difference of ∆p with Q for various α with ϕ = 0.4, k = 0.3, Γ = 0.01, M = 0.4
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5. Conclusion
The peristaltic motion of magnetohydrodynamic (MHD) pseudoplastic fluids in the presence of injection and suction

is investigated in this work, assuming a tiny Reynolds number with a long wavelength. Using perturbation techniques to
evaluate the analytical solution and the expression for the velocity, pressure gradient and frictional force are derieved. It
seems that perturbation solution can provide a good approximation for small perturbation parameters. Various physical
characteristics effects on pressure rate, pressure gradient, velocity and frictional force is graphically explained for various
values of Non-newtonian and slip effects.

1) In the velocity profile increasing the value of suction and injection parameter k. M, α , ϕ , Γ values. It show that
the value of strong magnetic field increases and then the suction and injection parameter, perturbation parameter is also
increases. The magnitude of the pressure gradient in viscous fluid is smaller than pseudoplastic.

2) The pressure gradient value is increased in Γ, and then decreased in the remaining parameters.
3) The frictional force is just opposite behavior for the pressure gradient.

6. Application
The analysis of pseudoplastic liquid peristaltic transport in the context of a first-order partial slip condition, combined

with MHD effects, and confined by permeable walls with suction and injection has significant implications for both
biological and industrial processes. In biomedical domains, this research is critical for understanding and optimising
fluid flow in many physiological systems, including the gastrointestinal tract, blood circulation, and lymphatic systems,
where non-Newtonian fluids like mucus and blood exhibit pseudoplastic behaviour. The use of first-order slip conditions
and magnetic fields enables a more precise simulation of microfluidic flows in devices like as pumps and catheters,
which are used for drug administration and other therapeutic interventions. The findings of this study can be applied
in industrial processes such as polymer extrusion, food processing, and chemical engineering, all of which involve
pseudoplastic fluids. Controlling peristaltic transport via porous walls using suction and injection boosts filtration system
efficiency, material mixing, and heat or mass transfer processes. The magnetic field, along with slip conditions, influences
flow behaviour in electromagnetic pumps and reactors, allowing for precise control over fluid dynamics in production
settings. Consequently, our work significantly enhances industrial processes requiring complicated fluid flows as well
as biomedical equipment. Since magnetohydrodynamics (MHD) links the action of magnetic fields to the behavior of
electrically conducting fluids, it is pertinent to our discussion. TheMHD effect is important in this study because it enables
the manipulation and control of fluid flow by combining electromagnetic forces with fluid motion. MHD is a non-invasive
method of controlling fluid movement in biological systems, such as blood flow and drug delivery systems, that does not
require physical contact. Blood, as a conducting fluid due to its ion content, can be affected by an external magnetic
field. This enables control over flow rates and patterns in microfluidic devices used for focused medicine administration,
dialysis, and other medical applications. MHD can either increase or decrease peristaltic movements, depending on the
therapeutic need, which can be critical in controlling drug flow or guiding particles through the bloodstream.

Author contribution
All authors have contributed equally to the development of this paper.

Conflict of interest
The authors declare no competing financial interest.

Contemporary Mathematics 1108 | A. Kavitha, et al.



References
[1] Ali HA, Salman MR. Influence of rotation on peristaltic flow for pseudoplastic fluid: a wavy channel. An

International Journal of Optimization and Control: Theories and Applications (IJOCTA). 2024; 14(4): 336-345.
[2] Ramesh K, Devakar M. Magnetohydrodynamic peristaltic flow of Pseudoplastic fluid in a vertical asymmetric

channel through porous medium with heat and mass transfer. Iranian Journal of Science and Technology,
Transactions A: Science. 2017; 41: 257-272.

[3] Noreen S, Zahra M, Lu DC. Pseudoplastic fluid flow via electroosmotic and peristaltic pumping.Waves in Random
and Complex Media. 2022; 1-21.

[4] Jayavel P, Jhorar R, Tripathi D, AzeseMN. Electroosmotic flow of pseudoplastic nanoliquids via peristaltic pumping.
Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2019; 41(2): 61.

[5] Akhtar S, Shahzad MH, Nadeem S, Awan AU, Almutairi S, Ghazwani HA, et al. Analytical solutions of PDEs by
unique polynomials for peristaltic flow of heated Rabinowitsch fluid through an elliptic duct. Scientific Reports.
2022; 12(1): 12943.

[6] Choudhari R, Tripathi D, Vaidya H, Prasad KV, Shetty J, Mebarek‐Oudina F, et al. Integrated analysis
of electroosmotic and magnetohydrodynamic peristaltic pumping in physiological systems: Implications for
biomedical applications. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte
Mathematik und Mechanik. 2024; e202400163.

[7] Gudekote M, Vaidya H, Baliga D, Choudhari R, Prasad KV. The effects of convective and porous conditions
on peristaltic transport of non-Newtonian fluid through a non-uniform channel with wall properties. Journal of
Advanced Research in Fluid Mechanics and Thermal Sciences. 2019; 63(1): 52-71.

[8] Goud JS, Reddy RH. Peristaltic transport of a pseudoplastic fluid bounded by permeable walls with suction and
injection. International Journal of Pure and Applied Mathematics. 2017; 113(6): 289-297.

[9] Rajashekhar C, Vaidya H, Prasad KV, Tlili I, Patil A, Nagathan P. Unsteady flow of Rabinowitsch fluid peristaltic
transport in a non-uniform channel with temperature-dependent properties. Alexandria Engineering Journal. 2020;
59(6): 4745-4758.

[10] Misra JC, Pandey SK. Peristaltic transport of physiological fluids. In: Biomathematics: Modelling and Simulation.
Singapore: World Scientific; 2006. p.167-193.

[11] Priyadharshini P, Karpagam V, Shah NA, Alshehri MH. Bio-convection effects of MHD williamson fluid flow over
a symmetrically stretching sheet: machine learning. Symmetry. 2023; 15(9): 1684.

[12] Geetha R, Reddappa B, Tarakaramu N, Rushi Kumar B, Ijaz Khan M. Effect of double stratification on MHD
Williamson boundary layer flow and heat transfer across a shrinking/stretching sheet immersed in a porous medium.
International Journal of Chemical Engineering. 2024; 2024(1): 9983489.

[13] Hasona WM, Almalki NH, ElShekhipy AA, Ibrahim MG. Combined effects of variable thermal conductivity and
electrical conductivity on peristaltic flow of pseudoplastic nanofluid in an inclined non-uniform asymmetric channel:
applications to solar collectors. Journal of Thermal Science and Engineering Applications. 2020; 12(2): 021018.

[14] Rashid M, Ansar K, Nadeem S. Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved
channel. Physica A: Statistical Mechanics and its Applications. 2020; 553: 123979.

[15] MoatimidGM,MohamedYM.Novel analytical perspectives on nonlinear instabilities of viscoelastic Bingham fluids
in MHD flow fields. Scientific Reports. 2024; 14(1): 28843.

[16] Babu VR, Sreenadh S, Srinivas AN. Peristaltic transport of a viscous fluid in a porous channel with suction and
injection. Ain Shams Engineering Journal. 2018; 9(4): 909-915.

[17] Abbas Z, Rafiq MY, Hasnain J, Umer H. Impacts of lorentz force and chemical reaction on peristaltic transport of
Jeffrey fluid in a penetrable channel with injection/suction at walls. Alexandria Engineering Journal. 2021; 60(1):
1113-1122.

[18] Kumar PR, Babu VR. Effect of complete slip on peristaltic transport of Jeffrey fluid flow in a tappered channel with
suction and junction. International Journal of Mechanical Engineering and Technology. 2019; 10(2): 551-560.

[19] Abbas Z, Rafiq MY, Alshomrani AS, Ullah MZ. Analysis of entropy generation on peristaltic phenomena of MHD
slip flow of viscous fluid in a diverging tube. Case Studies in Thermal Engineering. 2021; 23: 100817.

[20] Aman S, Ismail Z, SallehMZ, Khan I. Flow analysis of second grade fluid with wall suction/injection and convective
boundary condition. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2019; 58(1): 135-
143.

Volume 6 Issue 1|2025| 1109 Contemporary Mathematics


	Introduction
	Pseudoplastic behavior
	Slip condition
	Magnetohydrodynamic (MHD) effects
	Physical relavance of the study

	Mathematical formulation
	Analytically solved by using perturbation method
	Result and discussion
	Conclusion
	Application

