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Abstract: In this work, we have proposed a Jacobian free iterative vectorial multiparametric family for solving systems of
nonlinear equations. The scheme is obtained by replacing the Jacobian matrix by divided difference operator in a family
of third and fourth order iterative methods which maintains the convergence order. This way we avoid the expensive
inversion of the inverse of the Jacobian which may not even exist. Moreover, the efficiency index of the method is
studied in detail. The comparisons of the numerical experiments of the proposed family and other competitive methods
corroborate the utility of presented method over the existing ones.
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1. Introduction
The most efficient and widely opted scheme for solving vectorial non-linear problems of the form

F(x) = 0, (1)

where F : Ω ⊆ B1 → B2 be a nonlinear Fréchet differentiable operator, B1 and B2 are Banach spaces i.e complete normed
spaces and Ω is an open convex subset of B1 is the quadratically convergent Newton’s method [1] given by

xk+1 = xk −F ′(xk)
−1F(xk), k = 0, 1, 2, . . . (2)

provided F ′ does not vanish in Ω, x0 is initial point and F ′(xk)
−1 ∈L (B2, B1), where L (B2, B1) is set of bounded linear

operators from B2 into B1. In terms of computational cost, two evaluations per iteration are used to attain the second order
of convergence of (2). Such a computational effort, especially one involving the inverse is very expensive in general or
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may not even exist rendering the usage of (2) or other methods using inverses of the Fréchet derivative impossible [1–3].
That is why researchers and practitioners have replaced the Fréchet-derivative by divided differences of order one [4–8].
A noticeable refinement of Newton’s method has been attempted by Traub (the Traub-Steffensen method) [1]:

xk+1 = xk − [uk, xk; F ]−1F(xk), k = 0, 1, 2, . . . , (3)

where uk = xk+βF(xk) and [uk, xk; F ] is first divided difference of F . A variety of modified Newton’s method or Newton-
like methods of higher order have been developed in literature [2–14]. The family of third and fourth order methods given
in [15] in Banach spaces is given as



yk = xk −αF ′(xk)
−1F(xk),

zk = xk −F ′(xk)
−1(F(yk)+αF(xk)),

wk = xk −F ′(xk)
−1(F(zk)+F(yk)+αF(xk)),

(4)

where α ∈ R. The iterative expression of iterative class (4) involves a Jacobian matrix. It is well known that such
the iterative methods are highly more stable than Jacobian-free methods but there are many practical situations where the
calculations of a Jacobian matrix, if it exists, are computationally expensive, and/or it requires a great deal of time for them
to be given or calculated. Therefore, Jacobian-free schemes are quite popular for finding the roots of nonlinear equations
and systems of nonlinear equations. The foremost aim of the current study is to design a Jacobian-free Parametric Iterative
Vectorial Scheme maintaining the convergence order and without considerable increase in computational cost.

The rest of the article is structured as follows: Two versions of the local convergence one using Taylor series and
another generalized continuity are presented in Section 2 and Section 3, respectively. At the end of Section 3 the semilocal
analysis can be found. The work on efficiency index appears in Section 4. Numerical examples can be found in Section
5 and the conclusions in Section 6.

2. Design of the Jacobian-free vectorial scheme
The parametric family free from Jacobian matrix F ′(x∗) is obtained by simply replacing it with a symmetrical divided

difference operator [xk+ϖF(xk), xk−ϖF(xk); F(xk)], where ϖ ∈R\{0}. Thus, the proposed family is modified but has
same characteristics and convergence order as that of (4). The Jacobian-free scheme obtained for α = 1 has the iterative
structure given as:



yk = xk − [xk +ϖF(xk), xk −ϖF(xk); F ]−1F(xk),

zk = yk − [xk +ϖF(xk), xk −ϖF(xk); F ]−1F(yk),

xk+1 = zk − [xk +ϖF(xk), xk −ϖF(xk); F ]−1F(zk),

(5)

where ϖ ∈ R \{0} and is denoted by M41. The next theorem proves that the family M41 has fourth convergence order
for any value of real non-zero parameter ϖ .
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Theorem 1 [16] Let the function F : Ω ⊆ Rn → Rn be sufficiently differentiable in a convex set Ω containing the
zero x∗ of F(x). Suppose that F ′(x) is continuous and nonsingular at x∗. If an initial approximation x0 is sufficiently close
to x∗, then the local convergence order of the method (5) is four.

Proof. Developing F(xk) in the neighborhood of x∗, we write

F(xk) = F ′(x∗)
[
ek +A2e2

k +A3e3
k +A4e4

k +O(e5
k)
]
, (6)

where ek = xk − x∗, Ai =
1
i!

Γ$, F(i)(x∗), F(i)(x∗) ∈ L (Rn×,
i· · · ·, ×Rn, Rn), Γ ∈ L (Rn, Rn) and (ek)

i = (ek,

ek,
i−times· · · · · · , ek) with ek ∈ Rn, i = 2, 3, . . . Also,

F ′(xk) = F ′(x∗)
[
I +2A2ek +3A3e2

k +4A4e3
k +O(e4

k)
]
. (7)

F ′′(xk) = F ′(x∗)
[
2A2 +6A3ek +12A4e2

k +O(e3
k)
]
. (8)

F ′′′(xk) = F ′(x∗)
[
6A3 +24A4ek +O(e2

k)
]
. (9)

Using the Genocchi-Hermite formula [17], the following expansion is obtained:

[xk +ϖF(xk), xk −ϖF(xk); F ] = F ′(xk)+
1
6

F ′′′(xk)(ϖF(xk)
2 +O(ϖF(xk))

3). (10)

Substituting (7) and (9) in (10) yields

[xk +ϖF(xk), xk −ϖF(xk); F ] =F ′(x∗)(1+2A2ek +3A3e2
k +4A4e3

k +O(e4
k))

+
1
6
(6A3 +24A4ek +O(e2

k))∗
(
ϖ2F ′(x∗)2(ek +A2e2

k +A3e3
k +O(e4

k))
2)

=F ′(x∗)[I +2A2ek +A3(3I +ϖ2F ′(x∗)2)e2
k

+(4A4 +2ϖ2F ′(x∗)2A3A2 +ϖ2F ′(x∗)24A4)e3
k ]+O(e4

k).

It can be simply checked that the inverse operator [xk +ϖF(xk), xk −ϖF(xk); F ]−1 has the following expression
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[xk +ϖF(xk), xk −ϖF(xk); F ]−1 =

(
I −2A2ek +

(
4A2

2 −A3(3I +ϖ2F ′(x∗)2)
)

e2
k

+(4A2A3(3I +ϖ2F ′(x∗)2)−4A4(I +ϖ2F ′(x∗)2)

−2ϖ2F ′(x∗)2A3A2)e3
k

)
F ′(x∗)−1 +O(e4

k).

(11)

Taking ẽk = yk − x∗ and using (11), we obtain using Taylor development of F(xk)

ẽk =xk − x∗− [xk +ϖF(xk), xk −ϖF(xk); F ]−1F(xk)

=ek −
(

I −2A2ek +
(
4A2

2 −A3(3I +ϖ2F ′(x∗)2)
)

e2
k

+(4A2A3(3I +ϖ2F ′(x∗)2)−4A4(I +ϖ2F ′(x∗)2)−2ϖ2F ′(x∗)2A3A2)e3
k

)

∗
(

ek +A2e2
k +A3e3

k +A4e4
k

)
+O(e5

k)

=ek − ek −A2e2
k −A3e3

k +2A2e2
k +2A2

2e3
k +2A2A3e4

k −
(
4A2

2 −A3(3I +ϖ2F ′(x∗)2)
)

e3
k

−
(
4A2

2 −A3(3I +ϖ2F ′(x∗)2)
)

A2e4
k −

(
4A2A3(3I +ϖ2F ′(x∗)2)

−4A4(I +ϖ2F ′(x∗)2)−2ϖ2F ′(x∗)2A3A2

)
e4

k +O(e5
k)

=A2e2
k +

(
−2A2

2 +A3(2I +ϖ2F ′(x∗)2)
)

e3
k

+

(
−A4 +2A2A3 −4A3

2 +3A3A2 +ϖ2A3F ′(x∗)2A2 −12A2A3

−4A2A3ϖ2F ′(x∗)2 +4A4 +4A4ϖ2F ′(x∗)2 +2ϖ2A3F ′(x∗)2A2

)
e4

k +O(e5
k)

=A2e2
k +Y3e3

k +Y4e4
k +O(e5

k),

where
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Y3 =−2A2
2 +A3(2I +ϖ2F ′(x∗)2)

Y4 = 3A4 −10A2A3 +3A3A2 −4a3
2 −4A2A3ϖ2F ′(x∗)2 +3ϖ2F ′(x∗)2A3A2.

Expanding F(yk) about x∗ Using Taylor’s series and using above result, we have

F(yk) =F ′(x∗)
[
ẽk +A2ẽ2

k +A3ẽ3
k +O(ẽ4

k)
]

=F ′(x∗)
[
A2e2

k +Y3e3
k +(Y4 +A3

2)e
4
k +O(e5

k)
]
.

(12)

Taking êk = zk − x∗ and using (12), we obtain the following

êk =yk − x∗− [xk +ϖF(xk), xk −ϖF(xk); F ]−1F(yk)

=ẽk −
(

I −2A2ek +
(
4A2

2 −A3(3I +ϖ2F ′(x∗)2)
)

e2
k

+(4A2A3(3I +ϖ2F ′(x∗)2)−4A4(I +ϖ2F ′(x∗)2)−2ϖ2A3F ′(x∗)2A2)e3
k

)

∗
(

A2e2
k +Y3e3

k +(Y4 +A3
2)e

4
k +O(e5

k)

)
+O(e5

k)

=A2e3
k +Y3e3

k +Y4e4
k +O(e5

k)

−
(

A2e2
k +Y3e3

k +(Y4 +A3
2)e

4
k −2A2

2e3
k −2A2Y3e4

k

+(4A2
2 −A3(3I +ϖ2F ′(x∗)2))A2e4

k +O(e5
k)

)

=A2e2
k +Y3e3

k +Y4e4
k −A2e2

k −Y3e3
k − (Y4 +A3

2)e
4
k +2A2

2e3
k +2A2Y3e4

k

−
(
4A2

2 −A3(3I +ϖ2F ′(x∗)2)
)

A2e5
k +O(e5

k)

=2A2
2e3

k +Y6e4
k +O(e5

k),

where
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Y6 =−7A3
2 +3A3A2 +2A2A3 +A2A3ϖ2F ′(x∗)2 +ϖ2F ′(x∗)2A3A2.

Expanding F(zk) about x∗ Using Taylor’s series and using above result, we have

F(zk) =F ′(x∗)
[
êk +A2ê2

k +O(ê3
k)
]

=F ′(x∗)
[
2A2

2e3
k +Y6e4

k +O(e5
k)
]
.

(13)

Using (11) and (13), the error equation is given as

ek+1 =zk − x∗− [xk +ϖF(xk), xk −ϖF(xk); F ]−1F(zk)

=−2A2
2e3

k +Y6e4
k −

(
I −2A2ek +

(
4A2

2 −A3(3I +ϖ2F ′(x∗)2)
)

e2
k

+(4A2A3(3I +ϖ2F ′(x∗)2)−4A4(I +ϖ2F ′(x∗)2)−2ϖ2F ′(x∗)2A3A2)e3
k

)

∗ (2A2
2e3

k +Y6e4
k +O(e5

k)) = 4A3
2e4

k +O(e5
k).

(14)

Therefore, (14) proves that the Jacobian-free parametric family (5) has fourth convergence order for ϖ ∈R\{0} and
hence, the proof is completed.

Remark 1 It is worth noticing that the proof of Theorem 1 is shown using Taylor series expansions for B1 = B2 =Rm,
where m is a natural number and by assuming F(5) which is not present on the method exists. Other drawbacks of
this approach are the unavailability of upper bounds on ∥xk − x∗∥. This is we do not know the number of iterates in
advance required to achieve a desired error tolerance (see also the motivational example in (P1) of Section 3 that follows).
Moreover, there is no information on the isolation of the solution. These problems are addressed in Section 3.

3. An extended convergence
The convergence analysis of Section 2 uses Taylor series. There are certain constraints with this technique:
(P1) The existence of F(5) which is not on the method (5) has been assumed but there exist even scalar equations

where this assumption is violated. Indeed, let Ω = [−2, 2]. Define the function F : Ω → R by

F(t) =


c1t2 log t + c2t5 + c3t4, for t ̸= 0

0, t = 0,
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where c1 ̸= 0 and c2 + c3 = 0 are constants. It follows by thus definition that t∗ = 1 ∈ Ω solves the equation F(t) = 0.
However, F(3) is not continuous on Ω, since the function is not continuous at t = 0. Therefore, the results of Section 2
cannot assure that limk→∞ xk = 1. But for ϖ = 1, and x0 = 1.2 the method 5 converges to t∗. This observation indicates
that the sufficient convergence conditions of the Section 2 can be replaced by weaker ones.

(P2) There is no natural integer K such that ∥xk − x∗∥ ≤ ε(ε > 0) for each k ≥ K.
(P3) There is no uniqueness of the solution domain.
(P4) The more challenging semilocal analysis of convergence is not presented.
(P5) The analysis is restricted to finite dimensional Euclidean space.
Therefore, The items (P1)− (P5) are the motivation for introducing this Section. We handle these problems as

follows:
(P1)

′ The local convergence uses conditions only on T , i.e the divided difference on the method (5).
(P2)

′ The number K is determined. Thus, the number of iterations to be carried out are known in advance.
(P3)

′ A domain is provided that contains only one solution.
(P4)

′ The semilocal analysis is provided using majorizing sequences [4, 18].
and

(P5)
′ The results are valid on Banach space.

Moreover, the concept of generalized continuity [4, 12, 18] is used to control the divided difference T .
It is convenient for the convergence study to introduce some notations. Set U = x+ϖF(x), V = x−ϖF(x) and

T (x) = [U, V ; F ]. Then, the method (5) becomes



yk = xk −T −1
k F(xk),

zk = yk −T −1
k F(yk),

xk+1 = zk −T −1
k F(zk).

(15)

Let S (x∗, r) = {x ∈ B1 : ∥x−x∗∥< r}, S [x∗, r] be closure of S (x∗, r), b = |ϖ |∥M∥ and Q = [0, +∞). Moreover,
by (SZP) we mean the smallest zero of a function which is positive. Furthermore, (FCND) is the notation for a function
which is continuous on each of each variables and nondecreasing on all variables. Next, we first present.

3.1 Local analysis

The main contribution of the local convergence analysis is the demonstration of the degree of difficulty in choosing
the initial points. Suppose:

(C1) There exists FCND H1 : Q −→ Q, H2 : Q −→ Q and W0 : Q×Q −→ Q such that the equation W0(H1(t),
H2(t))−1 = 0. Denote such zero by R0 and set Q1 = [0, R0).

(C2) There exists FCND W : Q1 ×Q1 −→ Q. Then, for b ≥ 0 and G1 : Q1 −→ Q defined by

G1(t) =
W (b(1+W0(t, 0))t, H2(t))

1−W0(H1(t), H2(t))

the equation G1(t)−1 = 0 has SZP in the interval Q1. Denote such zero by R1.
(C3) For G2 : Q1 −→ Q defined by
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G2(t) =
W (b(1+W0(G1(t)t, 0)), H2(t))G1(t)

1−W0(H1(t), H2(t))

the equation G2(t)−1 = 0 has SZP. Denote such zero by R2.
(C4) For G3 : Q1 −→ Q defined by

G3(t) =
W (b(1+W0(G2(t)t, 0)), H2(t))G2(t)

1−W0(H1(t), H2(t))

the equation G3(t)−1 = 0 has SZP. Denote such zero by R3.
Set

R = min{R j}, j = 1, 2, 3. (16)

The number R is shown in the Theorem 2 to be a radius of convergence for the method (15). Next, the radius R and
the scalar functions H1, H2, W0 and W relate to the divided differences appearing on the method (15).

(C5) There exists a solution x∗ ∈ B1 of the equation F(x) = 0 and M ∈ L (B1, B2) such that M−1 ∈ L (B2, B1), and
for each x, y ∈ Ω

∥M−1(T (U, V )−M)∥ ≤W0(∥U − x∗∥, ∥V − x∗∥),

∥U − x∗∥ ≤ H1(∥x− x∗∥)≤ ∥x− x∗∥

and

∥V − x∗∥ ≤ H2(∥x− x∗∥)≤ ∥x− x∗∥.

Set A0 = Ω∩S (x∗, R0).
(C6)

∥M−1(T − [x, x∗; F ])∥ ≤W (∥U − x∥, ∥V − x∗∥)

for each x ∈ A0. and
(C7)

S [x∗, R]⊂ Ω. and b ≥ |ϖ |∥M∥.

Remark 2 (i) Some candidates for M = I the identity operator on B1 or M = F ′(x∗) or M = [x̃, ỹ; F ], where x̃, ỹ ∈ Ω
are some auxiliary points. If we avoid the popular choice M = F ′(x∗) which implies that x∗ is a simple solution of the
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equation F(x) = 0 by the condition (C5), then the method (15) can be used to find solutions x∗ of multiplicity greater than
one.

Moreover, it is worth noticing that the conditions (C1)-(C7) do not necessarily imply that x∗ is a simple solution of
the equation F(x) = 0.

(ii)We can provide some possible choices of the functions H1 and H2 as follows:

U − x∗ = x+ϖF − x∗ = x− x∗+ϖF

= x− x∗+ϖ [x, x∗; F ](x− x∗)

= (I +ϖ [x, x∗; F ])(x− x∗)
(
I +ϖMM−1([x, x∗; F ]−M+M)

)
(x− x∗)

=
(
(I +ϖM)+ϖMM−1([x, x∗; F ]−M)

)
(x− x∗)

leading to

∥U − x∗∥ ≤
(
∥I +ϖM∥+bW0(∥x− x∗∥, 0)

)
∥x− x∗∥.

So, we can choose

H1(t) = (∥I +ϖM∥+bW0(t, 0)) t.

Similarly, we can set

H2(t) = (∥I −ϖM∥+bW0(t, t)) t.

Next, the conditions (C1)-(C7) and the proceeding terminology assist us to show the local convergence for the method
(15). Set A1 = S (x∗, R)−{x∗}.

Theorem 2 Suppose that the conditions (C1)-(C7) hold and x0 ∈A1. Then, the sequence {xk} produced by (15) is well
defined in S (x∗, R), stays in S (x∗, R) for each k = 0, 1, 2, . . . and is convergent to x∗. Moreover, for Pk = ∥xk − x∗∥
and each k = 0, 1, 2, . . . , the following assertions hold:

∥yk − x∗∥ ≤G1(Pk)Pk ≤ Pk < R, (17)

∥zk − x∗∥ ≤G2(Pk)Pk ≤ Pk (18)

and
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∥xk+1 − x∗∥ ≤G3(Pk)Pk ≤ Pk. (19)

Proof. The invertibility of the divided difference T is first established. Indeed, by (16) and the conditions (C1)-
(C5), we have in turn that

∥M−1(T −M)∥ ≤W0(∥U − x∗∥, ∥V − x∗∥)

≤W0(H1(∥x− x∗∥), H2(∥x− x∗∥))≤W0(R, R)< 1,

(20)

It follows by (20) and the standard Lemma on invertible operators attributed to Banach [4, 5, 18, 19] that T (x0) is
invertible, since x0 ∈ A1 and

∥T −1M∥ ≤ 1
1−W0(∥U − x∗∥, ∥V − x∗∥)

. (21)

Thus, the iterate y0 is well defined by the first substep of method (15). Then, we can also write

y0 − x∗ = x0 − x∗−A−1
0 F(x0)

= A−1
0 (A0 − [x0, x∗; F ])(x0 − x∗).

(22)

In view of (16), the conditions (C5), (C6) and (22)

∥y0 − x∗∥ ≤ W (∥U0 − x0∥, ∥V0 − x∗∥)∥x0 − x∗∥
1−W0(∥U0 − x∗∥, ∥V0 − x∗∥)

≤ G1(P0)P0 ≤ P0 < R,

(23)

where we used the calculation

U − x0 = ϖF(x0) = ϖ [x0, x∗; F ](x0 − x∗)

= ϖMM−1[x0, x∗; F ](x0 − x∗)

= ϖMM−1([x0, x∗; F ]−M+M)(x0 − x∗),

so

Contemporary Mathematics 6536 | Ioannis K. Argyros, et al.



∥U − x0∥ ≤ b(1−W0(P0, 0))P0.

Moreover, it follows by (23) that the item (17) holds for k = 0 and the iterate y0 ∈ A0. If the role of x0 is replaced by
y0 and z0, respectively in the second and third substep of the method (15), we get in turn that

∥z0 − x∗∥ ≤ W (∥U0 − y0∥, ∥V0 − x∗∥)∥y0 − x∗∥
1−W0(∥U0 − x∗∥, ∥V0 − x∗∥)

≤ G2(P0)P0 ≤ P0

(24)

∥x1 − x∗∥=≤ W (∥U0 − z0∥, ∥V0 − x∗∥)∥z0 − x∗∥
1−W0(∥U0 − x∗∥, ∥V0 − x∗∥)

≤ G3(P0)P0 ≤ P0.

(25)

Thus, the assertions (18), (19) hold if k = 0 and the iterates z0 and x1 ∈ A0. Simply switch the iterates x0, y0, z0, x1

by xi, yi, zi, xi+1, respectively in the preceding calculations to terminate the induction for the items (17)-(19). Then, from
(19), we can have

Pi+1 ≤ cPi ≤ ci+1P0 < R, (26)

where

c = G3(P0) ∈ [0, 1).

Therefore, we conclude that lim
i→+∞

xi = x∗.
Next, a domain is specified where the only solution is x∗.
Proposition 1 Suppose: The condition (C5) holds in S (x∗, q0) for some q0 ≥ 0 and there exists q ≥ q0 such that

W0(q, 0)< 1. (27)

Set A2 = Ω∩S [x∗, q]. Then, there is no solution other than x∗ in the domain A2.
Proof. Suppose that there exists y∗ ∈ A2 solving the equation F(x) = 0 such that y∗ ̸= x∗. Define the divided

difference L1 = [x∗, y∗; F ]. By using the condition (C5) and (27), we obtain in turn that

∥M−1(L1 −M)∥ ≤W0(∥x− x∗∥, 0)≤W0(q, 0)< 1. (28)

Hence, by (29), L−1
1 ∈ L (B2, B1). Moreover, by the identity
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y∗− x∗ = L−1
1 (F(y∗)−F(x∗)) = L−1

1 (0) = 0,

we deduce that y∗ = x∗.
Remark 3 Clearly, one can take q0 = R provided that all the conditions (C1)-(C7) hold in the Proposition 1.

3.2 Semilocal analysis

The calculations are similar to the local case. However, the role of x∗, W0 andW is exchanged by x0 ∈ Ω, ω0 and ω ,
respectively. Suppose:

(H1) There exist FCND H3 : Q → Q, H4 : Q → Q and ω0 : Q×Q → Q such that the equation ω0(H3(t), H4(t))−
1 = 0 has SZP. Denote such zero by s0 and set Q2 = [0, s0).

(M2) There exist FCND ω : Q2 ×Q2 → Q and M ∈ L (B1, B2). Define the sequence {αk} for some α0 = 0, some
β0 ≥ 0 and each k = 0, 1, 2, . . . by

γk = βk +
ω(βk +H3(αk), b(1+ω0(αk, 0))αk)(βk −αk)

1−ω0(H3(αk), H4(αk))
,

αk+1 = γk +
ω(γk +H3(αk), b(1+ω0(βk, 0))βk)(γk −βk)

1−ω0(H3(αk), H4(αk))
,

δk+1 = (1+ω0(αk, αk+1))(αk+1 −αk)+(1+ω0(H3(αk)H4(αk))(βk −αk)

(29)

and

βk+1 = αk+1 +
δk+1

1−ω0(H3(αk+1), H4(αk+1))
.

The sequence {αk} is shown to be majorizing for {xk} (see Theorem 3). But let us first present a general convergence
for it.

(H3) There exist s ∈ [0, s0) such that for each k = 0, 1, 2, . . .

ω0(H3(αk), H4(αk))< 1 and αk ≤ s.

This condition and (29) imply that for each k = 0, 1, 2, . . .

0 ≤ αk ≤ βk ≤ γk ≤ αk+1

and there exists s∗ ∈ [0, s] such that lim
k→+∞

αk = s∗.
It is well known that s∗ is the unique least upper bound of the sequence {αk}. As in the local case the functions ω0

and ω relate to the divided differences on the method.
(H4) There exist x0 ∈ Ω and M ∈ L (B1, B2) such that M−1 ∈ L (B2, B1) and for each x ∈ Ω
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∥M−1(T −M)∥ ≤ ω0(∥U − x0∥, ∥V − x0∥).

Set A3 = Ω∩S (x0, s0).
It follows that T −1

0 ∈ L (B2, B1), since

∥M−1(T0 −M)∥ ≤ ω0(0, 0)< 1.

Hence, we can choose β0 ≥ ∥T −1
0 F(x0)∥.

(H5)

∥M−1(T − [y, x; F ])∥ ≤ ω(∥U − y∥, ∥V − x∥)

∥U − x0∥ ≤ H3(∥x− x0∥)≤ ∥x− x0∥

and

∥V − x0∥ ≤ H4(∥x− x0∥)≤ ∥x− x0∥

for each x, y ∈ A3, and
(H6) S [x0, s∗]⊂ Ω.
Remark 4 (i)As in the local case some possible selections for M = I or M = F ′(x0) or M = [x, y; F ], where x, y ∈ Ω

are some auxiliary points.
(ii) Let us look at the motivational estimations for the selection of the functions H3 and H4:

U − x0 = x+ϖF(x)− x0 = x− x0 +ϖ(F(x)−F(x0))+ϖF(x0)

= (I +ϖ [x, x0; F ])(x− x0)+ϖF(x0)

=
(
I +ϖMM−1([x, x0; F ]−M+M)

)
(x− x0)+ϖF(x0)

=
(
(I +ϖM)+ϖMM−1([x, x0; F ]−F)

)
(x− x0)+ϖF(x0).

So, we have

∥U − x0∥ ≤
(
∥I +ϖM∥+bω0(∥x− x0∥, 0)

)
∥x− x0∥+ |ϖ |∥F(x0)∥.

Thus, we can choose

Volume 5 Issue 4|2024| 6539 Contemporary Mathematics



H3(t) =
(
∥I +ϖM∥+bω0(t, 0)

)
t + |ϖ |∥F(x0)∥.

Similarly, we can choose for an upper bound on ∥V − x0∥:

H4(t) =
(
∥I −ϖM∥+bω0(t, 0)

)
t + |ϖ |∥F(x0)∥.

The semi-local analysis uses the conditions (H1)-(H6).
Theorem 3 Suppose that the conditions (H1)-(H6) hold. Then, the sequence {xk} generated by the method (15) is

well defined in S [x0, s∗] remains in S [x0, s∗] for each k = 0, 1, 2, . . . and converges to a solution x∗ ∈ S [x0, s∗] of the
equation F(x) = 0 such that

∥xk − x∗∥ ≤ s∗−αk for each k = 0, 1, 2, . . . . (30)

Proof. The proof is based on induction to first show the estimates:

∥yk − xk∥ ≤ βk −αk, (31)

∥zk − yk∥ ≤ γk −βk (32)

and

∥xk+1 − zk∥ ≤ αk+1 − γk. (33)

Item (31) holds if k = 0 by (29) and the choice of β0 since ∥y0 − x0∥= ∥T −1
0 F(x0)∥ ≤ β0 = β0 −α0 < s∗. We also

have that the iterate y0 ∈ S [x0, s∗]. As in local case but using (H4)

∥M−1(T −M)∥ ≤ ω0(H3(∥xi − x0∥), H4(∥xi − x0∥))

≤ ω0(H3(αi), H4(αi))< 1 (by(H3)),

so T −1 ∈ L (B2, B1) and

∥T −1M∥ ≤ 1
1−ω0(H3(αi), H4(αi))

. (34)

Then, we can write by first substep of the method (15)
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F(yi) = F(yi)−F(xi)−Ti(yi − xi)

= ([yi, xi; F ]−Ti)(yi − xi)

leading by (H5) and the induction hypotheses that

∥M−1F(yi)∥ ≤ ω(βi +H3(αi), b(1+ω0(αi, 0)αi)(βi −αi), (35)

where we also used the calculations

yi −Ui = (yi − x0)+(x0 −Ui),

∥yi −Ui∥ ≤ ∥yi − x0∥+∥x0 −Ui∥ ≤ βi +H3(αi),

and

xi −Vi =−ϖF(xi) =−ϖMM−1 ([xi, x0; F ]−M+M)(xi − x0),

so

∥xi −Vi∥ ≤ b(1+ω0(αi, 0))αi.

Thus, we get

∥zi − yi∥=∥T −1
i F(yi)∥ ≤ ∥T −1

i M∥∥M−1F(yi)∥

≤ω(βi +H3(αi), b(1+ω0(αi, 0)αi))(βi −αi)

1−ω0(H3(αi), H4(αi))

=γi −βi

(36)

and

∥zi − x0∥ ≤∥zi − yi∥+∥yi − x0∥

=γi −βi +βi −α0 = γi < s∗.
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Hence, the item (32) holds and the iterate zi ∈ S [x0, s∗].
Then, we can write

F(zi) = F(zi)−F(yi)−Ti(zi − yi)

as in (35) by exchanging yi, xi by zi, yi, respectively, we get

∥M−1F(zi)∥ ≤ ω(γi +H3(αi), b(1+ω0(βi, 0)βi))(γi −βi).

So, by the third substep of the method (15)

xi+1 − zi =−T −1
i F(zi),

so

∥xi+1 − zi∥ ≤
ω(γi +H3(αi), b(1+ω0(βi, 0)βi))(γi −βi)

1−ω0(H3(αi), H4(αi))

αi+1 − γi

(37)

and

∥xi+1 − x0∥ ≤∥xi+1 − zi∥+∥zi − x0∥

=αi+1 − γi + γi −α0 = αi < s∗.

Thus, the estimate (33) holds and the iterate xi+1 ∈ S [x0, s∗].
Next, we can write

F(xi+1) = F(xi+1)−F(xi)−Ti(yi − xi)

= ([xi+1, xi; F ]−M+M)(xi+1 − xi)− (Ti −M+M)(yi − xi)

leading to
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∥M−1F(xi+1)∥ ≤(1+ω0(∥xi − x0∥, ∥xi+1 − x0∥))∥xi+1 − xi∥

+(1+ω0(H3(∥xi − x0∥), H4(∥xi − x0∥)))∥yi − xi∥

≤(1+ω0(αi, αi+1))∥αi+1 −αi∥

+(1+ω0(H3(αi), H4(αi)))∥βi −αi∥= δi+1.

(38)

The estimate (38) and

yi+1 − xi+1 =−T −1
i+1 F(xi+1) =−T −1

i+1 MM−1F(xi+1)

leading to

∥yi+1 − xi+1∥ ≤ ∥T −1
i+1 M∥∥M−1F(xi+1)∥

≤ δi+1

1−ω0(H3(αi+1), H4(αi+1))
= βi+1 −αi+1

(39)

and

∥yi+1 − x0∥ ≤∥yi+1 − xi+1∥+∥xi+1 − x0∥

≤βi+1 −αi+1 +αi+1 −α0 = βi+1 < s∗.

Hence, the item (31) holds for i+1 replacing i and the iterate yi+1 ∈ S [x0, s∗].
The induction for items (31)-(33) is terminated and all the iterates zi, yi, xi ∈ S [x0, s∗]. It also follows by (36), (37)

and (39) that the sequence {xi} is fundamental in Banach space B1. Hence, there exists x∗ ∈S [x0, s∗] such that lim
i→+∞

xi =

x∗. By letting i →+∞ in (38) and the continuity of the operator F , we deduce that F(x∗) = 0. Moreover by the estimate
for k = 0, 1, 2, . . .

∥xi+k − xi∥ ≤ αi+k −αi (40)

and k →+∞, we conclude that (30) holds.
Next, a domain is specified in Ω with any one solution.
Proposition 2 Suppose: There exists a solution t0 ∈S (x0, s1) for some s1 > 0; The condition (H4) holds inS (x0, s1)

and there exists s2 ≥ s1 such that
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ω0(s2, 0)< 1. (41)

Set A4 = Ω∩S [x0, s2]. Then, t0 is the only solution of the equation F(x) = 0 in the domain A4.
Proof. Suppose there exists w ∈ A4 such that F(w) = 0 and w ̸= t0. Then, the divided difference L = [t0, w; F ] is

well defined. By using the condition (H4) and (41), we get in turn

∥M−1(L−M)∥ ≤ ω0(∥w− t0∥, 0)≤ ω0(s2, 0)< 1.

Thus, L−1 ∈ L (B2, B1). Then, from the identity

w− t0 = L−1(F(w)−F(t0)) = L−1(0) = 0.

Therefore, we conclude that w = t0.
Remark 5 (i) The limit point s∗ can be replaced by s0 (see (H1)) in the condition (H6).
(ii) Suppose that all the conditions (H1)-(H6) in the Proposition 2 are validated. Then, we can set t0 = x∗ and s1 = s∗.

4. Efficiency index
For making comparison between different iterative methods, classical measure of efficiency, the efficiency index,

proposed by Ostrowski is most widely used with the expression

IE = p
1
d ,

where p is the convergence order of the method and d represents the number of functional evaluations needed to perform
the method per iteration.

Operational efficiency index, proposed by Traub, is the another measure of efficiency of iterative methods whose
formula is the following:

IO = p
1
oe ,

where oe represents the number of operations needed to calculate each iteration and is expressed in units of product.
In numerous instances, combination of the efficiency index and the operational efficiency is used, called the

computational efficiency index with expression

Ice = p

1
d +oe .
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In this section, different indices are studied for the proposed parametric family and results are compared with similar
existing methods in literature, which are M42 given by Cordero et al. [16], M51 given by Cordero et al. [20], M61 given
by Wang and Fan [7] and M71 given by Wang and Zhang [8].

While working on m×m systems, for calculating F(W ) and the divided difference operator, the number of functional
evaluations used are m and m2 −m, respectively.

The number of products and quotients needed to perform the operations are as given below:
• The cost of one scalar or vector product and one transpose vector/vector product is m each.
• The cost of matrix/vector product is m2 whereas that of matrix/matrix product is m3.
• The number of quotients of divided difference operator is m2.
• The cost of each LU decomposition is

1
3
(m3 −m).

• The cost of each system resolution is m2.
In case of proposed parametric family for ϖ = 1, which is denoted by M41, the number of functional evaluations in

computing F(xk), F(yk), F(zk), F(xk + rF(xk)), F(xk)− rF(xk) and one divided difference operator is:

5m+m2 −m = m2 +4m.

For the calculation of a scalar/vector product, a divided difference operator, one LU decomposition and solving three
systems, the number of operations required is:

m+m2 +
1
3
(m3 −m)+m+3m2.

The sum of evaluations and operations is:

m+m2 +
1
3
(m3 −m)+3m2 +m2 +4m =

1
3
(m3 −m)+5m2 +5m.

The the iterative expression for M42 [16]:

yk = xk − [xk +ϖF(xk), xk −ϖF(xk); F ]−1F(xk),

xk+1 = yk − [xk +ϖF(xk), xk −ϖF(xk); F ]−1(pkF(yk)+qkF(xk)),

where ϖ ∈ R\{0} and vk =
F(yk)

trF(yk)

F(xk)trF(xk)
, Kk =

1
1+λvk

, pk = Kk(1+ψvk) and qk = 2Kkvk.

It requires 4 functional evaluations and one divided difference operator. The number of evaluations is:

4m+m2 −m = m2 +3m.

It performs three scalar/vector products, two transpose vector/vector products, a divided difference operator, a single
LU decomposition and two systems are solved. The number of operations is:
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3m+2m+m2 +
1
3
(m3 −m)+2m2 =

1
3
(m3 −m)+3m2 +5m.

The evaluations and operations adds to give:

1
3
(m3 −m)+3m2 +5m+m2 +3m =

1
3
(m3 −m)+4m2 +8m.

The following is the iterative expression for M51 [20]:

yk = xk − [ak, bk; F ]−1F(xk),

zk = yk −α[ak, bk; F ]−1F(yk),

tk = zk −β [ak, bk; F ]−1F(zk),

xk+1 = zk − γ[ak, bk; F ]−1F(tk),

where ak = xk +F(xk) and bk = xk −F(xk). It requires 6 functional evaluations and one divided difference operator. The
number of evaluations is:

6m+m2 −m = m2 +5m.

It performs three scalar/vector products, a divided difference operator, a single LU decomposition and four systems
with same matrix are solved. The number of operations is:

3m+m2 +
1
3
(m3 −m)+4m2 =

1
3
(m3 −m)+5m2 +3m.

The addition of evaluations and operations yields:

m2 +5m+
1
3
(m3 −m)+5m2 +3m =

1
3
(m3 −m)+6m2 +8m.

The following is the iterative expression for M61 [7]:
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yk = xk − [wk, sk; F ]−1F(xk),

µ1 = (3I −2[wk, sk; F ]−1[yk, xk; F(xk)])[wk, sk; F ]−1,

zk = yk −µ1F(yk),

xk+1 = zk −µ1F(zk),

where wk = xk +F(xk) and sk = xk −F(xk). It requires five functional evaluations and two divided difference operator.
The number of evaluations is:

5m+2m2 −2m = 2m2 +3m.

It performs a matrix multiplication, a scalar matrix multiplication, a vector matrix multiplication, two divided
difference operator, and three systems with same coefficient matrix are solved. The number of operations is:

2m2 +
1
3
(m3 −m)+3m2 +m2 +m2 +m3 =

1
3
(m3 −m)+m3 +7m2.

The addition of evaluations and operations yields:

2m2 +3m+
1
3
(m3 −m)+m3 +7m2 =

1
3
(m3 −m)+m3 +9m2 +3m.

The following is the iterative expression for M71 [8]:

yk = xk − [wk, xk; F ]−1F(xk),

zk = yk − ([yk, xk; F ]+ [yk, wk; F ]− [wk, xk; F ])−1 F(yk),

xk+1 = zk − ([zk, xk; F ]+ [zk, yk; F ]− [yk, xk; F ])−1 F(zk),

where wk = xk + F(xk). It requires four functional evaluations and five divided difference operator. The number of
evaluations is:

4m+5m2 −5m = 5m2 −m.
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It performs calculations of five divided difference operator, two LU decompositions and one system is solved with
each of decomposition. The number of operations is:

5m2 +
2
3
(m3 −m)+2m2 =

2
3
(m3 −m)+7m2.

The addition of evaluations and operations yields:

5m2 −m+
2
3
(m3 −m)+7m2 =

2
3
(m3 −m)+12m2 −m.

The figures below represent the comparison of efficiency index, operational index and the computational efficiency
of methods M41, M42, M51, M61 and M71.

(a) For m = 1 to m = 10

(b) For m = 10 to m = 50
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(c) For m = 50 to m = 100

Figure 1. Efficiency index (a) For m = 1 to m = 10, (b) For m = 10 to m = 50, (c) For m = 50 to m = 100

(a) For m = 1 to m = 10

(b) For m = 10 to m = 50
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(c) For m = 50 to m = 100

Figure 2. Operational efficiency index (a) For m = 1 to m = 10, (b) For m = 10 to m = 50, (c) For m = 50 to m = 100

(a) For m = 1 to m = 10

(b) For m = 10 to m = 50
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(c) For m = 50 to m = 100

Figure 3. Computational efficiency index (a) For m = 1 to m = 10, (b) For m = 10 to m = 50, (c) For m = 50 to m = 100

In Figure 1, the efficiency index of various methods is illustrated for different system sizes. One can see from these
figures that M41 is better for small size and is competitive with M42 and M51 for size greater than or equal to 10.

In Figure 2, the operational efficiency index of different methods is illustrated for different system sizes. It is clear
from these figures that M41 takes lead for small size and is competitive with M42 and M51 for systems of greater size.

In Figure 3, the computational efficiency index of various methods is demonstrated for different system sizes. M41,
M42 and M51 stand out for system sizes greater than or equal to 1.

5. Numerical performance
This section is devoted to providing some numerical applications. The comparison of performance of M41, taking

ϖ = 3.1, some methods of M42 class, namely M421, M422 and M423 with values of parameters λ = {−4, −5, 0},
respectively and r = 1, ψ = 0 in all cases, M51, M61 and M71 is made. The stopping criterion is ∥xk+1 − xk∥ < 10−100

with maximum 50 iterations. Each calculation is performed using Mathematica 8 on Intel(R) Core(TM) i5−8250U CPU
@ 1.60GHz 1.80GHzwith 8GB of RAM running on theWindows 10 Pro version 2017 usingmultiple-precision arithmetic
with 4096 digits. The approximate computational order of convergence is given by formula [10]:

ρ =
ln∥xk+1 − xk∥/∥xk − xk−1∥
ln∥xk − xk−1/xk−1 − xk−2∥

Example 1 [16] Consider the system of 200 equations:

n

∑
l=1

xl − x j − ex j +4cos(2ln(|x j +1|))−3 = 0, j = 1, 2, . . . , l,

where l is taken as 200 and the initial approximation as x0 =

(
1

100
, . . . ,

1
100

)tr

to obtain the solution x∗ = (0, 0, . . . , 0)tr.

Table 1 displays the results established by different methods and clearly shows that the proposed method M41 takes the
least CPU time to reach the required tolerance, being significantly less than other methods that double their approximate
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computational order of convergence. Moreover, it requires the same iterations as the other methods with the higher order
of convergence and thus performs better than all other existing methods.

Table 1. Comparison of the performances of methods for Example 1

Method Iter ∥F(xk)∥ ∥xk+1 − xk∥ ρ CPU Time

M41 3 6.27e−110 9.03e−028 4.53 1.04

M421 3 6.97e−106 7.99e−027 4.14 1.91

M422 3 6.51e−106 7.85e−027 4.14 1.94

M423 3 9.13e−106 8.55e−027 4.14 1.66

M51 3 1.93e−253 4.10e−050 5.57 2.39

M61 3 7.90e−320 1.08e−053 6.07 4.14

M71 3 9.45e−507 5.38e−097 8.81 5.00

Example 2 Let B1 = B2 = R2, equipped with norm ∥.∥∞. We shall solve the two by two nonlinear system with
absolute values given as

3u2v+ v2 −1+ |u−1|= 0

u4 +uv3 −1+ |v|= 0.

Set ∥u∥∞ = ∥(u1, u2)∥∞ = max{|u1|, |u2|}, u1, u2 ∈ R, F = (F1 +G1, F2 +G2), where

F1(u1, u2) = 3u2
1u2 +u2

2 −1,

F2(u1, u2) = u4
1 +u1u3

2 −1,

G1(u1, u2) = |u1 −1| and G2(u1, u2) = |u2|.

The standard matrix M2×2(R) replaces [x, y; G] as

[x, y; G]i, 1 =
Gi(y1, y2)−Gi(x1, y2)

y1 − x1
,

[x, y; G]i, 2 =
Gi(x1, y2)−Gi(x1, x2)

y2 − x2
, i = 1, 2, x1, x2, y1, y2 ∈ R.

Using Newton’s method (2), with x0 = (1, 0) we obtain the Table 2.
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Table 2. Performance of Newton’s method (2) for example 2

k x(1)k x(2)k ∥xk − xk−1∥

0 1 0

1 1 0.333333333333333 3.333e−1

2 0.906550218340611 0.354002911208151 9.344e−2

3 0.885328400663412 0.338027276361322 2.122e−2

4 0.891329556832800 0.326613976593566 1.141e−2

5 0.895238815463844 0.326406852843625 3.909e−3

6 0.895154671372635 0.327730334045043 1.323e−3

7 0.894673743471137 0.327979154372032 4.809e−4

8 0.894598908977448 0.327865059348755 1.140e−4

9 0.894643228355865 0.327815039208286 5.002e−5

10 0.894659993615645 0.327819889264891 1.676e−5

11 0.894657640195329 0.327826728208560 6.838e−6

12 0.894655219565091 0.327827351826856 2.420e−6

13 0.894655074977661 0.327826643198819 7.086e−7

. . .

39 0.894655373334687 0.327826511746298 5.149e−19

Next, using the Secant method

xk+1 = xk − [xk−1, xk; F ]−1F(xk) (42)

with x−1 = (1, 0) and x0 = (5, 5), we obtain the Table 3.

Table 3. Performance of Secant method (42) for example 2

k x(1)k x(2)k ∥xk − xk−1∥

0 5 5

1 1 0 5.000e−00

2 0.989800874210782 0.012627489072365 1.262e−02

3 0.921814765493287 0.307939916152262 2.953e−01

4 0.900073765669214 0.325927010697792 2.174e−02

5 0.894939851625105 0.327725437396226 5.133e−03

6 0.894658420586013 0.327825363500783 2.814e−04

7 0.894655375077418 0.327826521051833 3.045e−04

8 0.894655373334698 0.327826521746293 1.742e−09

9 0.894655373334687 0.327826521746298 1.076e−14

10 0.894655373334687 0.327826521746298 5.421e−20

Finally, using our method (5) with ϖ = 1, and x0 = (1, 5), we get the Table 4.
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Table 4. Performance of proposed method (5) for example 2

k x(1)k x(2)k ∥xk − xk−1∥

0 5 5

1 1 0 5

2 0.909090909090909 0.363636363636364 3.363e−01

3 0.894886945874111 0.329098638203090 3.453e−02

4 0.894655531991499 0.327827544745569 1.271e−03

5 0.894655373334793 0.327826521746906 1.022e−06

6 0.894655373334687 0.327826521746298 6.089e−13

7 0.894655373334687 0.327826421746298 2.710e−20

It follows that the solution of the system is x∗ = (0.894655373334687, 0.327826421746298)tr. Notice that the new
method (5) is faster and cheaper than the competing ones.

6. Conclusion
In the foregoing study, a parametric family of iterative methods of fourth-order convergence order free from Jacobian

has been presented in this work. This class has been developed from the family defined in [15] so as to maintain the
properties by modification in the Jacobian matrix by a divided difference operator that also makes it suitable for non-
differentiable problems. The extended convergence, including local and semilocal, has been discussed using weaker
convergence conditions which extends its applicability. A comparison of computational efficiencies of the new scheme
with existing schemes is shown. It is proved that the proposed scheme is competitive as compared to other knownmethods
in the literature with similar characteristics [6–8, 11]. In the future, we plan to use the ideas of this article to extend the
applicability of the work in [7, 8, 10].
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