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Abstract: Respiratory illnesses rank among the top causes of death and disability in India, influenced by factors such
as limited healthcare access, air pollution, smoking, allergens, and a lack of awareness. Despite government efforts to
improve respiratory health policies, increase awareness, enhance healthcare facilities, and promote preventive measures,
the incidence of respiratory diseases has been on the rise in recent years. This study uses Geographic Information System
(GIS) technology to analyze the spatial and temporal distribution patterns of respiratory diseases, aiming to improve our
understanding of the contributing factors. Principal component extraction and spatial statistical analyses were utilized
to identify the main respiratory illnesses and their geographical distribution. The study concentrated on three major
respiratory diseases Tuberculosis, Pneumonia, and Acute Respiratory Distress Syndrome (ARDS) which are related to
each other diseases. The findings shows significant variations in the geographical distribution of these diseases across the
time period 2019-2021. This spatio-temporal data is essential for enhancing current prevention, control, and treatment
strategies for respiratory illnesses in the study area. The methodology applied in this study can be adapted to other regions
with similar geographical characteristics and patient data. The study investigated the association of 14 variables with
respiratory illnesses. The results indicate that certain variables are associated with an increased risk of frequent flare-ups
and hospital admissions due to respiratory diseases. Furthermore, the severity of flare-ups leading to hospital admissions
is significantly linked to the presence of comorbidities. These critical and easily measurable variables provide valuable
insights for the optimal management of ambulatory patients with respiratory diseases.
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Abbreviation
ARDS Acute Respiratory Disease Syndrome
TB Tuberculosis
LTBI Latent Tuberculosis Infection
MDR-TB Multidrug-Resistant Tuberculosis
GIS Geographic Information System
PM Particulate Matter
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SD Standard Deviation
CV Coefficient of Variation
MLE Maximum Likelihood Estimation
LRT Likelihood Ratio Test
EC Expected Cases
OC Observed Cases
LLR Loglikelihood Ratio
RR Relative Risk
SE Standard Error
OR Odds Ratio
CI Confidence Interval
AIC Akaike Information Criterion
SBIC Schwarz Bayesian Information Criterion

1. Introduction
Respiratory diseases encompass a broad spectrum of disorders affecting the lungs and other parts of the respiratory

system. These diseases can range from acute infections to chronic conditions, each with distinct pathophysiological
mechanisms and clinical manifestations. Among the most significant respiratory diseases are tuberculosis (TB), pneumon-
ia, and acute respiratory distress syndrome (ARDS). These conditions not only pose substantial health challenges but also
have profound socio-economic impacts globally. Tuberculosis is a chronic bacterial infection caused by Mycobacterium
tuberculosis. It primarily affects the lungs but can spread to other organs. TB remains one of the top ten causes of death
worldwide and is particularly prevalent in low and middle-income countries. The transmission of TB occurs through
airborne particles, making it highly contagious. The disease manifests in two forms: latent TB infection (LTBI) and
active TB disease. LTBI is asymptomatic, while active TB presents with symptoms such as persistent cough, fever,
night sweats, and weight loss. The treatment of TB involves a long-term regimen of antibiotics, and the emergence of
multidrug-resistant TB (MDR-TB) has made management increasingly complex. Pneumonia is an acute infection that
inflames the air sacs in one or both lungs, which may fill with fluid or pus. The condition can be caused by a variety
of pathogens, including bacteria, viruses, and fungi. Streptococcus pneumoniae is the most common bacterial cause of
pneumonia. Symptoms include cough, fever, chills, and difficulty breathing. Pneumonia can range in severity from
mild to life-threatening, particularly in infants, elderly individuals, and those with weakened immune systems. Treatment
depends on the underlying cause but often includes antibiotics for bacterial pneumonia and supportive care for viral
infections. Acute Respiratory Distress Syndrome is a severe inflammatory condition characterized by rapid onset of
widespread inflammation in the lungs. ARDS can result from various direct or indirect injuries to the lung, such as
pneumonia, sepsis, trauma, or inhalation injury. The hallmark of ARDS is non-cardiogenic pulmonary edema, leading to
severe hypoxemia and respiratory failure. Patients with ARDS typically require mechanical ventilation in intensive care
units (ICUs). Despite advances in supportive care, ARDS has a high mortality rate, and survivors often face long-term
respiratory and functional impairments. Studies indicate that TB patients have a 39.5% annual risk of developing bacterial
pneumonia [1]. Furthermore, about 31% of patients with severe pneumonia may progress to ARDS, depending on the
severity and treatment. Data specific to TB leading to ARDS is less common 14%, but severe cases, particularly those
involving TB, have been documented to result in ARDS which was shown below in Figure 1.
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Figure 1. Visualizing relationships of respiratory diseases

Spatial and spatio-temporal data are often encountered in nature, sparking significant interest among scientists
across various disciplines, including ecology, epidemiology, and image analysis. Modeling binary data is especially
important for understanding events like disease outbreaks or deaths. Spatial and spatio-temporal binary data models are
particularly effective for investigating the spread and interaction of a known disease within a grid, where such interactions
between neighboring regions are suspected. In spatial epidemiology, spatial clustering analysis is vital for identifying the
aggregation of disease cases in specific geographic regions. This analysis determines whether these groupings occur
by chance or are statistically significant, providing insights into underlying etiologic factors. Studies have shown that
infectious disease distribution is often influenced by various social processes related to their location [2, 3]. The complex
interplay of determinants such as socioeconomic vulnerability, rapid population growth, urbanization, and environmental
factors can lead to spatial and spatiotemporal variations in respiratory diseases. Identifying and analyzing clusters of
respiratory disease, and understanding the factors driving these clusters, is important for investigating outbreaks. Maps
generated from these spatial analyses can help prevent and control diseases by enabling targeted public health interventions
in areas with elevated disease risk. Additionally, these maps can support public health programs by providing advanced
knowledge of disease etiological factors, thereby motivating the population. While spatial analysis focuses solely on
spatial variations, spatiotemporal analysis examines how patterns evolve over both space and time, identifying disease
trends across spatial units over time. This approach incorporates both spatial and spatiotemporal structures. The spatial
resolution of the data plays a crucial role in determining cluster patterns and relevant associations, alongside the types
of models used. Different spatial resolutions can produce varying results from the same dataset, regardless of the true
extent of spatial correlation. Effects seen at global or regional scales might not be observed at local or individual scales,
potentially resulting in an ecological fallacy.

2. Literature review
Anjali et al. [4] identified economic factors as the primary drivers behind the rise in suicide rates in certain regions.

Using spatial analysis with a specialized Poisson model, the authors highlighted Madurai as a significant hotspot for
various suicide-related factors. To validate their findings, they appliedWelch’s test, which confirmedMadurai’s consistent
status as a prominent hotspot. In mainland China, Bie [5] analyzed the influence of seven factors on the relative risk of
tuberculosis (TB) through a spatio-temporal distribution model and the INLA algorithm. Meanwhile, Das et al. [6]
reported that the increasing elderly population in Singapore serves as the leading risk factor for the recent rise in TB
cases, particularly in the southern and eastern regions of the country. Ghazvini [7] developed a logistic regression
model incorporating serum markers and body mass index (BMI) to predict TB prevalence with acceptable specificity
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and sensitivity. Hoffner [8] emphasized the critical role of Geographic Information Systems (GIS) in identifying high-
risk areas and populations vulnerable to TB transmission. Using GIS, the authors studied the relationship between
climate and TB distribution in Khuzestan Province, Iran. Similarly, Niu [9] demonstrated the application of logistic
regression in educational research to evaluate student performance, considering variables such as study habits and family
background. Maja [10] underscored the importance of analyzing specific bio-demographic, socio-economic, and health-
related factors to address TB in South Africa. Manish [11] proposed that enhancing literacy and promoting gender
equality could help reduce the incidence of rape cases. Marshall [12] provided a comprehensive overview of statistical
methodologies for analyzing spatial patterns. Pathak examined the relationship between various variables and TB
prevalence among respiratory patients using logistic regression. Ogunsakin [13] investigated the connection between
indicators of complications from pulmonary TB and associated risk factors, employing logistic regression. Poonam
et al. [14] identified hotspots of crimes against women in Rajasthan using scan statistics. Sukhija [15] highlighted
the importance of analyzing real-time, multidimensional data in the Indian state of Haryana. The study pinpointed
key hotspots for rape cases in 2017 and compared different hotspot mapping techniques to assess their accuracy in
predicting future spatial crime patterns. Subsequent studies by Anjali et al. [16, 17] focused on suicide hotspots and
prediction models, revealing alarming trends in India. They utilized time series modeling approaches and demonstrated
the superiority of the multivariate VARMA model over the ARIMA model in analyzing factors contributing to suicide
hotspots. Zhang [18, 19] emphasized the importance of rigorous feature selection in medical decision-making, particularly
for TB prevention strategies, considering meteorological influences. Collectively, these studies provide valuable insights
into the complex dynamics of TB and suicide, offering guidance for targeted prevention and intervention efforts. Priyanka
et al. [20] identified the top ten states in India with the highest concentration of ARDS cases. Through modeling, they
recommended strategies for controlling the contributing factors, which could help mitigate the growth of ARDS infections.
Razavi et al. [21] optimized the parameters of a support vector regression (SVR) model for spatio-temporal modeling of
asthma-prone areas in Tehran, Iran. Poonam [22] proposed an ensemble hybrid machine learning model for a crime-
against-women index, incorporating multiple influencing factors.

After conducting an extensive literature review, we found that spatiotemporal analysis is frequently employed in
epidemiology. However, there is limited research on spatiotemporal analysis and prediction using logistic regression in
India, particularly concerning specific causes. To address this gap, this study aims to achieve the following goals.

Identifying disease clusters overtime and across different regions to understand the spatial and temporal distribution
patterns.

Evaluate the influence of various risk factors on the incidence and spread of respiratory diseases.
Develop predictive models using logistic regression to forecast potential outbreaks or increased incidence of

respiratory diseases on historical data and identified risk factors.
Improve the efficiency of disease surveillance systems by integrating spatio-temporal analysis and predictive

modeling to detect early warning signs of respiratory disease outbreaks.

3. Data and research design
For our research on respiratory diseases in India, we are utilizing epidemiological data sourced from Indiastat and

Nikshay in the period 2019-2021. Indiastat is a comprehensive database that offers a wide range of statistical data across
various sectors, including health. It provides detailed information on disease prevalence, demographic data, and health
indicators, making it an invaluable resource for understanding broader epidemiological trends of respiratory diseases
in India. Nikshay, developed by the Government of India, is a specialized digital platform for tracking and managing
tuberculosis (TB) cases, a major respiratory disease in the country. It includes patient-specific data, treatment outcomes,
and programmatic indicators, offering granular insights into the incidence, management, and control efforts related to TB
[23, 24].

In terms of data design, our research involves integrating and analyzing these datasets to identify patterns and trends
in respiratory diseases. Indiastat provides a macro-level perspective with aggregate statistics that help in understanding
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the overall burden and distribution of respiratory diseases across different regions and populations. In contrast, the
detailed patient-level data fromNikshay facilitates a micro-level analysis, allowing us to examine specific cases, treatment
efficacy, and program performance. Combining these data sources enables a comprehensive spatio-temporal analysis,
assessing both the broad epidemiological landscape and the detailed, localized impacts of respiratory diseases in India.
This integrated approach enhances the robustness of our findings and supports more informed public health interventions.
By leveraging data from Indiastat and Nikshay, we can perform a robust spatio-temporal analysis, identifying broad
patterns and correlations such as geographic hotspots and the impact of socio-economic factors, while also understanding
the specifics of TB cases, treatment efficacy, and patient outcomes. Advanced statistical and geospatial tools, including
Geographic Information Systems (GIS), R, Python, and SaTScan, will be employed to visualize data, detect clusters, and
model disease spread and intervention impacts.

4. Methodology
4.1 Spatio-temporal analysis

Spatio-temporal analysis is a critical field of study that examines how phenomena change across both spatial
(geographical) and temporal (time) dimensions. By integrating spatial data, such as geographic coordinates and locations,
with temporal data, such as timestamps and time-series, researchers can uncover patterns, trends, and relationships that are
not apparent when considering either dimension alone. This type of analysis is employed in various disciplines, including
environmental science, where it helps track climate change and natural disasters; urban planning, for monitoring land
use and transportation systems; and epidemiology, to trace the spread of diseases and identify health trends. The outline
of this analysis is shown in Figure 2. Tools like Geographic Information Systems (GIS), remote sensing, and statistical
software such as R, Python, saTScan are commonly used to process and visualize spatio-temporal data. The importance
of spatio-temporal analysis lies in its ability to provide deeper insights and support decision-making processes in complex
scenarios. For example, in urban planning, understanding traffic patterns over time and space can lead to more efficient
transportation systems and reduced congestion. In public health, mapping the spread of an infectious disease can guide
effective intervention strategies. However, this field also faces challenges, including the high computational demands of
processing large datasets and the difficulty of integrating diverse data sources. Despite these challenges, advances in big
data analytics, machine learning, and interdisciplinary collaborations promise to enhance the capabilities and applications
of spatio-temporal analysis, making it an indispensable tool in addressing contemporary global issues.

SaTScan, developed by Kulldorff [25, 26], is a specialized software tool designed for the spatial, temporal, and
space-time scan statistics analysis. It is widely used in public health, epidemiology, and related fields to detect and
evaluate clusters of events, such as disease outbreaks, over time and across geographical regions. The primary function
of saTScan is to identify statistically significant clusters by comparing observed data with an expected distribution under
the null hypothesis, which assumes no clustering. The software supports various statistical models, including Poisson,
Bernoulli, and Normal distributions, allowing for flexibility depending on the nature of the data. SaTScan’s scan statistics
can be applied to purely spatial analysis, purely temporal analysis, or combined space-time analysis. It helps in pinpointing
locations and time periods with unusually high or low event rates, facilitating early detection of outbreaks, environmental
hazards, and other critical public health issues. The tool is valued for its robustness, ability to handle large datasets,
and its capacity to provide visual and statistical outputs that are essential for effective decision-making and intervention
strategies.
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Figure 2. Outline of the work performed

4.2 Exploratory and descriptive analysis
Exploratory and descriptive analysis are foundational approaches in data analysis that help researchers understand

the basic features of their data. Exploratory Data Analysis (EDA) focuses on discovering patterns, anomalies, and
relationships within the data without making any prior assumptions. It involves using statistical summaries, visualizations
such as histograms, scatter plots, and box plots, and techniques like clustering to identify underlying structures. EDA is
essential for forming hypotheses and guiding subsequent, more formal analyses by providing a comprehensive initial
understanding of the dataset.

Descriptive Analysis, on the other hand, aims to summarize and describe the main features of a dataset quantitatively.
It provides a straightforward depiction of data through measures of central tendency (mean, median, mode) and measures
of variability (range, variance, standard deviation). In addition, descriptive analysis often includes the creation of graphs
and tables to effectively communicate the characteristics of the data. This type of analysis is crucial for understanding the
general trends and distributions within a dataset, serving as a preliminary step before more complex inferential analyses.
Together, exploratory and descriptive analyses form the basis for sound data-driven decision-making and research.

4.3 Logistic regression
Logistic regression is a statistical method used for analyzing datasets in which the outcome variable is binary (i.e., it

has two possible outcomes) [27]. It is a type of regression analysis that models the probability of a certain class or event,
such as presence/absence, success/failure, or yes/no outcomes, based on one or more predictor variables. The logistic
regression model estimates the probability that a given instance belongs to a particular category. This is achieved by
fitting the data to a logistic function, also known as the sigmoid function, which outputs a value between 0 and 1. The
formula for the logistic function is:

P(Y = 1) =
1

1+ e−(β0+β1X1+β2X2+···+βkXk)
(1)

where P(Y = 1) is the probability of the outcome, β0 is the intercept, β1, β2, · · · , βk are the coefficients for the predictor
variables X1, X2, · · · , Xk.

The coefficients β represent the change in the log odds of the outcome for a one-unit increase in the predictor variable.
Positive coefficients increase the log odds of the outcome, while negative coefficients decrease them. This method is
widely employed in fields such as medicine, social sciences, and marketing due to its ability to handle binary outcomes
effectively and provide probabilities and odds ratios, which are straightforward to interpret. Logistic regression can also
accommodate multiple predictor variables, making it a versatile and powerful tool for modeling complex relationships
[28]. Multiple logistic regression extends simple logistic regression by allowing the inclusion of several predictor variables.
This technique is used when the outcome variable is binary, and the goal is to understand the relationship between the
outcome and multiple independent variables simultaneously. The exponential of a coefficient eβi gives the odds ratio for
a one-unit change in the predictor variable, offering an intuitive measure of how much more (or less) likely the outcome
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is as the predictor variable increases by one unit. The goodness-of-fit for multiple logistic regression can be evaluated
using measures such as the Likelihood Ratio Test and the Wald Test [29].

Figure 3. Navigating logistic regression

The Figure 3 provides a concise explanation of the logistic regression process, starting with data cleaning, where
raw data is preprocessed to ensure accuracy and consistency by addressing missing values, duplicates, and other
inconsistencies. Once the dataset is prepared, logistic regression is applied to model the relationship between independent
variables and the dependent variable, calculating probabilities to predict outcomes. Finally, the model uses these
probabilities to make predictions about the dependent variable, offering insights into the likelihood of specific outcomes
based on the input data.

4.4 Maximum likelihood estimation

The maximum likelihood (ML) method stands as the predominant approach for parameter estimation in linear
regression models. It is similarly applied to estimate the parameters within logistic regression models. This method,
known as maximum likelihood estimation, determines the parameter values of the model that yield the highest likelihood
function value. The likelihood function of the model is given below as the formula:

L(βi, y|x) = pyi
i (1− pi)

1−yi , where i = 1, · · ·k. (2)

The log-likelihood function is given below as

l(βi, y|x) = lnL(βi, y|x) = ∑
yi=1

ln(pi)+ ∑
yi=0

ln(1− pi) (3)

TheMaximumLikelihood Estimation (MLE) entails finding the parameter βi value that maximizes the log-likelihood
function 3. This is achieved by solving a specific equation using the Newton-Raphson technique. Here β is the parameter
of the logistic model to be estimated, yi be the dichotomous response variable of the model having the probability pi and
x be the independent variable which possesses the condition on y.
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∂ l(βi, y|x)
∂βi

= 0 (4)

4.5 Assessing the model’s performance
Multiple assessments are conducted to determine the utility, user-friendliness, and adequacy of the model under

consideration. The significance of individual variables is examined through coefficient testing, followed by an evaluation
of the model’s overall fit.

4.5.1Wald test

The Wald test is a statistical hypothesis test used to assess the significance of individual coefficients (parameters) in
a regression model, including logistic regression. It evaluates whether a particular predictor variable has a statistically
significant effect on the outcome variable.

Formulate Hypothesis: Null Hypothesis (H0): The coefficient of the predictor variable is equal to zero, indicating
no effect on the outcome. Alternative Hypothesis (H1): The coefficient of the predictor variable is not equal to zero,
indicating a significant effect on the outcome.

The test statistic follows as asymptotic chi-square distribution with one degree of freedom under the null hypothesis.
The formula for the Wald Test statisti is given below:

W =
(β̂ −β0)

2

Var(β̂ )
(5)

where β̂ is the estimated coefficient, β0 is the hypothesized value under the null hypotheis, Var(β̂ ) is the estimated variance
of the coefficient. Here, theWald test is used to assess the significance of predictor variables in a logistic regression model.
It provides a quantitative measure of the impact of each predictor variable on the outcome, helping researchers determine
which variables are most influential. Reporting the results of the Wald test enhances the transparency and credibility of
the statistical analysis, enabling readers to evaluate the robustness of the findings.

4.5.2Likelihood ratio test

The likelihood ratio test (LRT) is a statistical hypothesis test used to compare the fit of two nested models, typically
in the context of logistic regression. In logistic regression, the LRT is commonly employed to evaluate whether adding
additional predictor variables significantly improves the fit of the model.

Formulate Hypothesis: Null Hypothesis (H ′
0): The simpler model (with fewer predictors) is sufficient to explain the

data. Alternative Hypothesis (H ′
1): The more complex model (with additional predictors) provides a significantly better

fit to the data.
The test statistic follows a chi-square distribution with degrees of freedom equal to the difference in the number of

parameters between the two models. The formula for the LRT statistic is given below:

LRT =−2∗ [(logL0)− (logL1)] (6)

where L0 is the parameter with zero and L1 is the parameter estimated byMLE. The LRT is used to assess the significance of
adding new predictor variables to the model. By comparing the fit of nested models, researchers can determine whether
the inclusion of additional predictors enhances the model’s explanatory power. Reporting the results of the likelihood
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ratio test helps to justify the model’s complexity and provides insights into the relationship between the predictors and the
outcome variable.

4.5.3Omnibus test

The omnibus test in logistic regression is a statistical method used to assess the overall significance of the model
as a whole. It examines whether the model, with all its predictor variables collectively, provides a better fit to the data
compared to a model with no predictors. In essence, the omnibus test evaluates whether there is a relationship between
the predictors and the outcome variable.

Formulate Hypothesis: Null Hypothesis (H ′′
0 ): The model with no predictors (null model) fits the data as well as the

model with predictors. Alternative Hypothesis (H ′′
1 ): The model with predictors provides a significantly better fit to the

data than the null model.
The test statistic is typically based on the likelihood ratio or Wald statistic, comparing the fit of the model with

predictors to the fit of the null model. The test statistic follows a chi-square distribution with degrees of freedom equal to
the difference in the number of parameters between the two models. This is used to evaluate the overall significance of
the model. It helps researchers determine whether the predictors collectively contribute to explaining the variation in the
outcome variable. Reporting the results of the omnibus test enhances the credibility of the statistical analysis and provides
important insights into the overall effectiveness of the logistic regression model in addressing the research question.

Adequacy assessment of the model: The goodness of fit in a statistical model refers to how accurately the model
aligns with the observed data and characterizes the dependent variable. Assessing the goodness of fit entails examining
the degree of proximity between predicted values and actual observations.

4.5.4Hosmer-Lemeshow test

The Hosmer-Lemeshow test is employed as a statistical approach for evaluating the adequacy of logistic regression
models, especially within binary classification scenarios. Its primary function is to gauge the alignment between observed
outcomes and the predicted probabilities derived from the logistic regression model. By scrutinizing the model-predicted
probabilities correspond to actual outcomes, this test effectively assesses the model’s fit. This assessment, in turn,
offers valuable insights into the model’s performance in prediction and its accuracy in classifying observations. The
utilization of the test in reporting findings not only bolsters the credibility of the statistical analysis but also furnishes
essential information for deciphering the logistic regressionmodel’s soundness and dependability. TheHosmer Lemeshow
statistical measure that evaluates the logistic regression model’s goodness of fit and accepts any number of independent
variables, either qualitative or quantitative. It establishes the significance of the variations between the observed and
predicted proportions. Similar to an χ2 goodness of fit test, the Hosmer-Lemeshow test has the benefit of separating
the observations into groups of about similar size, which reduces the likelihood of having groups with extremely low
frequencies of observed and predicted values. The anticipated probabilities are used to divide the observations into deciles.
Hosmer-Lemeshow statistics are distributed according to χ2 degree of freedom (D-2) which is given by the below equation
7.

χ2
HL =

I

∑
i=1

(Oi −Ei)
2

Niςi(1− ςi)
(7)

where I is the number of the groups, Oi is the observed events, Ei is the expected events, Ni is the total number of observed
events, ςi is the estimated risk for the ith group.
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5. Results and discussions
5.1 Spatio-temporal of hotspot detection

In this study, spatio-temporal hotspots of respiratory diseases from 2019 to 2021 were identified using relevant
variables through the application of the purely spatio-temporal Poisson model in SaTScan software. The analysis revealed
distinct primary and secondary hotspots for each disease, with the results visually represented on a geographical map
of India (Figure 4) generated using SaTScan’s built-in functions (Google Earth and Cartesian mapping). Notably,
Lakshadweep and Kerala consistently emerged as primary hotspots for ARDS, while Rajasthan was identified for
Pneumonia, and Delhi for TB across all studied parameters from 2019 to 2021. The detailed results of hotspot detection
for the study period are summarized in Tables 1-3. These hotspots have proven to be significant over both the short
and long term, suggesting that the government and relevant organizations should prioritize these regions in their policy
formulation to address and eradicate these diseases.

Table 1. Hotspot dectection of ARDS by Spatio-temporal analysis

Hotspot Temporal zone EC OC RR LLR p-value

Lakshadweep, Kerala 2019-2020 (P) 1,428,529.10 5.62 6.11 7,532,190.59 < 0.00000000000000001

Chandigarh, Himachal pradesh 2019-2020 (S1) 346,680.84 8.69 8.98 3,892,535.08 < 0.00000000000000001

Rajasthan 2019-2020 (S2) 3,229,085.51 2.78 3.00 3,656,674.87 < 0.00000000000000001

Gujarat 2019 (S3) 1,448,066.04 1.68 1.70 282,519.33 < 0.00000000000000001

Sikkim 2019 (S4) 13,710.56 7.13 7.14 108,069.21 < 0.00000000000000001

Table 2. Hotspot detection of pneumonia by spatio-temporal analysis

Hotspot Temporal zone EC OC RR LLR p-value

Rajasthan 2019-2020 (P) 65,131.79 3.39 3.76 122,052.42 < 0.00000000000000001

Chandigarh 2019-2020 (S1) 989.54 42.89 43.98 118,602.03 < 0.00000000000000001

West bengal 2019-2020 (S2) 79,648.48 2.66 2.90 80,885.01 < 0.00000000000000001

Uttar pradesh, Haryana 2019 (S3) 119,967.54 1.77 1.88 31,748.42 < 0.00000000000000001

Andhra pradesh 2021 (S4) 21,335.45 3.10 3.19 30,759.34 < 0.00000000000000001

Table 3. Hotspot detection of tuberculosis by spatio-temporal analysis

Hotspot Temporal zone EC OC RR LLR p-value

Delhi 2019-2020 (P) 65,113.77 2.99 3.05 84,757.78 < 0.00000000000000001

Madhya pradesh 2019 (S1) 492,920.01 1.31 1.34 23,045.22 < 0.00000000000000001

Andhra pradesh 2019 (S2) 80,913.26 1.22 1.22 1,864.47 < 0.00000000000000001

Puducherry 2019 (S3) 2,505.52 1.85 1.85 722.66 < 0.00000000000000001

Nagaland 2019 (S4) 3,399.04 1.43 1.43 271.89 < 0.00000000000000001
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Figure 4. Hotspots of respiratory diseases
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5.2 Statistical analysis
Table 4 provides a separate summary of respiratory diseases, offering insights into the data by highlighting the

arithmetic mean, standard deviation, sample variance, kurtosis, and skewness. The summary reveals a substantial disparity
between the minimum and maximum number of cases over the time period. A higher standard deviation indicates
significant data dispersion, underscoring the uneven distribution of respiratory disease cases across the country. Notably,
Pneumonia has the lowest mean in India. The states with the highest and lowest consistency in respiratory disease cases
were identified using the coefficient of variation (CV). This aids in identifying areas where systematic measures are needed
to eradicate the diseases. Although respiratory diseases occur in other states, their incidence is not consistently at an alert
level, nor are they considered a severe threat. The less consistent states, predominantly tribal or sparsely populated areas,
have shown high variability in cases, indicating volatility. This suggests that while cases exist, they lack specific roots and
appear erratic, making them easier to control and monitor. States with higher population and pollution rates are observed
to have more consistent cases of respiratory diseases compared to other states.

Table 4. Descriptive statistics of the respiratory diseases

Descriptive statistics ARDS Pneumonia TB All

Mean 789,790.53 15,930.35 60,414.8 866,135.68

Standard deviation 1,148,743 30,139.97 85,095.80 1,205,523.82

Sample variance 1.32E + 12 9.08E + 08 7.24E + 09 1.45E + 12

Kurtosis 4.88 10.71 10.35 4.35

Skewness 2.16 3.18 2.82 2.07

Count 105 105 105 105

A correlation matrix illustrates the correlation coefficients between variables of respiratory diseases, helping to
identify the primary causes that are highly related to other variables. We computed all pairwise Spearmans correlation
coefficients between the aligned variables to obtain the matrix. This resulted in a 14 × 14 symmetric matrix with values
ranging from -1 to 1. The same matrix, shown in Figure 5, applies to all three diseases as they are caused by the
same variables. The analysis revealed that poverty, air pollutants, malnutrition, and population density are statistically
significant factors contributing to these diseases. This provides strong evidence of the rise in respiratory disease cases,
highlighting the failure of policies to effectively combat and manage these serious health issues during the study period.
Government actions appear to be inadequate in addressing the situation.
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Figure 5. Correlation matrix of the respiratory diseases

5.3 Logistic regression
We conducted a multiple logistic regression analysis on the three diseases to understand the significance of various

variables and identify related risk factors impacting the dependent variable. Table 5-7 lists the 14 independent variables
used to fit the multiple logistic regression model. These tables show the estimated parameters from the fitted model and
their Wald Test results. The analysis identified four main factors with significant effects on the diseases: poverty, air
pollutants, malnutrition, and temperature. Specifically, PM(2.5), NO2, O3 emerged as the most important risk factors
among air pollutants. Additionally, for ARDS, literacy rate and population density also had a considerable impact.
Malnutrition and Per Capita Income (PCI) played roles in Pneumonia and Tuberculosis cases, though they were less
significant compared to the classical risk factors. Overall, air pollutants, poverty, temperature, and population density
were identified as critical factors. These findings highlight the importance of considering these variables when studying
human characteristics that may influence health outcomes. It is crucial to understand the complex interplay between
these factors and their impact on respiratory diseases. These insights have significant implications for respiratory disease
research and public health policymakers, aiding in the early detection and prevention of these diseases. The coefficient
plot for respiratory diseases is shown separately in Figure 6.
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Table 5. Coefficients of multiple logistic regression and wald test for ARDS cases

Variables Coefficients SE z P > |z| χ2 P > χ2 Odd ratio

Constant 27.82 16.89 1.64 0.10 2.71 0.09 -

Poverty -4.49 1.97 -2.27 0.02 5.17 0.02 0.6143

Literacy rate -0.20 0.15 -1.31 0.18 1.73 0.18 1.3053

PM (2.5) 0.18 0.09 1.96 0.04 3.87 0.04 0.7777

PM (10) -0.11 0.06 -1.81 0.07 3.28 0.06 0.6636

SO2 0.53 0.35 1.50 0.13 2.24 0.13 1.7145

CO -0.001 0.003 -0.50 0.61 0.25 0.61 1.0931

O3 0.05 0.07 0.71 0.47 0.51 0.47 1.1368

NO2 0.004 0.09 0.05 0.95 0.002 0.95 1.0622

Population density -0.001 0.001 -1.15 0.24 1.32 0.24 0.9650

Urbanization 0.15 0.12 1.21 0.22 1.48 0.22 0.8513

Malnutrition 5.11 2.26 2.26 0.02 5.12 0.02 0.7236

Temperature -0.47 0.26 -1.79 0.07 3.22 0.07 1.2624

Humidity 0.11 0.07 1.57 0.11 2.46 0.11 1.7610

PCI -2.91 1.50 -1.94 0.05 3.76 0.05 1.0365

Table 6. Coefficients of multiple logistic regression and wald test for pneumonia cases

Variables Coefficients SE z P > |z| χ2 P > χ2 Odd ratio

Constant 11.24 9.14 1.53 0.32 1.47 0.07 -

Poverty -3.21 1.22 -1.12 0.009 3.24 0.01 0.6854

Literacy rate 0.42 0.15 1.34 0.15 1.54 0.12 0.7940

PM (2.5) 0.62 0.06 -0.82 0.15 0.87 0.53 1.5188

PM (10) 0.67 0.04 0.28 0.67 0.08 0.88 1.5972

SO2 0.009 0.01 0.29 0.86 2.34 0.38 0.7625

CO 0.17 0.02 -0.24 0.78 0.34 0.57 1.0174

O3 0.92 0.07 0.62 0.39 0.66 0.51 0.8232

NO2 0.66 0.36 0.05 0.93 0.003 0.88 2.8929

Population density 0.68 0.75 -1.65 0.45 1.56 0.53 1.6627

Urbanization -0.26 0.32 1.67 0.38 1.13 0.26 1.6923

Malnutrition 0.05 1.14 1.02 0.54 4.89 0.13 0.7507

Temperature -0.30 0.43 -1.54 0.43 3.21 0.09 1.9155

Humidity 0.24 0.13 1.32 0.13 1.97 0.15 0.5081

PCI -1.34 1.98 -1.11 0.12 2.65 0.14 2.3268
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Table 7. Coefficients of multiple logistic regression and wald test for tuberculosis cases

Variables Coefficients SE z P > |z| χ2 P > χ2 Odd ratio

Constant 7.95 14.19 0.56 0.57 0.31 0.57 -

Poverty 1.82 1.39 1.30 0.19 1.70 0.19 0.7540

Literacy rate -0.21 0.15 -1.45 0.14 2.10 0.14 0.9395

PM (2.5) -0.05 0.06 -0.97 0.33 0.94 0.33 0.8030

PM (10) 0.01 0.04 0.43 0.66 0.19 0.66 0.9218

SO2 0.02 0.25 0.10 0.91 0.01 0.91 1.4056

CO 0.004 0.004 1.09 0.27 1.20 0.27 1.5697

O3 -0.31 0.17 -1.75 0.08 3.06 0.07 0.5771

NO2 0.23 0.12 1.92 0.05 3.71 0.05 1.2953

Population density 0.0002 0.001 0.27 0.78 0.07 0.78 1.3348

Urbanization 0.02 0.10 0.25 0.79 0.06 0.79 1.4977

Malnutrition -2.13 1.70 -1.25 0.21 1.56 0.21 0.7574

Temperature -0.07 0.22 -0.34 0.72 0.12 0.72 1.3428

Humidity 0.08 0.07 1.16 0.24 1.36 0.24 1.5409

PCI 1.20 1.01 1.19 0.23 1.42 0.23 1.6099
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Figure 6. Coefficient plot of the respiratory diseases

After extracting all non-significant factors, we refitted the multiple logistic regression model using only the
significant independent variables. The Wald test for the coefficients of these variables indicates their significant
contribution to predicting the diseases. The odds ratio (OR) of each significant variable is presented in the table, with
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a 95% confidence interval (CI) for comparison with all other variables. Table 8 provides the model selection values,
including AIC, BIC, and deviance for the respiratory diseases.

Table 8. Model selection criteria

Respiratory diseases AIC BIC Deviance

ARDS 53.89 47.23 1.0

Pneumonia 53.12 46.78 1.75

Tuberculosis 54.12 47.47 1.25

5.3.1Accessing the model performance

Table 9 presents the likelihood ratio test and omnibus test results for all three diseases, indicating that the independent
variables significantly contribute to predicting the main causes of the diseases. Although the constant has no practical
interpretation in the model, it is typically retained regardless of its significance. Table 10 displays the contingency table
for the Hosmer-Lemeshow test, showing the goodness of fit for each disease at different p-values. Consequently, the
overall model fit is good.

Table 9. Test of model effects

Respiratory diseases LRT test Omnibus test

ARDS χ2 : 22.49 p : < 0.01 χ2 : 26.01 p : < 0.01

Pneumonia χ2 : 22.41 p : < 0.01 χ2 : 25.12 p : < 0.01

TB χ2 : 22.90 p : < 0.01 χ2 : 25.77 p : < 0.01

Table 10. Contigency table

Respiratory diseases Hosmer-Lemeshow test

ARDS χ212.89 p : 0.58

Pneumonia χ27.89 p : 0.69

TB χ211.81 p : 0.52

To evaluate the success of the logistic regression model in predicting respiratory diseases, various performance
measures were used, as discussed in the methodology section. These measures include sensitivity, specificity, test F1

score, train F1 score, and accuracy. Ideally, all these metrics would equal one; however, this is generally unattainable,
especially for respiratory diseases. We compared these measures for ARDS, Pneumonia, and Tuberculosis. Initially,
logistic regression was applied to each of the three diseases, using their respective variables as the dependent variable.
The objective was to assess the model accuracy in predicting the diseases based on the available variables. The factors
affecting the stability of the diseases are shown in the Figure 7. Once the model was successfully calibrated, the goal
was to compare the relative importance of each risk factor identified by their respective criteria. It is understood that the
causes of the three diseases function similarly, and the prediction metrics of the model are presented in Table 11.
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Figure 7. Coefficients of the respiratory diseases
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Table 11. Performance of logistic regression

Respiratory diseases Sensitivity Specificity Test F1 score Train F1 score Accuracy

ARDS 0.22 0.78 0.76 0.82 0.81

Pneumonia 0.32 0.68 0.85 0.88 0.72

TB 0.10 0.90 0.76 0.77 0.92

6. Conclusion
One of the crucial aspects in the medical industry is predicting respiratory diseases using available data. Numerous

techniques and methods exist for this purpose. In this research, we identified spatio-temporal hotspots and applied logistic
regression. The key element is the selection of data and variables, which enhances the accuracy and effectiveness of the
method. Our proposed statistical framework did not reveal a significant association but identified the classical risk factors
among the three common respiratory diseases, providing a modeling approach to understand the relative importance of
these risk factors in their respective datasets. While air pollutants and malnutrition significantly impact one disease, they
may not have the same effect on the other two. These inconsistent results highlight the need for further research to clarify
the main causes of respiratory diseases. According to the results of the statistical tests, the multiple logistic regression
model has performed efficiently. This study emphasizes the importance of community involvement in limiting the spread
and eradicating these diseases as early as possible. People should adhere to preventive policies and increase societal
awareness and commitment to the precautionary measures recommended by the Ministry of Health.
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