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Abstract: The classical Faulhaber’s formula expresses the sum of a fixed positive integer powers of the first n positive
integers in terms of Bernoulli polynomial. As a degenerate version of this, we may consider sums of values of degenerate
falling factorials, which reduce to aforementioned sum as λ tends to 0. The aim of this note is to derive a recursive
formula for sums of values of degenerate falling factorials by using probabilistic method. In this manner, we obtain a new
recursive formula for such sums, which involves the (signed) Stirling numbers of the first kind.
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1. Introduction
For m, n ∈ N, we denote the sum of m-th powers of the first n positive integers by

Sm(n) = 1m +2m + · · ·+nm, (1)

(see [1–6]).
This sum has been studied extensively for several hundred years.
Let Bn(x) be the Bernoulli polynomials given by

t
et −1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (2)

(see [1–28]).
Then the Faulhaber’s formula expresses Sm(n) in terms of Bernoulli polynomials Bn(x), which is given by
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Sm(n) =
1

m+1

(
Bm+1(n+1)−Bm+1

)
. (3)

Two well known recursive formulas for Sm(n) are given by

(n+1)m −1 =
m

∑
k=0

(
m+1

k

)
Sk(n),

and

Sm(n) =
nm+1

m+1
+

m−1

∑
k=0

(
m
k

)
(−1)m−k+1

m− k+1
Sk(n), (4)

(see [2]).
Recall that the degenerate falling factorials are given by

(x)0, λ = 1, (x)n, λ = x(x−λ )(x−2λ ) · · ·
(
x− (n−1)λ

)
, (n ≥ 1). (5)

For m, n ∈ N, we may consider, as a degenerate version of Sm(n), sums of values of degenerate falling factorials
Sm, λ (n), given by

Sm, λ (n) = (1)m, λ +(2)m, λ + · · ·+(n)m, λ . (6)

Note that

lim
λ→0

Sm, λ (n) = Sm(n) = 1m +2m + · · ·+nm,

(see [1–6]),

lim
λ→1

Sm, λ (n) = Sm, 1(n) = (1)m +(2)m + · · ·+(n)m,

where (x)0 = 1, (x)n = x(x−1) · · ·(x−n+1), (n ≥ 1).
The aim of this paper is to derive a recursive formula for sums of values of degenerate falling factorials which is

given by
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Sm, λ (n) =
m

∑
l=0

S1(m, l)λ m−l nl+1

l +1
(7)

+
m−1

∑
k=0

m−k

∑
l=0

(
m
k

)
S1(m− k, l)

l +1
λ m−k−l(−1)l+1Sk, λ (n).

Here the (signed) Stirling numbers of the first kind are defined by

(x)n =
n

∑
k=0

S1(n, k)xk, (n ≥ 0), (8)

(see [1–28]).

This is done by using the identity (X +Y )m, λ

m

∑
k=0

(
m
k

)
(X)m−k, λ (Y )k, λ (see (17)) and computing the expectations

E
[
(X +Y )m, λ

]
, E

[
(X)m−k, λ

]
, and E

[
(Y )k, λ

]
. Here X ∼ Uniform(−1, 0), if its probability density function fX (x) is

given by fX (x) = 1, if −1 ≤ x ≤ 0, and fX (x) = 0, otherwise (see (13)), and Y is the uniform random variable on the
integers 1, 2, . . . , n.

As to related previous works, we mention the three papers [18–20]. Two expressions for Sm(n) are derived in [19],
the one involving the degenerate Bernoulli numbers and the other in terms of the degenerate Stirling numbers of the second
kind. In [18], the following three recurrence relations for Sm(n) are obtained: for m, n ∈ N,

Sm, λ (n) =
(n+1)m+1, λ − (1)m+1, λ

m+1
− 1

m+1

m−1

∑
r=0

(
m+1

r

)
(1)m+1−r, λ Sr, λ (n), (9)

Sm, λ (n) =
(n)m+1, λ

m+1
+

1
m+1

m−1

∑
r=0

(
m+1

r

)
(−1)m+1−r⟨1⟩m+1−r, λ Sr, λ (n), (10)

Sm, λ (n) =
n(n+1)m, λ

m+1
− 1

m+1

m−1

∑
r=1

(1)m+1−r, λ

(
m

r−1

)
Sr, λ (n) (11)

− λ
m+1

m−1

∑
r=1

r
(

m
r

)
(1)m−r, λ Sr, λ (n),

where ⟨x⟩n, λ are the degenerate rising factorials given by

⟨x⟩0, λ = 1, ⟨x⟩n, λ = x(x+λ ) · · ·(x+(n−1)λ ), (n ≥ 1).

In [20], formulas analogous to Faulhaber’s are derived for the poly-Bernoulli polynomials B(k)
n (x) (see [20] (1.6)),

and the type 2 poly-Bernoulli polynomials β (k)
n (x) (see [20] (1.8)). Indeed, the following two formulas are obtained: for

n, x ∈ N,
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x−1

∑
i=0

n

∑
m=1

m

∑
j=1

(
n
m

)
( j−1)!

jk−1 (−1)m− jS2(m, j)in−m = B(k)
n (x)−B(k)

n ,

x−1

∑
i=0

n

∑
l=1

l

∑
m=1

(
n
l

)
S1(l, m)

mk−1 in−l = β (k)
n (x)−β (k)

n ,

where S2(m, j) are the Stirling numbers of the second kind given by

1
j!
(et −1) j =

∞

∑
m= j

S2(m, j)
tm

m!
.

For any nonzero λ ∈ R, the degenerate exponentials are defined by

ex
λ (t) =

∞

∑
k=0

(x)k, λ
tk

k!
, eλ (t) = e1

λ (t), (12)

(see [3, 5, 9, 13, 14, 16–19, 21–24, 28]), where (x)n, λ is the sequence of degenerate falling factorials in (5). Note that
lim
λ→0

ex
λ (t) = ext .
Let X be a continuous random variable. A probability density function fX (x) of X is an integrable function such that

∫ b

a
fX (x)dx = P{a ≤ X ≤ b},

(see [3, 5, 16, 17, 26, 29]).
A continuous random variable X is said to have the uniform distribution over the interval [a, b], denoted by X ∼

Uniform(a, b), if its probability density function fX (x) is given by

fX (x) =


1

b−a
, if a < x < b,

0, if x ≤ a or x ≥ b,

(13)

(see [26]).

2. Proof of a recursive formula for Sm, λ(n)
Let X be a continuous random variable with probability density function fX (x). Then the n-th moment of X is defined

by

E
[
Xn]= ∫ ∞

−∞
xn fX (x)dx, (14)
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(see [5, 16, 18, 23, 26, 29]).
While, if X is a discrete random variable, then the n-th moment of X is given by

E
[
Xn]= ∑

k
P{X = k}kn, (15)

(see [5, 16, 18, 23, 26, 29, 30]).
Let X be a continuous random variable with probability density function fX (x), and let Y be a discrete random

variable. Assume that X and Y are independent. Then the probability density function fZ(z) of the sum Z = X +Y is
given by

fZ(z) = ∑
y

fX (z− y)P{Y = y}. (16)

A common example of a sum involving both a continuous and a discrete random variables is calculating the total
cost of a purchase including shipping fees, where the price of the item itself is a continuous variable (can take any value
within a range) and the shipping cost is a discrete variable (fixed amount based on the delivery option chosen, for example
‘standard’ or ‘expedited’ or ‘overnight’).

Let X ∼ Uniform(−1, 0) (see (13)), and let a random variable Y have the uniform distribution on the integers
1, 2, . . . , n. Then, by (16), X and Y are independent and Z = X +Y ∼ Uniform(0, n). By using (12), we can show
that

(X +Y )m, λ =
m

∑
k=0

(
m
k

)
(X)m−k, λ (Y )k, λ , (m ≥ 0). (17)

Thus, by (17), we have

E
[
(X +Y )m, λ

]
=

m

∑
k=0

(
m
k

)
E
[
(X)m−k, λ (Y )k, λ

]
(18)

=
m

∑
k=0

(
m
k

)
E
[
(X)m−k, λ

]
E
[
(Y )k, λ

]
.

We observe from (8) that

(z)m, λ = z(z−λ )(z−2λ ) · · ·
(
z− (m−1)λ

)
(19)

= λ m z
λ

(
z
λ
−1

)(
z
λ
−2

)
· · ·

(
z
λ
− (m−1)

)

= λ m
(

z
λ

)
m
=

m

∑
l=0

S1(m, l)λ m−lzl .
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From (13), (14) and (19), we note that

E
[
(X +Y )m, λ

]
= E

[
(Z)m, λ

]
=

∫ n

0
(z)m, λ fZ(z)dz (20)

=
1
n

m

∑
l=0

S1(m, l)λ m−l
∫ n

0
zldz

=
1
n

m

∑
l=0

S1(m, l)λ m−l nl+1

l +1
.

Thus, by (18) and (20), we have

1
n

m

∑
l=0

S1(m, l)λ m−l nl+1

l +1
= E

[
(X +Y )m, λ

]
=

m

∑
k=0

(
m
k

)
E
[
(X)m−k, λ

]
E
[
(Y )k, λ

]
. (21)

On the one hand, as X ∼ Uniform(−1, 0), we get

E
[
(X)m−k, λ

]
=

∫ 0

−1
(x)m−k, λ fX (x)dx =

∫ 0

−1
(x)m−k, λ dx (22)

=
m−k

∑
l=0

S1(m− k, l)λ m−k−l
∫ 0

−1
xldx

=
m−k

∑
l=0

S1(m− k, l)
l +1

λ m−k−l(−1)l .

On the other hand, since Y has the uniform distribution on the integers 1, 2, 3, . . . , n (see (15)), we get

E
[
(Y )k, λ

]
=

n

∑
l=0

(l)k, λ P{Y = l}= 1
n

n

∑
l=1

(l)k, λ =
1
n

Sk, λ (n). (23)

By (21), (22) and (23), we derive

1
n

m

∑
l=0

S1(m, l)λ m−l nl+1

l +1
=

m−1

∑
k=0

(
m
k

)
E
[
(X)m−k, λ

]
E
[
(Y )k, λ

]
+E

[
(Y )m, λ

]
(24)

=
1
n

m−1

∑
k=0

(
m
k

)m−k

∑
l=0

S1(m− k, l)
l +1

λ m−k−l(−1)lSk, λ (n)+
1
n

Sm, λ (n).

Thus, from (24), we obtain the following theorem.
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Theorem 2.1 For m, n ∈ N, we have the recurrence relation

Sm, λ (n) =
m−1

∑
k=0

m−k

∑
l=0

(
m
k

)
S1(m− k, l)

l +1
λ m−k−l(−1)l+1Sk, λ (n)

+
m

∑
l=0

S1(m, l)λ m−l nl+1

l +1
.

By taking both λ → 0 and λ → 1 of the recurrence relation in Theorem 2.1, we obtain the following identities, the
first of which is the one in (4).

Corollary 2.2 For m, n ∈ N, we have the recurrence relations

Sm(n) =
m−1

∑
k=0

(
m
k

)
1

m− k+1
(−1)m−k+1Sk(n)+

nm+1

m+1
,

Sm, 1(n) =
m−1

∑
k=0

m−k

∑
l=0

(
m
k

)
S1(m− k, l)

l +1
(−1)l+1Sk, 1(n)

+
m

∑
l=0

S1(m, l)
nl+1

l +1
.

Remark 2.3 By taking λ → 0 of (10), we obtain the recurrence relation given by

Sm(n) =
nm+1

m+1
+

1
m+1

m−1

∑
r=0

(
m+1

r

)
(−1)m+1−rSr(n), (25)

which is easily seen to be equal to the first recurrence relation in Corollary 2.2. Indeed, we observe that (25) is equal to

Sm(n) =
nm+1

m+1
+

1
m+1

m−1

∑
r=0

(
m+1

m+1− r

)
(−1)m+1−rSr(n)

=
nm+1

m+1
+

1
m+1

m−1

∑
r=0

(
m

m− r

)
m+1

m+1− r
(−1)m+1−rSr(n)

=
nm+1

m+1
+

m−1

∑
r=0

(
m
r

)
1

m+1− r
(−1)m+1−rSr(n).

Remark 2.4 Here we observe that the recurrence relation in Theorem 2.1 involves the Stirling numbers of the first
kind and no degenerte falling factorials, while all the recurrence relations in (9), (10) and (11) involve degenerate falling
factorials and no Stirling numbers of the first kind. The Stirling numbers of the first kind can be easily determined, for
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example by using S2(n+1, k) = S2(n, k−1)+kS2(n, k), (n ≥ k ≥ 0). However, computing degenerate falling factorials
are not so easy. Thus we may say that the recurrence relation in Theorem 2.1 is better than those in (9), (10) and (11).

We now consider more general case. Let Xa, c ∼ Uniform(a, a+ c), and let Y be the uniform distribution on the
integers 1, 2, . . . , n, as before, where a, c are real numbers with 0 < c ≤ 1. Then, by (16), we see that Xa, c and Y are
independent and Za, b = Xa, b +Y has the probability density function fZa, c(x) given by

fZa, c(x) =


1
nc

, if x ∈ ∪n
j=1 ( j+a, j+a+ c),

0, otherwise.

(26)

From (14), (19) and (26), we note that

E
[
(Xa, c +Y )m, λ

]
= E

[
(Za, c)m, λ

]
=

∫ ∞

−∞
(z)m, λ fZa, c(z)dz (27)

=
1
nc

n

∑
j=1

∫ j+a+c

j+a
(z)m, λ dz

=
1
nc

n

∑
j=1

m

∑
l=0

S1(m, l)λ m−l
∫ j+a+c

j+a
zldz

=
1
nc

n

∑
j=1

m

∑
l=0

S1(m, l)λ m−l 1
l +1

(
( j+a+ c)l+1 − ( j+a)l+1)

=
1
nc

m

∑
l=0

S1(m, l)λ m−l 1
l +1

n

∑
j=1

(
( j+a+ c)l+1 − ( j+a)l+1).

In addition, as Xa, c ∼ Uniform(a, a+ c), we get

E
[
(Xa, c)m−k, λ

]
=

∫ a+c

a
(x)m−k, λ fXa, c(x)dx =

1
c

∫ a+c

a
(x)m−k, λ dx (28)

=
1
c

m−k

∑
l=0

S1(m− k, l)λ m−k−l
∫ a+c

a
xldx

=
1
c

m−k

∑
l=0

S1(m− k, l)
l +1

λ m−k−l((a+ c)l+1 −al+1).

As E
[
(Xa, c +Y )m, λ

]
=

m−1

∑
k=0

(
m
k

)
E
[
(Xa, c)m−k, λ

]
E
[
(Y )k, λ

]
+ E

[
(Y )m, λ

]
, from (23), (27) and (28), we get the

following result. Notice here that Theorem 2.1 corresponds to the a =−1, c = 1 case of the following.
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Theorem 2.5 Let m, n ∈ N, and let a, c be any real numbers with 0 < c ≤ 1. Then we have the recurrence relation

cSm, λ (n) =
m−1

∑
k=0

m−k

∑
l=0

(
m
k

)
S1(m− k, l)

l +1
λ m−k−l(al+1 − (a+ c)l+1)Sk, λ (n)

+
m

∑
l=0

S1(m, l)λ m−l 1
l +1

n

∑
j=1

(
( j+a+ c)l+1 − ( j+a)l+1).

By taking both λ → 0 and λ → 1 of the identity in Theorem 2.3, we obtain the following corollary.
Corollary 2.6 Let m, n ∈ N, and let a, c be any real numbers with 0 < c ≤ 1. Then we have the recurrence relations

cSm(n) =
m−1

∑
k=0

(
m
k

)
1

m− k+1
(
am−k+1 − (a+ c)m−k+1)Sk(n)

+
1

m+1

n

∑
j=1

(
( j+a+ c)m+1 − ( j+a)m+1),

cSm, 1(n) =
m−1

∑
k=0

m−k

∑
l=0

(
m
k

)
S1(m− k, l)

l +1
(
al+1 − (a+ c)l+1)Sk, 1(n)

+
m

∑
l=0

S1(m, l)
1

l +1

n

∑
j=1

(
( j+a+ c)l+1 − ( j+a)l+1).

Remark 2.7 There are too numerous applications of sums of powers of consecutive integers Sm(n) (see (1)) to
mention, which is the limit λ → 0 of Sm, λ (n) (see (6)). These include applications to computer science, physics,
engineering, statistics, combinatorics, numerical analysis, number theory, finance and geometry. More specifically, sums
of powers of consecutive integers can be used to analyze the time complexity of algorithm and optimize algorithms
that involve iterating data structures, to calculate the energy levels of atoms and molecules in quantum mechanics
and the average energy of a system of particles in statistical mechanics, to model the behavior of the vibration of a
bridge in civil engineering and analyze systems with regular patterns in electrical engineering, to compute moments
of a distribution in statistics, to encode combinatorial information in generating functions and solve various counting
problems, to approximate solutions to numerical problems related to differential equations, to give integer solutions to
some diophantine equations, to model the growth of investments over time in finance, and to compute the area of a polygon
and the volume of a solid in geometry. In this paper, we derived a recursive formula for Sm, λ (n) (see Theorem 2.1) by
utilizing probabilistic methods. The sums of powers of consecutive integers Sm(n) have wide-ranging applications across
many fields, and similarly, the sums of values of degenerate falling factorials Sm, λ (n) are expected to play a key role in
solving many real-world problems.

3. Further remark
With the degenerate exponentials as in (12), the degenerate Bernoulli polynomials, introduced by Carlitz, are given

by
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t
eλ (t)−1

ex
λ (t) =

∞

∑
n=0

βn, λ (x)
tn

n!
, (29)

(see [7, 13, 17, 22, 25]).
When x = 0, βn, λ = βn, λ (0) are called the degenerate Bernoulli numbers.
Note that lim

λ→0
βn, λ (x) = Bn(x), (n ≥ 0), where Bn(x) are the ordinary Bernoulli polynomials in (2). From (29), we

note that

βn, λ (x) =
n

∑
k=0

(
n
k

)
βk, λ (x)n−k, λ , (n ≥ 0). (30)

By (30), we get β0, λ (x) = β0, λ .
Now, we observe that

n

∑
k=0

ek
λ (t) =

1
eλ (t)−1

(
en+1

λ (t)−1
)

(31)

=
1
t

(
t

eλ (t)−1
en+1

λ (t)− t
eλ (t)−1

)

=
1
t

∞

∑
m=0

(
βm, λ (n+1)−βm, λ

) tm

m!

=
∞

∑
m=0

(
βm+1, λ (n+1)−βm+1, λ

m+1

)
tm

m!
.

On the other hand, by (17), we get

n

∑
k=0

ek
λ (t) =

∞

∑
m=0

( n

∑
k=0

(k)m, λ

)
tm

m!
. (32)

Comparing the coefficients on both sides of (31) and (32), we have the following proposition.
Proposition 3.1 For m, n ∈ N, we have the identity

Sm, λ (n) =
n

∑
k=0

(k)m, λ =
1

m+1

(
βm+1, λ (n+1)−βm+1, λ

)
. (33)

We note that (33) reduces to the Faulhaber’s formula in (3) by letting λ → 0.
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4. Conclusion
In recent years, certain degenerate versions of many special numbers and polynomials have been investigated by

employing different methods. Indeed, they have been explored by using probability theory, combinatorial methods,
generating functions, umbral calculus, p-adic calculus, differential equations, special functions and analytic number
theory.

In this paper, by computing E
[
(X +Y )m, λ

]
=

m

∑
k=0

(
m
k

)
E
[
(X)m−k, λ

]
E
[
(Y )k, λ

]
, we derived a recursive relation for

Sm, λ (n) (see (6), (7)). HereX ∼Uniform(−1, 0) (see (13)), andY is the uniform randomvariable on the integers 1, 2, . . . , n.
We let the reader compare our recursive formula in (7) with the ones in (9), (10) and (11). In addition, we showed an
expression for Sm, λ (n) in (29), which is a degenerate version of the well known expression for Sm(n) (see, (1), (3)).

As one of our future research projects, we would like to continue to study degenerate versions of various things,
which include special numbers and polynomials, some transcendental functions, recurrence relations and so on.
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