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Abstract: Nonlinear Schrödinger equations with constant delay are considered for the first time. These equations are
generalizations of the classical Schrödinger equation with cubic nonlinearity and the more complex nonlinear Schrödinger
equation containing functional arbitrariness. From a physical point of view, considerations are formulated about the
possible causes of the appearance of a delay in nonlinear equations of mathematical physics. To construct exact solutions,
the principle of structural analogy of solutions of related equations was used. New exact solutions of nonlinear Schrödinger
equations with delay are obtained, which are expressed in elementary functions or in quadratures. Some more complex
solutions with generalized separation of variables are also found, which are described by mixed systems of ordinary
differential equations without delay or ordinary differential equations with delay. The results of this work can be useful
for the development of new mathematical models described by nonlinear Schrödinger equations with delay, and the given
exact solutions can serve as the basis for the formulation of test problems designed to evaluate the accuracy of numerical
methods for integrating nonlinear partial differential equations with delay.
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1. Introduction
It is well known that the nonlinear Schrödinger equation with cubic nonlinearity is used in many branches of

theoretical physics, including nonlinear optics, superconductivity and plasma physics (see, for example, [1–6]):

iut +auxx +b|u|2u = 0, (1)
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where u = u(x, t) is a complex-value function of real arguments, t is the time, x is the spatial variable, a and b are
parameters of the equation, i2 =−1. The square of the modulus of the desired function determines the intensity of light.

There is also a more complex nonlinear Schrödinger equation, generalizing Eq. (1), which has the form

iut +auxx + f (|u|)u = 0, (2)

where f (|u|) is the potential function, which can be an arbitrary real continuous function.
The classical nonlinear Schrödinger equation with cubic nonlinearity (1) is used for mathematical modeling of wave

propagation in essentially all branches of physics where wave processes are theoretically studied. This equation became
the most popular after the theoretical and experimental substantiation of the application of the nonlinear Schrödinger
equation in nonlinear optics [7–10]. The expression with the second derivative is responsible for the dispersion of the
pulse at describing the propagation of pulses in an optical fiber, the function f (|u|) characterizes the interaction of the
light pulse with the fiber material and determines the nonlinear dependence of the refractive index of light in a nonlinear
medium. For the classical nonlinear Schrödinger equation (1) the quadratic multiplier |u|2 characterizes the intensity of
the light pulse and is called the Kerr nonlinearity.

The uniqueness of equation (1) is explained not only by the fact that this equation is the basic equation for describing
the processes of information transmission in an optical medium, but also by the fact that it belongs to the class of
integrable partial differential equations [1]. This equation has an infinite number of conservation laws [11], Backlund
transformations, and passes the Painlevé test [12]. The Cauchy problem for equation (1) with an initial condition of a
general form is solved by the method of the inverse scattering problem [13]. Note that the exact solutions of the nonlinear
Schrödinger equations (1) and (2) (including for an arbitrary function f (|u|)) are given in the reference books [14–16].
Related and more complex Schrödinger-type equations that appear in the literature can be found, for example, in [14–16].

A large number of publications to the study of nonlinear mathematical models for describing pulse propagation in an
optical medium without delay are currently devoted. Among the most well-known mathematical models, in addition to
the classical Schrodinger equation, we will mention the following equations and models here: the Kaup-Newell equation
[17], the Triki-Biswas equation [18, 19], the Ginzburg-Landau equation [20, 21], the Schrodinger-Hirota equation [22–
28], the Sasa-Satsuma equation [29–32], the Kundu-Mukherjee-Naskar model [33], the Gerjikov-Ivanov equation [34, 35],
the Kudryashov model [36–38], the Radhashrishnan-Kundu-Lakshmanan equation [39], the concatenation models with
power nonlinearities [40–44] and so on.

However, it is known [1, 2] that a mathematical model for describing the propagation of waves in optical fibers
is obtained from Maxwell’s equations taking into account dispersion and nonlinearity, which this system is reduced to
one equation for the electromagnetic field strength and polarization of the optical medium. In this case, both the linear
part of the polarization of the medium and the nonlinear part are expressed in the form of expressions containing the
susceptibility tensors of the medium of the first and third orders. One of the main assumptions in the derivation of the
classical nonlinear Schrodinger equation is that the assumption of an instantaneous response of the time dependence of
the susceptibility tensor in the form of a Dirac delta function is used, which is generally not the case. As a next step, it
is natural to assume that the time response of the susceptibility of the medium has a delay, which is taken into account in
this work.

The purpose of this article is to study the nonlinear Schrödinger equations with delay, which are a natural
generalization of nonlinear PDEs (1) and (2). Various classes of exact solutions of such equations will be described.

2. Nonlinear Schrödinger equations with delay
Preliminary remarks. The electro-magnetic wave propagate through an optical fiber has a huge speed but the

reaction of the optical fiber material has some inertia, which can lead to a delay. This inertia is especially evident in the
propagation of ultrashort optical solitons for femtosecond pulses of less than 1 ps. Taking into account forced Raman
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scattering when describing ultrashort pulses in an optical fiber, led to the discovery of a new phenomenon called soliton
frequency self-shift [1], which is directly related to the inertia of scattering and was explained by its occurrence. It is
established that this phenomenon generates a continuous shift in the carrier frequency of the optical soliton, in which
its spectrum becomes so wide that the high-frequency components begin to transfer their energy to the low-frequency
components. The above leads to the expediency of taking into account the delay in the expressions for the potential in
various generalizations and further modifications of the nonlinear Schrödinger equations.

The considered nonlinear Schrödinger equations with delay. In this article, we will consider a one-dimensional
equation Schrödinger with cubic nonlinearity and delay

iut +auxx +b|ū|2u = 0, ū = u(x, t − τ), (3)

and as well as a more complex nonlinear Schrödinger equation with delay

iut +auxx + f (|ū|)u = 0, ū = u(x, t − τ), (4)

where u = u(x, t) is a complex-value function of real variables, a and b are parameter of equations, i2 = −1, f (z) is the
potential and τ > 0 is time delay. We assume here and later that f (z) is an arbitrary real continuous function and τ is a
constant.

Note that the nonlinear Scrödinger equations with delay (3) and (4) are natural generalization of nonlinear
Schrödinger equations without delay (1) and (2); in the limiting case at τ → 0 Eqs. (3) and (4) coincide with Eqs. (1)
and (2).

Equations (3) and (4) have a simple physical interpretation: the process of propagation of an electromagnetic wave
through an optical fiber due to imperfection (“resistance”) the material exhibits inertial properties, i.e. the system does
not react to the impact instantly, as in the classical ideal case, but later for the time delay τ .

Remark 1 More simple nonlinear reaction-diffusion with constant delay and methods their solutions and some
applications have been considered in books [45, 46]. Exact solutions of these equations can be found, for examples,
in [15, 46–51]. Exact solutions of more complex the reaction-diffusion equations with variable delay have been described
in [15, 46, 52, 53]. Some exact solutions of nonlinear wave equations with delay are given in [15, 46, 54, 55].

Remark 2 To construct exact solutions of nonlinear PDEs with delay (3) and (4), we will use the principle of
structural analogy of solutions, which is formulated as follows: exact solutions of simpler equations can serve as a basis
for constructing solutions of more complex related equations (see, for example, [46, 52]). Namely, to construct exact
solutions of equations with delay (3) and (4) in this paper we will use the structure of known exact solutions of simpler
related equations without delay (1) and (2), which are given, for example, in [14, 15].

Transformation of complex-valued PDEs with delay into systems of two real PDEs with delay. In order to find
exact solutions to nonlinear Schrödinger equations with delay (3) and (4), which include the complex-valued function u,
we convert these equations to systems of two real PDEs with delay. To do this, let us present the desired function in an
exponential form

u = reiφ , r = |u|, (5)

where r = r(x, t)≥ 0 and φ = φ(x, t) are real functions. Substitute (5) into (4), and then divide all terms of the resulting
expression by eiφ . Further equating the real and imaginary parts to zero, we arrive at the following system of partial
differential equations with delay:
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− rφt +arxx −arφ2
x + r f (r̄) = 0, r̄ = r(x, t − τ),

rt +2arxφx +arφxx = 0.

(6)

For the equation with cubic nonlinearity (3) in the system (6) one should set f (r̄) = br̄2.
The system PDEs (6) together with expression (5) will be used further to construct exact solutions of the nonlinear

Schrodinger equations with delay (3) and (4).

3. Exact solutions of the Schrödinger equation with the Kerr nonlinearity and
delay
Let us present some exact solutions of the nonlinear Schrödinger equationwith cubic (Kerr) nonlinearity and delay (3).

To find exact solutions we use the principle of structural analogy of solutions (see Remark 2). Note that the same solutions
can also be obtained by combining the methods of generalized separation of variables (see, for example, [14, 56, 57]) and
the method of functional constraints [46, 48].

Below we first indicate the general structure of the solutions, and then present the main intermediate ordinary
differential equations (ODEs) or delay ODEs and final formulas. All results are easily verified by direct substitution
of the exact solutions into the delay PDE under consideration or the system of PDEs (6).

Solution 1. In the case f (r) = br2 the system of PDEs (6) has the simple exact solution of the form

r =C1, φ =C2x+C3 +Bt, B = bC2
1 −aC2

2 , (7)

whereC1, C2, andC3 are arbitrary real constants (C1 > 0). Substituting (7) into (5), we get the traveling wave solution of
the nonlinear Schrödinger equation (3):

u =C1ei(C2x+C3+Bt), B = bC2
1 −aC2

2 .

We can see that this solution does not depend on the time delay τ , it is periodic in both independent variables x and
t and has a constant amplitude.

Solution 2. For f (r) = br2, the system of PDEs (6) admits a more complex than (7), periodic in time t, but
independent of the time delay τ , the exact solution with variable amplitude

r = r(x), φ =C1t +θ(x), (8)

where C1 is an arbitrary constant, and the functions r = r(x) and θ = θ(x) are described by system of ODEs of the form

ar′′xx −ar(θ ′
x)

2 −C1r+br3 = 0,

2r′xθ ′
x + rθ ′′

xx = 0.

(9)
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Integrating the second ODE of the system (9) twice, we successively find

θ ′
x =C2r−2, θ =C2

∫
r−2dx+C3, (10)

whereC2 andC3 are arbitrary constants. Substituting (10) into the first equation (9), we obtain the second-order nonlinear
ODE

ar′′xx −aC2
2r−3 −C1r+br3 = 0. (11)

This equation is autonomous, its general solution can be represented in the implicit form

∫ (
C1

a
r2 −C2

2r−2 − b
2a

r4 +C4

)−1/2

dr =C5 ± x, (12)

where C4 and C5 are arbitrary constants. Note that the left-hand side of Eq. (12) can be expressed in terms of elliptic
functions.

Solution 3. Let us prove that for f (r) = br2 the system of PDEs (6) admits an exact generalized separable solution
of the form

r = r(t), φ = α(t)x2 +β (t)x+ γ(t). (13)

With this aimwe substitute (13) into (6). As a result, the first equation of the system is reduced to a quadratic equation
with respect to x, the coefficients of which depend on time. Equating the functional coefficients of this quadratic equation
to zero and adding the second equation of the system, which in this case depends only on t, we obtain a mixed system
consisting of three ODEs without delay and one ODE with delay:

α ′
t =−4aα2,

β ′
t =−4aαβ ,

γ ′t =−aβ 2 +br̄2,

r′t =−2aαr.

(14)

Here the first three equations were divided by r and the notation r̄ = r(t − τ) was used.
First we integrate the first equation of system (14), then the second and fourth, and finally the third. As a result, we

have
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r =
C3√
t +C1

, α =
1

4a(t +C1)
, β =

C2

2a(t +C1)
,

γ =
C2

2
4a(t +C1)

+bC2
3 ln(t − τ +C1)+C4,

(15)

where C1, C2, C3, and C4 are arbitrary constants. Substituting expressions (15) into (13), we obtain

r =
C3√
t +C1

, φ =
(x+C2)

2

4a(t +C1)
+bC2

3 ln(t − τ +C1)+C4. (16)

Solution 4. For f (r) = br2, the system of PDEs (6) admits an exact solution of the form

r = r(z), φ =C1t +C2x+θ(z), z = x+λ t, (17)

whereC1,C2, and λ are arbitrary constants. Solution (17) is the generalization of solution (8). The special caseC1 =C2 = 0
in (17) corresponds to a traveling wave solution.

Substituting (17) into (6), we obtain the following mixed nonlinear system consisting of an ODE with delay and an
ODE without delay:

− r(C1 +λθ ′
z)+ar′′zz −ar(C2 +θ ′

z)
2 +brr̄2 = 0, r̄ = r(z−λτ),

λ r′z +2ar′z(C2 +θ ′
z)+arθ ′′

zz = 0.

(18)

The substitution ξ = θ ′
z allows us to lower the order of this system by one.

Solution 5. The nonlinear Schrödinger equation with cubic nonlinearity and constant delay (3) allows exact
generalized separable solutions of the form

u(x, t) = (λx+µ)exp[i(αx2 +βx+ γ)], (19)

where fife defining functions λ = λ (t), µ = µ(t), α = α(t), β = β (t), and γ = γ(t) are described by the mixed system
of equations containing ODEs without delay and ODEs with delay

In variables (5) solution (19) is reduced to the system of PDEs (6), in which one should set

r = λx+µ, φ = αx2 +βx+ γ. (20)

Let us substitute the functions (20) into (6). Separating the variables in the resulting equations, we arrive at the
following system for the defining functions:
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λ ′
t =−6aαλ ,

µ ′
t =−2aβλ −2aαµ ,

α ′
t =−4aα2 +bλ̄ 2,

β ′
t =−4aαβ +2bλ̄ µ̄,

γ ′t =−aβ 2 +bµ̄2,

(21)

where λ̄ = λ (t − τ) and µ̄ = µ(t − τ).
The mixed system (21), consisting of two ODEs without delay and three ODEs with delay, is significantly simpler

than the considered nonlinear Schrödinger equation with delay (3). This system can be integrated by numerical methods
described, for example, in [46].

In the special case of λ = 0, the system (21) is completely integrated, since it is reduced to the system (14) with
r = µ .

4. Exact solutions of the general nonlinear Schrödinger equation with delay
Below we describe some exact solutions of the general nonlinear Schrödinger equation with an arbitrary potential

function f (z) and constant delay (4), which by substitution (5) reduces to the system of real PDEs with delay (6). To
find exact solutions, as in Section 3, we use the principle of structural analogy of solutions (see Remark 2). Note that
these exact solutions have the same structure as the above solutions 1-4 of the simpler Schrödinger equation with cubic
nonlinearity and delay (3). All results are easily verified by direct substitution of the exact solutions into the delay PDE
under consideration or the system of PDEs (6).

Solution 6. In the general case, the nonlinear Schrödinger equation with constant delay (4) has a simple exact solution
of the traveling wave type

u =C1ei(C2x+C3+Bt), B = f (C1)−aC2
2 .

This solution is periodic in space and time with constant amplitude; it does not depend on the time delay τ .
Solution 7. In the general case, the system of PDEs (6) admits a more complex periodic in time t, but independent

of the time delay τ , exact solution of the form

r = r(x), φ =C1t +C2

∫
r−2dx+C3, (22)

where C1, C2, and C3 are arbitrary constants and the function r = r(x) is described by the second-order nonlinear ODE

ar′′xx −aC2
2r−3 −C1r+ r f (r) = 0. (23)
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The general solution of this equation can be expressed in quadratures in implicit form

∫ [
C1

a
r2 −C2

2r−2 − 2
a

∫
r f (r)dr+C4

]−1/2

dr =C5 ± x, (24)

where C4 and C5 are also arbitrary constants.
Solution 8. The system of PDEs (6) admits exact generalized separable solution of the form (13), where the functional

coefficients r = r(t), α = α(t), β = β (t), and γ = γ(t) are described by the system of three ODEs without delay and one
ODE with delay:

α ′
t =−4aα2,

β ′
t =−4aαβ ,

γ ′t =−aβ 2 + f (r̄),

r′t =−2aαr.

(25)

Here the first three equations were divided by r and the notation r̄ = r(t − τ) was used.
First of all, we integrate the first equation of system (25), then the second and fourth, and finally the third. As a result

we obtain

r =
C3√
t +C1

, α =
1

4a(t +C1)
, β =

C2

2a(t +C1)
,

γ =
C2

2
4a(t +C1)

+
∫

f
(

C3√
t − τ +C1

)
dt +C4,

(26)

where C1, C2, C3, and C4 are arbitrary constants. Substituting expressions (26) into (13), we obtain functions

r =
C3√
t +C1

, φ =
(x+C2)

2

4a(t +C1)
+

∫
f
(

C3√
t − τ +C1

)
dt +C4, (27)

which give exact solution (5) of nonlinear Schrödinger equation with constant delay (4).
Solution 9. The system of PDEs (6) admits exact solution of the form

r = r(z), φ =C1t +C2x+θ(z), z = x+λ t, (28)

whereC1,C2, and λ are arbitrary constants and the functions r = r(z) and θ = θ(z) are described by the following mixed
nonlinear system consisting of an ODE with delay and an ODE without delay:
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− r(C1 +λθ ′
z)+ar′′zz −ar(C2 +θ ′

z)
2 + r f (r̄) = 0, r̄ = r(z−λτ),

λ r′z +2ar′z(C2 +θ ′
z)+arθ ′′

zz = 0.

(29)

The substitution ξ = θ ′
z allows us to lower the order of this system by one.

Remark 3 In [45, 58–60] nonlinear Schrödinger equations with distributed delay containing integral terms were
considered.

5. Conclusion
In this paper, we study for the first time two nonlinear Schrödinger-type equations with potentials depending on the

sought functions with delay. To construct exact solutions, we used the principle of structural analogy of solutions of related
PDEs. We have obtained several new exact solutions of such nonlinear functional PDEs with delay, which are expressed
in quadratures or elementary functions. Some more complex solutions with generalized separation of variables have
also been found, which are described by mixed systems of ODEs without delay and ODEs with delay. The obtained exact
solutions can be used to test numerical methods for integrating nonlinear initial-boundary value problems of mathematical
physics with delay. It is important to note that these exact solutions are valid for an arbitrary potential function f (z)
included in the general nonlinear Schrödinger equation with delay (4), so they can be used for a wide range of problems
by specifying a specific form of this function.

Acknowledgement
The study was supported by the Ministry of Education and Science of the Russian Federation within the framework

of the state assignments No. 124012500440-9 and No. FSWU-2023-0031.

Conflict of interest
The authors declare there is no conflict of interest at any point with reference to research findings.

References
[1] Agrawal GP. Nonlinear Fiber Optics. 4th ed. New York: Academic Press; 2007.
[2] Kivshar YS, Agrawal GP. Optical Solitons: From Fibers to Photonic Crystals. San Diego: Academic Press; 2003.
[3] Kodama Y, Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum

Electronics. 1987; 23(5): 510-524.
[4] Drazin PG, Johnson RS. Solitons: An Introduction. Cambridge: Cambridge University Press; 1989.
[5] AblowitzMJ, Clarkson PA. Solitons Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge

University Press; 1991.
[6] Kivshar YS, Malomed BA. Dynamics of solitons in nearly integrable systems. Review Modern Physics. 1989; 63:

763-915.
[7] Akhmanov SA, Sukhorukov AP, Khokhlov RV. Self-focusing and diffraction of light in a nonliner medium. Soviet

Physics Uspekhi. 1968; 10(5): 609-636.
[8] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I.

Anomalous dispersion. Applied Physics Letters. 1973; 23(3): 142-144.

Volume 5 Issue 4|2024| 5791 Contemporary Mathematics



[9] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal
dispersion. Applied Physics Letters. 1973; 23(4): 171-172.

[10] Tai K, Hasegawa A, Tomita A. Observation of modulational instability in optical fibers. Physical Review Letters.
1986; 56(2): 135-138.

[11] Whitham GB. Linear and Nonlinear Waves. New York: Wiley-Interscience Publ.; 1974.
[12] Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equations. Journal of Mathematical

Physics. 1982; 24(3): 522-526.
[13] Drazin PG, Johnson RS. Solitons: An Introduction. Cambridge: Cambridge University Press; 1989.
[14] Polyanin AD, Zaitsev VF. Handbook of Nonlinear Partial Differential Equations. 2nd ed. Boca Raton: CRC Press;

2012.
[15] Polyanin AD. Handbook of Exact Solutions to Mathematical Equations. Boca Raton: CRC Press; 2024.
[16] Al Khawaja U, Al Sakkaf L. Handbook of Exact Solutions to the Nonlinear Schrödinger Equations. Bristol: Institute

of Physics Publishing; 2019.
[17] Kaup DJ, Newewll AC. An exact solution for a derivative Schrödinger equation. Journal of Mathematical Physics.

1978; 19(4): 798-801.
[18] Triki H, Biswas A. Sub pico-second chirped envelope solitons and conservations laws in monomode optical fibers

for a a new derivatives nonlinear Schrödinger model. Optik. 2019; 173: 235-241.
[19] Zhou Q, Ekici M, Sonmezoglu A. Exact chirped singular soliton solutions of Triki-Biswas equation. Optik. 2019;

181: 338-342.
[20] Ginzburg VL, Landau LD. On theory of superconductivity. Soviet Physics JETP. 1950; 20: 1064.
[21] Kudryashov NA. First integrals and general solution of the complex Ginzburg-Landau equation. Applied

Mathematics and Computation. 2020; 386: 125407.
[22] Kodama Y, Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum

Electronics. 1987; 23(5): 510-524.
[23] Yildirim Y. Optical solitons to Schrödinger-Hirota equation in DWDM system with modified simple equation

integration architecture. Optik. 2019; 182: 694-701.
[24] Zayed EME, Shohib RMA, Biswas A, Ekici M, Alshomrani AS, Khan S, et al. Dispersive solitons in optical fibers

and DWDM networks with Schrödinger-Hirota equation. Optik. 2019; 199: 163214.
[25] WangG, Kara AH, Biswas A, Guggilla P, Alzahrani AK, BelicMR. Highly dispersive optical solitons in polarization-

preserving fibers with Kerr law nonlinearity by Lie symmetry. Physics Letters A: General, Atomic and Solid State
Physics. 2022; 421: 127768.

[26] Biswas A, Hubert MB, Justin M, Betchewe G, Doka SY, Crepin KT, et al. Chirped dispersive bright and singular
optical solitons with Schrödinger-Hirota equation. Optik. 2018; 168: 192-195.

[27] Zhou Q, Xu M, Sun Y, Zhong Y, Mirzazadeh M. Generation and transformation of dark solitons, anti-dark solitons
and dark double-hump solitons. Nonlinear Dynamics. 2022; 110(2): 1747-1752.

[28] Zayed EME, Shohib RMA, Alngar MEM, Biswas A, Moraru L, Khan S, et al. Dispersive optical solitons with
Schrödinger-Hirota model having multiplicative white noise via Ito Calculus. Physics Letters A: General, Atomic
and Solid State Physics. 2022; 445: 128268.

[29] Sasa N, Satsuma J. New-type of soliton solutions for a higher-order nonlinear Schrödinger equation. Journal of the
Physical Society of Japan. 1991; 60: 409-417.

[30] Kudryashov NA, Nifontov DR, Biswas A. Conservation laws for a perturbed resonant nonlinear Schrödinger
equation in quantum fluid dynamics and quantum optics. Physics Letters A: General, Atomic & Solid State Physics.
2024; 528: 130037.

[31] Kudryashov NA. Painlevé analysis of the resonant third-order nonlinear Schrödinger equation. AppliedMathematics
Letters. 2024; 158: 109232.

[32] Kudryashov NA. Painlevé analysis of the Sasa-Satsuma equation. Physics Letters A: General, Atomic & Solid State
Physics. 2024; 525: 129900.

[33] Kundu A, Mukherjee A, Naskar T. Modeling rogue waves through exact dynamical lamps soliton controlled by
ocean currents. Proceedings of the Royal Society A. 2014; 470: 20130576.

[34] Gerdjikov VS, Ivanov MI. Expansions over the ‘squared’ solutions and the inhomogeneous nonlinear Schrödinger
equation. Inverse Problems. 1992; 8(6): 831-847.

Contemporary Mathematics 5792 | Andrei D. Polyanin, et al.



[35] Gerdjikov VS. Complete integrability, gauge equivalence and Lax representation of inhomogeneous nonlinear
evolution equations. Theoretical and Mathematical Physics. 1992; 92(3): 952-963.

[36] Kudryashov NA. A generalized model for description of propagation pulses in optical fiber. Optik. 2019; 189(42):
52.

[37] Kudryashov NA. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik. 2020;
212: 164750.

[38] Kudryashov NA. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik. 2019;
194: 163060.

[39] Radhakrishnan R, Kundu A, Lakshmanan M. Coupled nonlinear Schrödinger equations with cubic-quintic
nonlinearity: Integrability and soliton interaction in non-Kerr media. Physical Review E. 1999; 60(3): 3314-3323.

[40] Yildirim Y, Biswas A. Optical solitons for the concatenation model with differential group delay having
multiplicative white noise by F-expansion approach. Physics Letters A: General, Atomic & Solid State Physics.
2024; 527: 129998.

[41] Jawad AJM, Yildirim Y, Biswas A, Alshomrani AS. Optical solitons for the dispersive concatenation model with
polarization mode dispersion by Sardar’s sub-equation approach. Contemporary Mathematics. 2024; 5(2): 2541-
2564.

[42] Wang MY, Biswas A, Yildirim Y, Aphaneand M, Jawad AJM, Alshomrani AS. Optical solitons for the dispersive
concatenation model with differential group delay by the complete discriminant approach. Ukrainian Journal of
Physical Optics. 2024; 25(3): 3051-3060.

[43] Zayed EME, Shohib RMA, Alngar MEM, El-Shater M, Biswas A, Yildirim Y, et al. Highly dispersive optical gap
solitons with Kundu-Eckhaus equation having multiplicative white noise. Contemporary Mathematics. 2024; 5(2):
1936-1952.

[44] Arnous AH, Biswas A, Yildirim Y, Alshomrani AS. Optical solitons with dispersive concatenation model having
multiplicative white noise by the enhanced direct algebraic method. Contemporary Mathematics. 2024; 5(2): 1165-
1179.

[45] Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer-Verlag; 1996.
[46] Polyanin AD, Sorokin VG, Zhurov AI. Delay Ordinary and Partial Differential Equations. Boca Raton-London:

CRC Press; 2024.
[47] Meleshko SV, Moyo S. On the complete group classification of the reaction-diffusion equation with a delay. Journal

of Mathematical Analysis and Applications. 2008; 338: 448-466.
[48] Polyanin AD, Zhurov AI. Functional constraints method for constructing exact solutions to delay reaction-diffusion

equations and more complex nonlinear equations. Communications in Nonlinear Science and Numerical Simulation.
2014; 19(3): 417-430.

[49] Polyanin AD, Zhurov AI. New generalized and functional separable solutions to nonlinear delay reaction-diffusion
equations. International Journal of Non-Linear Mechanics. 2014; 59: 16-22.

[50] Polyanin AD, Sorokin VG. Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler
PDEs without delay. Communications in Nonlinear Science and Numerical Simulation. 2021; 95: 105634.

[51] Aibinu MO, Thakur SC, Moyo S. Exact solutions of nonlinear delay reaction-diffusion equations with variable
coefficients. Partial Differential Equations in Applied Mathematics. 2021; 4: 100170.

[52] Polyanin AD, Sorokin VG. Nonlinear pantograph-type diffusion PDEs: Exact solutions and the principle of analogy.
Mathematics. 2021; 9(5): 511.

[53] Polyanin AD, Sorokin VG. Exact solutions of reaction-diffusion PDEs with anisotropic time delay. Mathematics.
2023; 11(14): 3111.

[54] Polyanin AD, Zhurov AI. Generalized and functional separable solutions to nonlinear delay Klein-Gordon equations.
Communications in Nonlinear Science and Numerical Simulation. 2014; 19(8): 2676-2689.

[55] Long FS, Meleshko SV. On the complete group classification of the one-dimensional nonlinear Klein-Gordon
equation with a delay. Mathematical Methods in the Applied Sciences. 2016; 39(12): 3255-3270.

[56] Galaktionov VA, Svirshchevskii SR. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential
Equations in Mechanics and Physics. Boca Raton: Chapman & Hall/CRC Press; 2007.

[57] Polyanin AD, Zhurov AI. Separation of Variables and Exact Solutions to Nonlinear PDEs. Boca Raton-London:
CRC Press; 2022.

Volume 5 Issue 4|2024| 5793 Contemporary Mathematics



[58] Hale JK, Lunel SMV. Introduction to Functional Differential Equations. New York: Springer; 1993.
[59] Zhao Z, Ge W. Traveling wave solutions for Schrödinger equation with distributed delay. Applied Mathematical

Modelling. 2011; 35: 675-687.
[60] Chen CF, Luo B. The freeze of intrapulse Raman scattering effect of ultrashort solitons in optical fiber. Optik. 2007;

118(1): 1-4.

Contemporary Mathematics 5794 | Andrei D. Polyanin, et al.


	Introduction
	Nonlinear Schrödinger equations with delay
	Exact solutions of the Schrödinger equation with the Kerr nonlinearity and delay
	Exact solutions of the general nonlinear Schrödinger equation with delay
	Conclusion

