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Abstract: This article investigates linear codes over the ring R = R1 ×R2 ×R3, focusing on the properties and structure 
of skew cyclic codes within this framework. We explore various algebraic features of these codes, highlighting their 
distinctiveness from traditional cyclic codes. In addition, we examine the utility of skew cyclic codes over R in the context 
of identifying skew cyclic codes over the finite field Fq with optimal parameters. The findings offer fresh perspectives 
on developing efficient and high-performing coding systems, which could benefit error correction and data transmission 
applications.
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1. Introduction
Linear codes are foundational in coding theory, serving as essential tools for error detection and correction across

diverse communication and data storage systems. These codes play a critical role in applications that demand high
data integrity, including telecommunications, data storage, and network communication, where they enable the reliable
transmission of information by detecting and correcting errors that may arise during data transfer. Historically, the study of
linear codes has predominantly focused on finite fields, which have provided a well-established mathematical foundation
for understanding their properties and applications. This focus has facilitated significant advancements in coding theory,
particularly in error detection and correction. However, the reliance on finite fields has also limited the exploration of
alternative algebraic structures, prompting researchers to investigate the potential benefits of coding schemes defined over
more complex systems, such as finite rings. Finite rings provide a richer, more versatile algebraic framework, introducing
novel properties and avenues for research that are not achievable with conventional finite fields.

One key area of current research is the study of codes over finite rings, which offers the potential for designing
innovative coding schemes with improved performance and error-correcting capabilities. Unlike codes over fields, codes
defined over rings exhibit unique characteristics that can enhance their structure and function, particularly for complex
coding applications. A growing body of research, including those cited here [1–11], underscores the importance of this
approach in advancing coding theory and its applications in practical systems.
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This study specifically explores linear codes over the ringR =R1×R2×R3, where eachRi is a finite commutative
ring. This ring-based structure introduces a rich algebraic environment, offering the potential to develop new codes
with properties that could outperform those defined over finite fields. Our investigation focuses on skew cyclic codes,
a generalization of classical cyclic codes that leverages an automorphism to introduce non-commutative elements into
the ring. By incorporating the action of an automorphism, skew cyclic codes exhibit distinctive structural properties
and can enhance applications in non-commutative rings. This unique feature gives skew cyclic codes several advantages,
particularly in scenarioswhere the ring’s non-commutative properties can be applied for enhanced error correction. We aim
to extend the theoretical framework of skew cyclic codes over the ring R, exploring their algebraic properties, structural
uniqueness, and coding potential. A significant part of this study is dedicated to examining how these codes over R can
be used to identify skew cyclic codes over finite fields Fq that exhibit optimal parameters. By translating the codes from
the ring to a finite field, we aim to broaden their applicability in practical coding systems. Identifying skew cyclic codes
with optimal parameters-such as minimal error rates and high throughput-provides valuable insights for designing coding
schemes that meet the demands of high-performance communication systems. Furthermore, this approach contributes a
novel perspective to coding theory. While classical cyclic codes have been studied, skew cyclic codes over rings offer
an innovative pathway for creating efficient codes. This research assesses the advantages of using the ring structure to
derive skew cyclic codes that can be directly translated to finite fields, thereby bridging theoretical insights with practical
applications. The proposed approach not only broadens the scope of skew cyclic codes but also has the potential to enhance
coding performance by leveraging the unique algebraic properties of rings.

The structure of this paper is organized as follows: Section 2 provides the necessary background on coding theory
and the algebraic properties of finite rings, establishing a foundation for understanding the subsequent sections. In Section
3 we analyze the structure and relevance of linear codes over the composite ring R = R1 ×R2 ×R3, focusing on the
interplay between each subring’s properties. Section 4 delves into the specific characteristics of skew cyclic codes over
R, discussing their advantages and potential applications. Section 5 highlights how skew cyclic codes over R can be
associated with skew cyclic codes over the finite field Fq, identifying codes with optimal parameters to demonstrate their
practical applications in coding theory. Each section is logically structured to produce an uninterrupted transition from
theoretical foundations to applications, focusing on validation and comparison to classical methods. The approach taken
in this paper represents a significant innovation in the field by utilizing linear codes over a composite ring structureR and
examining the unique properties of skew cyclic codes within this framework. Compared to classical cyclic codes, skew
cyclic codes over R exhibit unique algebraic properties that enhance their adaptability, especially when mapped onto
finite fields for practical use. This innovative methodology highlights a distinct difference from traditional field-based
cyclic codes, positioning skew cyclic codes over R as a valuable tool for developing optimized coding schemes with
enhanced performance characteristics.

2. Overview of background information
In this section, we revisit some concepts related to the ringR =R1×R2×R3, constructed over a field Fq of size q=

ps with a prime p. It focuses on the additive ringsR =R1×R2×R3, whereR1 =Fq+uFq,R2 =Fq+uFq+vFq+uvFq,
and R3 = Fq +uFq + vFq +wFq +uvFq +uwFq + vwFq +uvwFq, with u2 = 1, v2 = 1, and w2 = 1.

Using q = ps expands the range of elements while keeping efficient operations. This structure supports fields
with higher prime powers, benefiting cryptographic and error-correction applications by enhancing algebraic robustness.
Larger q affects the rings’ structure, influencing rank, element distribution, and computational complexity. In cryptographic
contexts, these properties strengthen security by increasing resilience against attacks, especially with larger primes that
complicate efficient reductions, further enhancing security margins.

Each element in this ring is expressed as c = (c1, c2, c3), where c1 ∈ R1, c2 ∈ R2, and c3 ∈ R3. As noted in [2], an
element ci from Ri, where 0 ≤ i ≤ 3, can be expressed using orthogonal idempotents in the following format
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c1 =< α, ϑ1 >R1 , (1)

where

α =

[
α0

α1

]
, and ϑ1 =

[
1 1
1 −1

][
c0

1
c1

1

]
, (2)

following the idempotent properties for αi (where 0 ≤ i ≤ 1) are satisfied-namely, ∑1
i=0 αi = 1, α0α1 = 0, and α2

i = αi,
for 0 ≤ i ≤ 1, we obtain

c1 =
1

∑
i=0

αici
1, with

[
α0

α1

]
=

1
2

[
1 1
1 −1

][
1
u

]
, and ci

1 ∈ q. (3)

c2 =< β , ϑ2>R2 , (4)

where

β =


β0

β1

β2

β3

 and ϑ2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




c0
2

c1
2

c2
2

c3
2

 . (5)

The elements β j are idempotents for 0 ≤ j ≤ 3, we obtain

c2 =
3

∑
j=0

β jc
j
2, with


β0

β1

β2

β3

=
1
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1
u
v
uv

 , and c j
2 ∈ q, (6)

and

c3 =< γ, ϑ3 >R3 , (7)

where
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γ =



γ0

γ1

γ2

γ3

γ4

γ5

γ6

γ7


and ϑ3 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1





c0
3

c1
3

c2
3

c3
3

c4
3

c5
3

c6
3

c7
3


. (8)

However, the elements γk are idempotents, for 0 ≤ k ≤ 7, we get

c3 =
7

∑
k=0

γkck
3, with



γ0

γ1

γ2

γ3

γ4

γ5

γ6

γ7


=

1
8



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1





1
u
v
w
uv
uw
vw
uvw


and ck

3 ∈ Fq. (9)

The parameters αi, β j, and γk are orthogonal idempotents that serve to decompose elements within the ring R =

R1 ×R2 ×R3 into simpler components. Each parameter is associated with an additive ring Ri and corresponds to a
partitioning of the ring space. Specifically:

The parameter αi, with 0 ≤ i ≤ 1, is linked to R1, decomposing it into two parts.
Similarly, β j (where 0 ≤ j ≤ 3) and γk (where 0 ≤ k ≤ 7) are associated with R2 and R3, respectively, and they

enable finer divisions of these spaces.
The following lemma holds and serves as an essential basis for the subsequent analysis.
Lemma 2.1 [12] The element αiβ jγk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7, constitute a fundamental set of

idempotents in R, then
1. (αiβ jγk)(αi′β j′γk′) = 0, for 0 ≤ i 6= i′ ≤ 1, 0 ≤ j 6= j′ ≤ 3 and 0 ≤ k 6= k′ ≤ 7
2. (αiβ jγk)

2 = αiβ jγk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3 and 0 ≤ k ≤ 7
3. ∑1

i=0 ∑3
j=0 ∑7

k=0 αiβ jγk = 1.
We propose defining a skew cyclic code based on the automorphism Θ acting on the ring R. This automorphism is

an extension of the one discussed in various works [3, 8, 9, 12–14].

Θ : R = R1 ×R2 ×R3 → R = R1 ×R2 ×R3

c = (c1, c2, c3) 7→ Θ(c) = (θ1(c1), θ2(c2), θ3(c3)), (10)

where
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θi : Ri → Ri

ci 7→ θi(ci), f or 1 ≤ i ≤ 3, (11)

with

θ1

(
1

∑
i=0

αici
1

)
=

1

∑
i=0

αiθ1(ci
1) =

1

∑
i=0

αi(ci
1)

psm
, (12)

θ2

(
3

∑
j=0

β jc
j
2

)
=

3

∑
j=0

β jθ2(c
j
2) =

3

∑
j=0

β j(c
j
2)

psm
, (13)

θ3

(
7

∑
k=0

γkck
3

)
=

k

∑
k=0

γkθ3(ck
3) =

7

∑
k=0

γk(ck
3)

psm
, (14)

the order of this automorphism is given by |< θi >|= s
m
, for 1 ≤ i ≤ 3.

2.1 Gray map and gray images

The Gray map and its corresponding Gray images play a significant role in coding theory, providing a bridge between
different algebraic structures. The Gray map is a specific function used to translate elements from one structure, such as
a ring, to another, often simplifying the representation of codes. Gray images resulting from this mapping allow for
the visualization and analysis of these codes in a more accessible form. This process is essential for understanding the
properties of codes. Based on Equations (3), (6), and (9), the Gray map Φ over the ring R is defined as follows.

Φ : R = R1 ×R2 ×R3 → F14
q

c = (c1, c2, c3) 7→ Φ(c) = (ϕ1(c1), ϕ2(c2), ϕ3(c3)) (15)

where

ϕ1 : R1 → F2
q

c1 7→ ϕ(c1) =
(
c0

1 + c1
1, c0

1 − c1
1
)
, (16)

ϕ2 : R2 → F4
q

c2 7→ ϕ(c2), (17)

Contemporary Mathematics 6266 | Karima Chatouh, et al.



with

ϕ(c2) =
(
c0

2 + c1
2 + c2

2 + c3
2, c0

2 − c1
2 + c2

1 + c3
2, c0

2 − c1
2 + c2

1 − c3
2, c0

2 + c1
2 + c2

1 − c3
2
)
,

and

ϕ3 : R3 → F8
q

c3 7→ ϕ(c3), (18)

with

ϕ(c3) =
(

c0
3 + c1

3 + c2
3 + c3

3 + c4
3 + c5

3 + c6
3 + c7

3, c0
3 − c1

3 + c2
3 − c3

3 + c4
3 − c5

3 + c6
3 − c7

3,

c0
3 + c1

3 − c2
3 − c3

3 + c4
3 + c5

3 − c6
3 − c7

3, c0
3 − c1

3 − c2
3 + c3

3 + c4
3 − c5

3 − c6
3 + c7

3,

c0
3 + c1

3 + c2
3 + c3

3 − c4
3 − c5

3 − c6
3 − c7

3, c0
3 − c1

3 + c2
3 − c3

3 − c4
3 − c5

3 + c6
3 + c7

3,

c0
3 + c1

3 − c2
3 − c3

3 − c4
3 − c5

3 + c6
3 + c7

3, c0
3 − c1

3 − c2
3 + c3

3 − c4
3 + c5

3 + c6
3 − c7

3

)
.

It is clear that extending the map Φ from Rn to F14n
q is a straightforward process. Therefore, the following results

hold.
Theorem 2.2 The Gray map provides an isometric map fromR with the minimal distance to F14n

q with the Hamming
distance.

An essential property of the Gray map we defined is its ability to preserve duality, as stated in the following lemma.
Lemma 2.3 If C is a linear code of length n over R, with minimal distance d, then Φ(C ) is a [n′

= 14n, k
′
, d

′
Ham]q-

linear code over Fq.
The Gray map highlights the differences between linear codes over rings and those over finite fields. On the other

hand, linear codes over finite fields rely on field properties like unique inverses and the absence of zero divisors, codes
over rings, such as R = R1 ×R2 ×R3, incorporate more complex structures. The Gray map enables the translation of
these ring-based codes into a format that is more accessible and comparable to field-based codes. Mapping the elements
of the ring to vector spaces over finite fields simplifies the analysis and visualization of ring-based codes, allowing us
to exploit the algebraic richness of rings-such as idempotents and zero divisors-which are absent in finite fields. This
transformation is essential in understanding how linear codes over rings can exhibit unique properties, such as more
flexible error detection and correction capabilities, that differ significantly from the behavior of codes over finite fields.

3. Linear codes over R = R1 ×R2 ×R3

In this section, we explore the construction and analysis of linear codes over the ring R = R1 ×R2 ×R3, where
R1, R2, and R3 are finite commutative rings. The purpose of this section is to extend the classical theory of linear
codes, traditionally defined over finite fields, to a product ring structure. By examining how the algebraic properties of
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each component ring Ri influence the overall code, we aim to uncover new insights into optimizing code parameters and
improving the performance of error-correcting codes.

The results of this section include the formulation of linear codes over the ring R, leveraging the structural
characteristics of R1, R2, and R3. We demonstrate how such codes can be viewed as generalizations of classical codes,
leading to enhanced flexibility in code design, especially concerning the choice of parameters such as length, dimension,
and minimum distance. These codes provide a richer algebraic framework that may yield more efficient encoding and
decoding schemes than traditional finite field-based codes.

According to [15] and the Chinese Remainder Theorem, we can expressR in terms of orthogonal idempotents within
Ri, for 0 ≤ i ≤ 3 as follows

R1 =
1⊕

i=0

αiR1 =
1⊕

i=0

αiFq, (19)

R2 =
1⊕

i=0

β jR2 =
1⊕

i=0

β jFq, (20)

and

R3 =
1⊕

i=0

γkR3 =
1⊕

i=0

γkFq, (21)

then

R =

(
1⊕

i=0

αiR1

)(
3⊕

j=0

β jR2

)(
7⊕

k=0

γkR3

)
=

1⊕
i=0

3⊕
j=0

7⊕
k=0

αiβ jγkF3
q, (22)

where C i
1, C

j
2 and C k

3 , for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3 and 0 ≤ k ≤ 7 are linear codes over Fq, with

C 0
1 = {c0

1 + c1
1, ∃c0, c1

1 ∈ F2n
q , ∀c1 ∈ C1},

C 1
1 = {c0

1 − c1
1, ∃c0, c1

1 ∈ F2n
q , ∀c1 ∈ C1},

C 0
2 = {c0

2 + c1
2 + c2

2 + c3
2, ∃c0

2, c1
2, c2

2, c3
2 ∈ F4n2

q , ∀c ∈ C2},

C 1
2 = {c0

2 − c1
2 + c2

1 − c3
2, ∃c0

2, c1
2, c2

2, c3
2 ∈ F4n2

q , ∀c ∈ C2},

C 2
2 = {c0

2 + c1
2 − c2

1 − c3
2, ∃c0

2, c1
2, c2

2, c3
2 ∈ F4n2

q , ∀c ∈ C2},

C 3
2 = {c0

2 − c1
2 − c2

2 + c3
2, ∃c0

2, c1
2, c2

2, c3
2 ∈ F4n2

q , ∀c ∈ C2}.
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and

C 0
3 = {c0

3 + c1
3 + c2

3 + c3
3 + c4

3 + c5
3 + c6

3 + c7
3, ∃c0

3, c1
3, c2

3, c2
3, c4

3, c5
3, c6

3, c7
3 ∈ F8n3

q , ∀c ∈ C3},

C 1
3 = {c0

3 − c1
3 + c2

3 − c3
3 + c4

3 + c5
3 − c6

3 − c7
3, ∃c0

3, c1
3, c2

3, c2
3, c4

3, c5
3, c6

3, c7
3 ∈ F8n3

q , ∀c ∈ C3},

C 2
3 = {c0

3 + c1
3 − c2

3 − c3
3 + c4

3 + c5
3 − c6

3 − c7
3, ∃c0

3, c1
3, c2

3, c2
3, c4

3, c5
3, c6

3, c7
3 ∈ F8n3

q , ∀c ∈ C3},

C 3
3 = {c0

3 + c1
3 − c2

3 − c3
3 + c4

3 − c5
3 − c6

3 + c7
3, ∃c0

3, c1
3, c2

3, c2
3, c4

3, c5
3, c6

3, c7
3 ∈ F8n3

q , ∀c ∈ C3},

C 4
3 = {c0

3 + c1
3 + c2

3 + c3
3 − c4

3 − c5
3 − c6

3 − c7
3, ∃c0

3, c1
3, c2

3, c2
3, c4

3, c5
3, c6

3, c7
3 ∈ F8n3

q , ∀c ∈ C3},

C 5
3 = {c0

3 − c1
3 + c2

3 − c3
3 − c4

3 − c5
3 + c6

3 + c7
3, ∃c0

3, c1
3, c2

3, c2
3, c4

3, c5
3, c6

3, c7
3 ∈ F8n3

q , ∀c ∈ C3},

C 6
3 = {c0

3 + c1
3 − c2

3 − c3
3 − c4

3 + c5
3 + c6

3 + c7
3, ∃c0

3, c1
3, c2

3, c2
3, c4

3, c5
3, c6

3, c7
3 ∈ F8n3

q , ∀c ∈ C3},

C 7
3 = {c0

3 + c1
3 + c2

3 + c3
3 − c4

3 − c5
3 − c6

3 − c7
3, ∃c0

3, c1
3, c2

3, c2
3, c4

3, c5
3, c6

3, c7
3 ∈ F8n3

q , ∀c ∈ C3}.

From the preceding relations, we deduce that each code C over R can be represented as follows:

C =

(
1⊕

i=0

αiC
i
1

)(
3⊕

j=0

β jC
j

2

)(
7⊕

k=0

γiC
k
3

)
(23)

In this case, the following assertions stand true.
Theorem 3.1 Let C and C⊥ be linear codes of length n over R = R1 ×R2 ×R3, then

C =
1⊕

i=0

3⊕
j=0

7⊕
k=0

αiβ jγkCi jk, (24)

and

C⊥ =
1⊕

i=0

3⊕
j=0

7⊕
k=0

αiβ jγk(Ci jk)
⊥. (25)

where the codes Ci jk = C i
1 ×C j

2 ×C k
3 , for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7.

Proof. The proof is obtained from Equations (19-23).
Theorem 3.2 Let C be a linear code of length n over R = R1 ×R2 ×R3, we obtain
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Φ(C ) =
1⊗

i=0

3⊗
j=0

7⊗
k=0

Ci jk, (26)

and

|C |=
1

∏
i=0

3

∏
j=0

7

∏
k=0

|Ci jk|, (27)

with

C000 ={(c0
1 + c1

1, c0
2 + c1

2 + c2
2 + c3

2, c0
3 + c1

3 + c2
3 + c3

3 + c4
3 + c5

3 + c6
3 + c7

3),

∃c0
1, c1

1, c0
2, c1

2, c2
2, c12

2 , c0
3, c1

3, c2
3, c3

3, c4
3, c5

3, c6
3, c7

3 ∈ Fq, ∀c ∈ C },

C001 ={(c0
1 + c1

1, c0
2 + c1

2 − c2
2 − c3

2, c0
3 − c1

3 + c2
3 − c3

3 + c4
3 − c5

3 + c6
3 − c7

3),

∃c0
1, c1

1, c0
2, c1

2, c2
2, c12

2 , c0
3, c1

3, c2
3, c3

3, c4
3, c5

3, c6
3, c7

3 ∈ Fq, ∀c ∈ C },

...

C137 ={(c0
1 − c1

1, c0
2 − c1

2 − c2
1 + c3

2, c0
3 + c1

3 + c2
3 + c3

3 − c4
3 − c5

3 − c6
3 − c7

3),

∃c0
1, c1

1, c0
2, c1

2, c2
2, c12

2 , c0
3, c1

3, c2
3, c3

3, c4
3, c5

3, c6
3, c7

3 ∈ Fq, ∀c ∈ C }.

Proof. Using a similar approach to [16, Theorem 8] .
Theorem 3.3 LetC =

⊕1
i=0
⊕3

j=0
⊕7

k=0 αiβ jγkCi jk be a linear code of length n overR, thenC⊥ =
⊕1

i=0
⊕3

j=0
⊕7

k=0
αiβ jγkC

⊥
i jk. Further, C is self-dual if and only if Ci jk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3 and 0 ≤ k ≤ 7 are self-duals.

Proof. Assume that x ∈ C⊥ and c = ∑1
i=0 ∑3

j=0 ∑7
k=0 αiβ jγkci jk ∈ C , with ci jk ∈ Ci jk. we can expand the product as

follows,

x.c =
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγk(x.ci jk), (28)

sience x ∈ C⊥, we have

x.ci jk = 0 f or ci jk ∈ Ci jk, (29)
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that means x ∈ C⊥
i jk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3 and 0 ≤ k ≤ 7. We arrive at the expression

C⊥ =
1⊕

i=0

3⊕
j=0

7⊕
k=0

αiβ jγkC
⊥
i jk.

If C is self-dual, then

C = C⊥ ⇒
1⊕

i=0

3⊕
j=0

7⊕
k=0

αiβ jγkCi jk =
1⊕

i=0

3⊕
j=0

7⊕
k=0

αiβ jγkC
⊥
i jk. (30)

Since the direct sum is taken component-wise, this implies that each code Ci jk must also satisfy Ci jk =C⊥
i jk, meaning

that each Ci jk must be self-dual.
If each Ci jk is self-dual, that means Ci jk = C⊥

i jk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3 and 0 ≤ k ≤ 7, then

1⊕
i=0

3⊕
j=0

7⊕
k=0

αiβ jγkCi jk =
1⊕

i=0

3⊕
j=0

7⊕
k=0

αiβ jγkC
⊥
i jk (31)

is also self-dual, directly from the definition of dual code and the properties of direct sums C will be self-dual.
Lemma 3.4 Let C be a linear code of length n over R, then Φ(C⊥) = [Φ(C )]⊥. Further, C is a self-dual code if

and only if Φ(C ) is a self-dual code.
Proof. We interpret Φ(C ) = Φ(C1 ×C2 ×C3) to be some transformation to each codeword c = (c1 | c2 | c3) ∈ C .

The code Φ(C⊥) = Φ(C⊥
1 ×C⊥

2 ×C⊥
3 ) consists of the transformed codewords of the dual code.

Let v = (v1, v2, v3) ∈ Φ(C⊥) that means it exists x = (x1, x2, x3) ∈ C⊥ , Φ(x) = v. Since x = (x1, x2, x3) ∈ C⊥

we have,

< x, c >R= 0 ⇒< (x1, x2, x3), (c1, c2, c3)>R= 0, for all c ∈ C ,

and based on the information provided by the Theorem 2.2, we have

< Φ(x1, x2, x3), Φ(c1, c2, c3)>R=< (ϕ1(x1), ϕ2(x2), ϕ3(x3)), (ϕ1(c1), ϕ2(c2), ϕ3(c3))>R= 0,

then

〈ϕ1(x1), ϕ1(c1)〉R1
= 0, 〈ϕ2(x2), ϕ2(c2)〉R2

= 0, 〈ϕ2(x1), ϕ2(c2)〉R3
= 0.

we have v1 ∈ [ϕ1(C1)]
⊥, v2 ∈ [ϕ2(C2)]

⊥, v3 ∈ [ϕ3(C3)]
⊥. This implies that v ∈ [Φ(C )]⊥. Conversely, if v ∈ [Φ(C )]⊥, this

means,

For any c = (c1, c2, c3) ∈ Φ(C ), we have < v, Φ(c)>R = 0.
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Following Theorem 2.1 we have, < Φ−1(v), c >R= 0 that means , Φ−1(v) ∈ C⊥, then v ∈ [Φ(C )]⊥, so we have

Φ(C⊥) = [Φ(C )]⊥.

The demonstration for the second aspect. we Assume C is self-dual. Then C = C⊥. Applying the result from Step
1 gives:

Φ(C⊥) = Φ(C ) =⇒ [Φ(C )]⊥ = Φ(C ),

thus, Φ(C ) is self-dual. Conversely, assume Φ(C ) is self-dual, we obtain

Φ(C ) = [Φ(C )]⊥,

Using the first step, we get

C⊥ = Φ(C⊥) =⇒ C = C⊥,

hence, C is self-dual.
Theorem 3.5 Let Gi jk be the generator matrices of the linear codes Ci jk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7 over

Fq. Then, the generator matrix G of the code C =
⊕1

i=0
⊕3

j=0
⊕7

k=0 αiβ jγkCi jk is given by

G =


0β0γ0G000

α0β0γ1G001
...

α1β3γ7G137

 . (32)

Proposition 3.6 Suppose C is a linear code of length n over R with a generator matrix GC . Then the generator
matrix GΦ(C ) of the code Φ(C ) can be expressed as follows

GΦ(C ) =


G000 0 . . . 0

0 G001 . . . 0
...

. . .
...

...
0 0 . . . G137

 .

4. Some properties of skew cyclic codes over R = R1 ×R2 ×R3

In this section, we investigate skew cyclic codes over the product ring R = R1 × R2 × R3, with a focus on
understanding how the product structure influences the algebraic properties of these codes. Specifically, we analyze
the generator polynomials, the structure of ideals, and the impact of ring automorphisms on the behavior of skew cyclic
codes. The goal of this section is to extend the classical theory of cyclic codes by incorporating the product structure of
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rings, which introduces new possibilities for optimizing the properties of the codes, such as their minimum distance, error
correction capabilities, and computational efficiency see [8, 9, 13, 17].

The primary results obtained in this section include the formulation of skew cyclic codes over the product ring R,
where the properties of each component ring Ri interact in ways that are crucial for understanding the overall structure of
the codes. By leveraging the insights from skew cyclic code theory, we can define and analyze new types of codes that
have potentially advantageous properties compared to standard cyclic codes, such as improved error correction or more
efficient encoding and decoding algorithms.

Definition 4.1 A linear code C of length n over R is said to be a skew cyclic code with respect to the automorphism
Θ if and only if for any codeword

c = (c0, c1, . . . , cn−1) ∈ C ⇒ σ(c) = (Θ(cn−1), Θ(c0), Θ(c1), . . . , Θ(cn−2)) ∈ C , (33)

where σ is a skew cyclic shift of C .
Theorem 4.2 Let C =

⊕1
i=0
⊕3

j=0
⊕7

k=0 αiβ jγkCi jk be a linear code over R of length n where Ci jk, for 0 ≤ i ≤ 1,
0 ≤ j ≤ 3, and 0 ≤ k ≤ 7 are linear codes of length n over Fq. Then C is a skew cyclic code over R if and only if Ci jk,
for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7 are skew cyclic codes over Fq, with respect to the automorphism Θ.

Proof. Considering an element c = (c0, c1, c2, . . . , cn−1) ∈ C , it follows that

cl = ∑1
i=0 ∑3

j=0 ∑7
k=0 αiβ jγkcl

i jk, 0 ≤ l ≤ n−1.

with cl
i jk = c1, l

i c2, 3
j c3, l

k , where
(

c1, l
i , c2, l

j , c3, l
k

)
∈Ci

1 ×C j
2 ×Ck

3, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7.
Given that Ci jk, where 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7, represents a collection of skew cyclic codes, it follows

that σ(cl
i jk) ∈ Ci jk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7. Furthermore, assuming the equation

Θ(cl
i jk) =

1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγkΘ(cl
i jk)

=
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγkΘ(c1, l
i , c2, l

j , c3, l
k )

=
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγk(θ1(c
1, l
i ), θ2(c

2, l
j ), θ3(c

3, l
k ))

=
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiθ1(c
1, l
i )β jθ2(c

2, l
j )γkθ3(c

3, l
k )

Θ(cl
i jk) =

1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγk

(
θ1(c

1, l
i )θ2(c

2, l
j )θ3(c

3, l
k )
)

(34)

The skew cyclic property requires that these shifts when applied to codewords corresponding to skew cyclic shifts
in each Ci jk, should yield new valid codewords within the code C , we can then proceed to derive the expression.

Volume 5 Issue 4|2024| 6273 Contemporary Mathematics



σ(c) =
(

Θ(cn−1), Θ(c0), Θ(c1), . . . , Θ(cn−2)

)

=

(
Θ(cn−1

1 , cn−1
2 , cn−1

3 ), Θ(c0
1, c0

2, c0
3), Θ(c1

1, c1
2, c1

3), . . . , Θ(cn−2
1 , cn−2

2 , cn−2
3 )

)

=

(
(θ1(cn−1

1 ), θ2(cn−1
2 ), θ3(cn−1

3 )), (θ1(c0
1), θ2(c0

2), θ3(c0
3)), (θ1(c1

1), θ2(c1
2), θ3(c1

3)),

. . . , (θ1(cn−2
1 ), θ2(cn−2

2 ), θ3(cn−2
3 ))

)

=

(
(θ1(cn−1

1 ), θ1(c0
1), θ1(c1

1), . . . , θ1(cn−2
1 )), (θ2(cn−1

2 ), θ2(c0
2), θ2(c1

2), . . . , θ2(cn−2
2 )),

(θ3(cn−1
3 ), θ3(c0

3), θ3(c1
3), . . . , θ3(cn−2

3 ))

)

=

( 1

∑
i=0

αiθ1(c
i, n−1
1 ),

1

∑
i=0

αiθ1(c
i, 0
1 ),

1

∑
i=0

αiθ1(c
i, 1
1 ), . . . ,

1

∑
i=0

αiθ1(c
i, n−2
1 ),

3

∑
j=0

β jθ2(c
j, n−1
2 ),

3

∑
j=0

β jθ2(c
j, 0
2 ),

3

∑
j=0

β jθ2(c
j, 1
2 ), . . . ,

3

∑
j=0

β jθ2(c
j, n−2
2 ),

7

∑
k=0

γkθ3(c
k, n−1
3 ),

7

∑
k=0

γkθ3(c
k, 0
3 ),

7

∑
k=0

γkθ3(c
k, 1
3 ), . . . ,

7

∑
k=0

γkθ3(c
k, n−2
3 )

)

=

(
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiθ1(c
1, n−1
i )β jθ2(c

2, n−1
j )γkθ3(c

3, n−1
k ),

1

∑
i=0

3

∑
j=0

7

∑
k=0

αiθ1(c
1, 0
i )β jθ2(c

2, 0
j )γkθ3(c

3, 0
k ),

. . . ,
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiθ1(c
1, n−2
i )β jθ2(c

2, n−2
j )γkθ3(c

3, n−2
k )

)

=
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγk

(
θ1(c

1, n−1
i )θ2(c

2, n−1
j )θ3(c

3, n−1
k ),

θ1(c
1, 0
i )θ2(c

2, 0
j )θ3(c

3, 0
k ), · · · , θ1(c

1, n−2
i )θ2(c

2, n−2
j )θ3(c

3, n−2
k )

)
,
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then σ(c) ∈ C . This implication leads us to conclude that σ(c) belongs to C , which establishes that the code C is a cyclic
code over R. A similar reasoning holds for the reverse implication.

Corollary 4.3 The dual code C⊥ is a skew cyclic code over R, if C is a skew cyclic code over R.
Proof. If the codeC =

⊕1
i=0
⊕3

j=0
⊕7

k=0 αiβ jγkCi jk is a skew cyclic code overR, we can apply the relevant theorems
to establish that the dual code C⊥ is also skew cyclic. Recall that for a skew cyclic code C , the shift operation, which
moves the code elements according to a skew action, preserves the structure of the code. This property is crucial in both
the original code and its dual. According to known results , such as Theorems 3.3, 4.2 and the reference [18] , the skew
cyclic nature of a code is preserved under duality. Specifically, if C is a skew cyclic code over R, then its dual C⊥

remains skew cyclic over the same ring.
Corollary 4.4 The code C is a self-dual skew cyclic code over R if and only if Ci jk , for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and

0 ≤ k ≤ 7 are self-dual skew cyclic codes over Fq.
Proof. To confirm the validity of this proposition, it suffices to apply Theorems 3.3 and 4.2. These theorems provide

the necessary framework to demonstrate that the dual code C⊥ maintains the skew cyclic structure when C itself is skew
cyclic.

Theorem 4.5 Let C =
⊕1

i=0
⊕3

j=0
⊕7

k=0 αiβ jγkCi jk be a skew cyclic code of length n over R. Assume that gi jk(x),
is a generator polynomial of Ci jk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7, then

1. C =
⟨
αiβ jγkgi jk(x) | (i, j, k) ∈ {(0, 0, 0), (0, 1, 0), . . . , (1, 3, 7)}

⟩
2. A polynomial g(x) ∈ R [x, Θ] can be found such that C = 〈g(x)〉, where

g(x) =
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγkgi jk, (35)

and g(x) is a divisor of xn −1 on the right.
Proof. For the first part, based on Theorem 4.2 it is established that the sets Ci jk represent skew cyclic codes of

length n over R for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7. Hence, each Ci jk can expressed as 〈gi jk(x)〉. On the other hand,
the code C =

⊕1
i=0
⊕3

j=0
⊕7

k=0 αiβ jγkCi jk, so that

C ⊆
⟨
αiβ jγkgi jk(x) | (i, j, k) ∈ {(0, 0, 0), (0, 1, 0), . . . , (1, 3, 7)}

⟩
. (36)

Concerning the second inclusion, we have the following details and information

1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγkgi jk(x)hi jk(x) ∈
⟨
αiβ jγkgi jk(x) | (i, j, k) ∈ {(0, 0, 0), (0, 1, 0), . . . , (1, 3, 7)}

⟩
.

So, the expression indicates that hi jk(x) belongs to the quotient ring R[x, Θ]/〈xn −1〉. For each polynomial hi jk(x),
there exists another polynomial ri jk(x) in the same skew polynomial ring such that

αiβ jγksik(x) = αiβ jγkrik(x) f or 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7. (37)

This means that every polynomial hi jk(x) can be replaced by some corresponding ri jk(x) that still satisfies the
equation, ensuring that the structure of the ideal is preserved. Hence,
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C ⊇
⟨
αiβ jγkgi jk(x) | (i, j, k) ∈ {(0, 0, 0), (0, 1, 0), . . . , (1, 3, 7)}

⟩
. (38)

After examining Equations (36) and (37), the resulting conclusion is as follows

C =
⟨
αiβ jγkgi jk(x) | (i, j, k) ∈ {(0, 0, 0), (0, 1, 0), . . . , (1, 3, 7)}

⟩
.

This means that the code C can be generated by the set of all these generator polynomials gi jk(x) multiplied by the
corresponding αiβ jγk.

For the second part, assume that gi jk(x), for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3 and 0 ≤ k ≤ 7, is a monic generator polynomial of
Ci jk. Then gi jk(x) divides xn −1 on the right such that

xn −1 = hi jk(x)gi jk(x), hi jk(x) ∈ Cik, for 0 ≤ i ≤ 3 and 0 ≤ k ≤ 7.

We can represent this as

xn −1 =
3

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγk(xn −1)

= α0β0γ0(xn −1)+α0β1γ0(xn −1)+ · · ·+α1β3γ7(xn −1),

which further simplifies to

= α0β0γ0h000(x)g000(x)+α0β1γ0h010(x)g010(x)+ · · ·+α1β3γ7h137(x)g137(x),

and finally, the summation form becomes

=
1

∑
i=0

3

∑
j=0

7

∑
k=0

αiβ jγkhi jk(x)gi jk(x) = h(x)g(x).

This means that the polynomial xn −1 is expressed as a product of the polynomials hi jk(x) and gi jk(x), for 0 ≤ i ≤ 1,
0 ≤ j ≤ 3 and 0 ≤ k ≤ 7. The structure of the code is preserved as h(x)g(x) represents the code C generated by the
polynomials gi jk(x). Hence, g(x) divides xn −1 on the right.

Theorem 4.6 Let C =
⊕1

i=0
⊕3

j=0
⊕7

k=0 αiβ jγkCi jk be a skew cyclic code of length n over R. Assume that gi jk(x),
is a generator polynomial of Ci jk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7. Then

| C |= q64n−∑1
i=0 ∑3

j=0 ∑7
k=0 gi jk(x) (39)
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Proof. As stated in Theorem 3.2 the equality shown below holds true.
Corollary 4.7 Let Ci jk, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7, be skew cyclic codes over Fq and gi jk(x), for

0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7, their generator polynomials, sach that xn − 1 = hi jk(x)gi jk(x) ∈ R[x, Θ]. If C is a
skew cyclic code overR, then C⊥ = ∑1

i=0 ∑3
j=0 ∑7

k=0 αiβ jγkhi jk(x), where hi jk(x) are the reciprocal polynomials of gi jk(x)
and hi jk(x) = xdeg(gi jk(x))gi jk(x−1), for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7, furthermore

|C⊥|= p∑1
i=0 ∑3

j=0 ∑7
k=0 deg(gi jk(x)). (40)

Proof. The proof closely parallels the one provided for Theorem 4.6.

5. Utilizing skew cyclic codes over R to identify skew cyclic codes over Fq with
optimal parameters
Based on [19], a linear code over a finite field is deemed to have good parameters if it satisfies specific bounds,

including:
Singleton bound: d ≤ n− k+1,

Griesmer bound: n ≥
k−1
∑

i=0

dH

qi ,

Gilbert-Varshamov bound: Aq(n, d) ≥ qn

d−1
∑

i=0
Ci

n(q−1)i
, with Aq(n, d) represents the maximum size of a q-ary code

with block length n and minimum distance d.
The primary goal of this research is to develop error-correcting codes with optimal parameters over the finite field

Fq by utilizing the unique structure of skew cyclic codes within the ring R. This aim arises from the practical necessity
for highly effective error-correcting codes across various fields, including digital communication systems, cryptography,
and other information processing applications. These codes are crucial for ensuring the integrity and security of data
transmitted or processed in these domains. To achieve this, the research utilizes advanced computational tools likeMagma
and Sagemath, along with a detailed database provided by Codetables (https://www.codetables.de). These resources have
been instrumental in identifying several codes that exhibit optimal or near-optimal parameters.

Example 5.1 Consider R = (F4 + uF4)(F4 + uF4 + vF4 + uvF4)(F4 + uF4 + vF4 +wF4 + uvF4 + uwF4 + vwF4 +

uvwF4), utilizing Magma to compute the factorization of x20 − 1 = (x+ 1)4(x2 +αx+ 1)4(x2 +α2x+ 1)4 through the
following algorithm

Algorithmic 1 Factorization of x20 −1
1. F4 : = GF(4); // Define the finite field F4.
2. P < x > := PolynomialRing(F4); // Define the polynomial ring over F4.
3. Factorization (x20 −1); // Factorize x20 −1 over F4.
Note that, for 0 ≤ i ≤ 1, 0 ≤ j ≤ 3, and 0 ≤ k ≤ 7, Ci jk denotes a skew cyclic code over F4 defined by the generator

polynomial
⟨
1α20α20α20α20α21

⟩
, and C is a code characterized by the parameters [20, 10, 8]. In accordance with

Lemma 2.3, Theorems 4.2, and 4.5, it can be concluded that Φ(C ) [280, 140, 112] forms a skew cyclic code over F4 with
good parameters.

The Tables 1-6. present a compilation of codes, highlighting their potential applicability and effectiveness for
reference.

Volume 5 Issue 4|2024| 6277 Contemporary Mathematics



Table 1. Linear skew cyclic codes with good parameters over F2

n k d Ci jk =
⟨
gi jk(x)

⟩
n
′

k
′

d
′ O

27 9 9 (000000000110100111) 378 126 126 O

42 7 19 (00000000000000000000000000000110111) 588 98 266 O

51 19 14 (101000001001010010101111101101011) 714 266 196 O

73 36 16 (11011100001011011011001000110110101001) 1,022 504 224 O

78 12 32

 000000000000000000000000000111111

011111001101011101101001011001000

 1,092 168 448 O

90 14 36

 00000000000000000000000000000000000000

00000000000000000000111001001100001101

 1,260 196 504 O

Table 2. Linear skew cyclic codes with good parameters over F3

n k d Ci jk =
⟨
gi jk(x)

⟩
n
′

k
′

d
′ O

28 8 15 (12110111020121002111) 392 112 210 O

30 10 13 (00000000002200200211) 420 140 182 O

36 9 18 (000000000000000000010210121) 504 126 252 O

50 10 25 (0000000000000000000000000000002222100112) 700 140 350 O

68 16 30

00000000000000000020201100

22211122011210101202212002

 950 224 420 O

160 8 99



00000000000000000000000000000000000000

00000000000000000000000000000000001101

01201022002211202211001010011201002101

10210121122110222102111102220100000001


2,240 112 1,386 O

182 12 104



00000000000000000000000000000000000

00000000000000000000000000000000000

00000000000121201110212210121121101

12122210222210122220122212110110211

21012212011102121010000000000011022


2,548 168 1,456 O

182 36 72



1212101100122000121220122201022221120

1000110101202001222011210121202212202

1200011200211110121212010122210201120

010111111222021111021210021202010001


2,548 504 1,008 O
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Table 3. Linear skew cyclic codes with good parameters over F4

n k d Ci jk =
⟨
gi jk(x)

⟩
n
′

k
′

d
′ O

21 15 5
(
1α210α21α2

)
294 210 70 O

43 36 5
(
10α11α201

)
602 504 70 O

51 6 34

1α2α0α2α20ααα2αα20α2α2α2α21α0α2α

αα200α0αα2αααα10α2α00αα2α20α20α

 714 84 476 O

58 15 28

 000000000000000ααα2α01α11

α201000α211αα0αα21α2α2010

 812 210 392 O

63 45 7
(

1α2α21αα211αα0α201αα2α201

)
882 630 98 O

65 51 5
(
11α21α20α21α20α21α211

)
910 714 70 O

85 14 48


1α0α00α2111αααα2α0001α01α21

0αα1α2001α2α1α00α2α1α2αααα21α

αα1α01α1α2α2α2110α1α0α2αα011

 1,190 196 672 O

111 93 8
(
1αα2αα210α2α2α2α20α2α2α2αα11

)
1,554 1,302 112 O

255 18 156



10α2110α2α1α2αααα1α001αα2α210α2101

10α2α20αα2α11αα0αα2α0ααα2α20000αα2

0αα0111α010αα0αα2α200αα2α1α20α2α20

α2α2α1α21110α2000α2011α210αα2α21000

α200αα1αααα0αα2α0α20αα2α21α20αα2α21

α1α2α20α0α2α200α20αα2α210011α21α21αα

00α10α21α0α1111α2α2αα2α200α2α11α21

01α201α00αααα2α110α2α1α210α11α2α1α2

11110α1αα200αα1α20α2



3,570 252 2,184 O

Table 4. Linear skew cyclic codes with good parameters over F5

n k d Ci jk =
⟨
gi jk(x)

⟩
n
′

k
′

d
′ O

31 10 15 (1301332234433000424014) 434 140 210 O

50 25 15 (1311231220024342244213341) 700 350 210 O

63 50 8 (1432034120341203214) 882 700 112 O

124 12 83



1231032322404213113423344420

4041314321103142210313334014

4123334143100214011301312123

0232340004314004030342320001


1,736 168 11,626 O

Volume 5 Issue 4|2024| 6279 Contemporary Mathematics



Table 5. Linear skew cyclic codes with good parameters over F7

n k d Ci jk =
⟨
gi jk(x)

⟩
n
′

k
′

d
′ O

24 12 10 (15246351001) 336 168 140 O

29 7 19 (1636301660425313541111) 406 98 266 O

40 20 14 (122226321653345615221) 560 280 196 O

50 36 10 (134024606320441) 700 504 140 O

50 16 26
(

11364246101003545053540010114541361

)
700 224 364 O

100 4 84


110534352414420456432310142441530

54313223332061000660243425363350

32134546063533624023464554445016

 1,400 56 1,176 O

Table 6. Linear skew cyclic codes with good parameters over F8

n k d Ci jk =
⟨
gi jk(x)

⟩
n
′

k
′

d
′ O

19 13 6
(
1α5α3α3α3α51

)
266 182 846 O

37 24 10
(
1α40α3111111α3α41

)
518 336 140 O

40 20 14
(
α6α2α6α6α4α6α500αα3α60αα5α4α6α510

)
560 280 196 O

57 50 6
(
1α4αα4α4αα41

)
798 700 84 O

73 9 52



11αα210α2α5α4α6α411α21α2α6

11ααα4α6α51α61α6α3α2α41α3

αα6α5α6α3α3α4αα3α5α30αα31α2

α4αα6α400α3α2α3α4α6α3α01


1,022 126 728 O

73 58 7
(
1α5α3α3α3α6αα2α610α2α3α3α41

)
1,022 812 98 O

103 17 64



1α2α1α3αα01α2α4α6α2α5α3α61α3α4α30α4

α30α1α4α11α3α6α50α1α4α50αα5α211α6α0

α6α6α2α6α5α5αα61α5α3α6α2α5α5α5αα2α2

α4α3α4αα20α5α3α2α3α4α6α2α3α41α6α5α51


1,442 238 896 O

5.1 Practical application: optimal skew cyclic codes for multi-secret sharing schemes

This section demonstrates the steps involved in the new multi-secret sharing scheme, ref showing how linear algebra
techniques can be applied to share and recover multiple secrets securely [20]. Let Φ(C ) be an [n, k]-code over Fq, defined
by a generator matrix Φ(G ) and a parity-check matrix Φ(H ). Since the rank of Φ(G ), denoted r(Φ(G )), is equal to k,
the transpose of Φ(G ), written as Φ(G )T , is an k×n matrix with full column rank k.
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Theorem 5.2 [20] Let Φ(G ) be a generator matrix of an [n, k]-code Φ(C ) over Fq. Then there exists a unique word
x = (Φ(G )T )+s in (Fq)

k that approximates a received word s near the codewords of Φ(C ) if and only if the following
equation is satisfied.

r(Φ(G )) = r(Φ(G )Φ(G )T ) = r(Φ(G )T Φ(G )) 6= 0. (41)

Proposition 5.3 In the scheme just introduced, the secret is determined if and only if

r(Φ(G )) = r(Φ(G )Φ(G )T ) = r(Φ(G )T Φ(G )) 6= 0 (42)

is satisfied.
Proof. According to Theorem 5.1 a unique word x ∈ (F5)

k approximates a received word s near the codewords of
Φ(C ) if and only if the condition r(Φ(G )) = r(Φ(G )Φ(G )T ) = r(Φ(G )T Φ(G )) is met.

In this scheme, sharing a secret among n participants is formalized using a mathematical approach where each
participant receives a share via a sharing function. First, it is essential to note that Φ(G )+ = Φ(G )T (Φ(G )Φ(G )T )−1.
The sharing function is defined as

f (s) = s−Φ(G )T x, (43)

where s = (s1 s2 . . . sn) represents the secret to be shared, and Φ(G ) is a k×n matrix over (Fq)
n with rank k. Here, x is

computed as

x = (Φ(G )T )+s, (44)

utilizing the pseudoinverse of Φ(G ). The scheme operates under specific steps. First, participants belong to the set (Fq)
n,

and the secret space is defined as (Fq)
n/(Fq)

k, where the secret s resides. The secret s can be represented as

s = Φ(G )T x (45)

with x ∈ (Fq)
k. To establish that there is a unique x for secret recovery, the rank condition is required:

rank(Φ(G )) = rank(Φ(G )Φ(G )T ) = rank(Φ(G )T Φ(G )).

Once verified, the share for each participant is calculated as

r = f (s) = s−Φ(G )T x. (46)

To reconstruct the secret, one solves the system
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(s1 s2 . . . sn)−Φ(G )T x = r. (47)

By solving this equation, the original secret s is successfully recovered, completing the sharing and recovery process.
Example 5.4 Let f : (F5)

16/(F5)
16 −→ (F5)

16. We construct a multisecret-sharing scheme based on [16, 16]-code
linear over F5 with generator matrix G by using

r(Φ(G )) = r(Φ(G )Φ(G )T ) = r(Φ(G )T Φ(G )).

We know that r(Φ(G )) = 16, where r(Φ(G )) is the rank of Φ(G ). So Φ(G )T , the transpose of Φ(G ) is an 16×16
matrix of full column rank 16. The generator matrix of this code is given by

Φ(G ) =



2 0 0 0 0 0 0 0 3 1 0 2 4 2 0 2
4 3 0 0 0 2 4 4 1 0 2 4 4 0 0 0
0 2 0 0 0 0 0 0 3 1 0 2 4 2 0 2
0 0 2 0 0 0 0 0 0 3 1 0 2 4 2 0
0 0 0 2 0 0 0 0 0 0 3 1 0 2 4 2
0 0 0 0 2 0 0 0 0 0 0 3 1 0 2 4
0 0 0 0 0 2 0 0 0 0 0 0 3 1 0 2
0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0



,

then
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Φ(G )T =



2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 2 0 0 0 0 0 0 0
3 1 3 0 0 0 0 0 0 2 0 0 0 0 0 0
1 0 1 3 0 0 0 0 0 0 2 0 0 0 0 0
0 2 0 1 3 0 0 0 0 0 0 2 0 0 0 0
2 4 2 0 1 3 0 0 0 0 0 0 2 0 0 0
4 4 4 2 0 1 3 0 0 0 0 0 0 2 0 0
2 0 2 4 2 0 1 0 0 0 0 0 0 0 2 0
0 0 0 2 4 2 0 3 0 0 0 0 0 0 0 2
2 0 2 0 2 4 2 1 3 0 0 0 0 0 0 0



.

Let the secret s = (1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1) /∈ Φ(C ). This means the equality s = Φ(G )T x is inconsistent.

Φ(G )T Φ(G ) =



0 2 0 0 0 3 1 1 0 2 3 0 4 4 0 4
2 3 0 0 0 1 2 2 4 2 1 1 0 4 0 4
0 0 4 0 0 0 0 0 0 1 2 0 4 3 4 0
0 0 0 4 0 0 0 0 0 0 1 2 0 4 3 4
0 0 0 0 4 0 0 0 0 0 0 1 2 0 4 3
3 1 0 0 0 3 3 3 2 0 4 3 4 2 0 4
1 2 0 0 0 3 0 1 4 0 3 1 1 0 1 2
1 2 0 0 0 3 1 0 4 0 3 1 1 0 0 1
0 4 0 0 0 2 4 4 3 1 2 1 3 2 0 2
2 2 1 0 0 0 0 0 1 0 3 4 4 1 1 4
3 1 2 1 0 4 3 3 2 3 3 1 0 0 4 1
0 1 0 2 1 3 1 1 1 4 1 3 0 0 0 2
4 0 4 0 2 4 1 1 3 4 0 0 1 2 1 1
4 4 3 4 0 2 0 0 2 1 0 0 2 3 1 4
0 0 4 3 4 0 1 0 0 1 4 0 1 1 2 4
4 4 0 4 3 4 2 1 2 4 1 2 1 4 4 2



.

Since r(Φ(G )) = r(Φ(G )Φ(G )T ) = r(Φ(G )T Φ(G )) = 16, there exists a unique x, meaning the secret can be
recovered. Thus, we have
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Φ(G )Φ(G )T =



2 0 3 4 0 3 3 2 1 1 2 0 4 3 4 0
0 3 3 0 0 1 1 3 3 2 0 4 3 3 0 0
3 3 2 4 0 3 3 2 1 1 2 0 4 3 4 0
4 0 4 3 4 1 0 1 0 0 1 2 0 4 3 4
0 0 0 4 3 4 1 4 1 0 0 1 2 0 4 3
3 1 3 1 4 4 1 0 2 0 0 0 1 2 0 4
3 1 3 0 1 1 3 2 1 0 0 0 0 1 2 0
2 3 2 1 4 0 2 4 3 0 0 0 0 0 0 1
1 3 1 0 1 2 1 3 3 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 4 0 0 0 0 0 0
2 0 2 1 0 0 0 0 0 0 4 0 0 0 0 0
0 4 0 2 1 0 0 0 0 0 0 4 0 0 0 0
4 3 4 0 2 1 0 0 0 0 0 0 4 0 0 0
3 3 3 4 0 2 1 0 0 0 0 0 0 4 0 0
4 0 4 3 4 0 2 0 0 0 0 0 0 0 4 0
0 0 0 4 3 4 0 1 0 0 0 0 0 0 0 4



.

It is clear that

(Φ(G )Φ(G )T )−1 =



2 2 4 0 2 4 0 2 4 0 2 0 3 2 2 4
2 1 0 0 4 3 3 0 4 4 4 3 2 3 0 4
4 0 3 0 4 3 4 2 1 2 4 4 4 1 2 1
0 0 0 4 0 0 0 0 0 0 4 3 0 1 2 1
2 4 4 0 4 0 1 2 2 4 2 0 4 1 2 4
4 3 3 0 0 4 2 4 4 3 4 2 1 0 2 0
0 3 4 0 1 2 2 2 3 0 3 3 4 2 4 3
2 0 2 0 2 4 2 0 3 4 3 2 4 2 3 2
4 4 1 0 2 4 3 3 4 3 0 3 0 3 4 0
0 4 2 0 4 3 0 4 3 4 4 0 1 4 4 3
2 4 4 4 2 4 3 3 0 4 0 1 4 2 0 1
0 3 4 3 0 2 3 2 3 0 1 2 2 0 1 2
3 2 4 0 4 1 4 4 0 1 4 2 2 3 2 0
2 3 1 1 1 0 2 2 3 4 2 0 3 3 3 4
2 0 2 2 2 2 4 3 4 4 0 1 2 3 2 0
4 4 1 1 4 0 3 2 0 3 1 2 0 4 0 2



,

and
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Φ(G )+ =



2 3 3 0 0 0 2 4 4 1 0 2 4 1 4 4
4 3 1 0 0 0 2 4 4 1 0 2 4 1 4 4
0 0 0 3 0 0 0 0 0 0 3 1 0 2 4 2
4 3 3 0 3 0 2 4 4 3 4 0 3 2 4 3
3 1 1 0 0 3 4 3 3 1 3 4 2 0 4 0
4 3 3 0 0 0 0 4 4 3 4 2 2 0 3 4
2 4 4 0 0 0 1 0 2 4 2 1 1 1 1 0
1 2 2 0 0 0 3 1 4 2 1 3 3 3 3 1
0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
1 2 2 0 0 0 3 1 1 2 1 3 3 3 3 1



.

Thus, x is calculated as

xT = Φ(G )T (Φ(G )Φ(G )T )−1s = (3 4 2 0 2 0 3 0 0 3 1 4 2 0 3 3).

Let the message vector (1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1) represent the secret. Then, the sharing function becomes

Φ(G )T x = (3 4 2 0 2 0 3 0 0 3 1 4 2 0 3 3)

and

f (s) = s−Φ(G )T x = (3 3 1 4 3 1 4 3 4 2 0 3 1 4 2 3).

To retrieve the secret s, we solve the following equation:

(s1 s2 . . . s16)− (3 4 2 0 2 0 3 0 0 3 1 4 2 0 3 3) = (3 3 1 4 3 1 4 3 4 2 0 3 1 4 2 3). (48)

Thus, the secret is

(s1 s2 . . . s16) = (1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1).
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5.2 Limitations of the proposed model

While the proposedmodel of skew cyclic codes over the ringR offers significant potential for constructing codeswith
optimal parameters over Fq, it operates under certain assumptions and limitations that affect its generalizability. Primarily,
the construction assumes specific ring structures and relies on the particular algebraic properties of R = R1 ×R2 ×R3,
where Ri are finite commutative rings with selected idempotent decompositions. This choice facilitates the factorization
and construction of generator polynomials within the product ring framework but may not apply to rings that lack these
properties. Additionally, the computational approach used to achieve optimal parameters-employing tools like Magma,
SageMath, and reference tables from Codetables-relies on empirical validation and is limited by computational power
and the scope of available databases. Hence, the model’s effectiveness in discovering new, optimal skew cyclic codes
has some constraints by these tools and the specific parameters (e.g., block length n, field size q) available in pre-existing
code tables.

5.3 Research directions and applicability

The current study opens several avenues for future research in both theoretical and practical applications of skew
cyclic codes over product rings. One promising direction is the exploration of alternative ring structures, including non-
commutative or more complex rings, to expand the scope of skew cyclic code applications. Another research focus
centers on optimizing parametersmore effectively by refining factorization algorithms and computational tools, potentially
using quantum computing or machine learning to enhance code search efficiency. In terms of practical applications,
the results of this study are particularly relevant for fields requiring robust error-correction mechanisms, such as digital
communications, secure data transmission, and cryptographic protocols. The unique structure of skew cyclic codes over
R enables efficient encoding and decoding, with parameters suited to high-reliability environments where data integrity
and security are paramount. Subsequent studies could aim to incorporate these codes into real-world communication
systems and investigate their application in developing new cryptographic schemes, especially considering the growing
demands for data security and integrity in extensive information networks.

6. Conclusion
In conclusion, this article explores the structure and properties of linear codes over the ring R = R1 ×R2 ×R3,

with a particular focus on skew cyclic codes. By examining the behavior of these codes over R, we highlight significant
characteristics that differentiate them from classical cyclic codes. Additionally, we demonstrate how skew cyclic codes
over R can be utilized to identify skew cyclic codes over the finite field Fq with optimal parameters. These findings
provide valuable insights into the construction of efficient coding schemes and further our understanding of the algebraic
structures underlying such codes.
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