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Abstract: With the increasing importance of credit risk analysis (CRA)with an emphasis on privacy, there’s a notable need
for a privacy-preserving machine learning (PPML) system. To address this demand, we propose a framework presenting
a novel approach to privacy-preserving credit risk analysis (PPCRA) through integrating neural networks (NN) with
homomorphic encryption (HE). The proposed framework offers robust privacy protection while maintaining the efficiency
and accuracy of credit risk prediction systems. The implementation utilizes libraries such as TenSEAL and Torch to
develop a HE-enabled NN model capable of processing encrypted data. Comprehensive security analysis establishes
resilience against numerous privacy attacks of the system and empirical validation through experiments conducted on
real-world financial datasets from multiple countries. The evaluation of the NN’s performance, both with and without
privacy preservation measures, provides insights into the efficacy of the proposed approach. This study offers significant
advancements in privacy-preserving techniques for CRA, with implications for financial institutions and data security
practitioners.

Keywords: machine learning, artificial neural networks, privacy, homomorphic encryption, credit risk analysis, financial
analytics
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Abbreviation
Acronym Description
CRA Credit Risk Analysis
ML Machine Learning
NN Neural Networks
HE Homomorphic Encryption
FHE Fully Homomorphic Encryption
PPML Privacy-Preserving Machine Learning
PPCRA Privacy-Preserving Credit Risk Analysis
PPNN Privacy-Preserving Neural Networks
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TenSEAL Python SEAL software library for HE operations on Tensors.
CKKS HE for Arithmetic of Approximate Numbers (HEAAN)

Symbol Description
(pk, sk) Public key and Private key
ϕ() Neural network classification model
N Total number of samples in the dataset
X Plain text vector input
Y Plain text vector output
ω Plain text vector weights
[X] Encrypted vector input
[Y ] Encrypted vector output
[ω] Encrypted vector weights

1. Introduction
Credit risk analysis (CRA) [1] helps financial institutions evaluate the probability of a borrower default on a loan.

This assessment enables them to make informed decisions regarding loan approval denial and set suitable interest rates
and credit limits. It protects lenders from potential losses, supports responsible lending practices, and fosters trust in the
financial system.

The finance industry faces a significant challenge in developing credit risk models to predict a borrower’s likelihood
of repaying a loan. Conventional statistical methods like Logistic Regression and Linear Discriminant Analysis are
commonly employed in credit and customer risk assessment. However, they may face challenges when dealing with
large-scale data analysis. Alternatively, machine learning (ML) [2] techniques, such as support vector machines (SVM),
decision trees (DT), and NN, are increasingly utilized for predicting credit risk by leveraging behavioral and demographic
data. ML can handle large datasets and provide optimized predictive models, contributing to improved accuracy in various
financial tasks.

The financial institutions outsourced storage and computation in cloud-based services [3] allows for the training
and prediction of ML models for CRA remotely without investing in specialized hardware. However, the most serious
limitation for financial institutions is losing control over potentially sensitive data privacy. Financial institutions must
maintain the privacy and security of borrowers’ information to protect them from fraud initiatives. Attending to privacy
issues in credit risk modelling isn’t just a legal obligation. It is an essential element in upholding trust, ethical standards,
and the sustained prosperity of financial institutions. Balancing the need for accurate credit risk assessment with privacy
protection is crucial for responsible and sustainable financial analytics.

To safeguard the privacy and security of borrowers’ personal information, PPML techniques [4] are employed to
derive useful insights from the financial data while maintaining the confidentiality. One effective approach to tackle this
is through the utilization of HE that enables computations on encrypted data. This is a substantial progress in the domine
of cryptography and has important applications, particularly in privacy-preserving scenarios.

The data of a loan application undergoes encryption using HE, enabling the construction of a NN model using the
encrypted data. Once the model training is complete, it can be utilized to predict outcomes on new loan applications
without decryption. Subsequently, using HE, the output predictions ware decrypted to reveal the suitability of the credit
application for approval. This strategy ensures the confidentiality and security of sensitive bank loan application data,
empowering the bank to make informed decisions.

Preserving data privacy involves several steps, including input, output, training, and model privacy. Input privacy
ensures data confidentiality during both training and inference, particularly when data is transmitted to an untrusted cloud
server. Output data privacy involves protecting the confidentiality of information disclosed through a model’s outputs or
predictions during inference. Training privacy is crucial for safeguarding the confidentiality of training data and preventing

Contemporary Mathematics 1052 | Vankamamidi S. Naresh, et al.



reverse engineering attempts. Model privacy aims to prevent the discovery of attributes and weight in the derived model,
to deter theft by malicious entities.

Privacy-preserving credit risk analysis (CRA) models leverage advanced techniques like HE and secure multi-party
computation to analyse encrypted borrower data without compromising confidentiality, ensuring compliance with data
protection regulations like GDPR. HE enables computations on encrypted datasets, safeguarding sensitive information
such as income and spending habits while facilitating secure collaborations between financial institutions. Combined
with artificial intelligence (AI), these models improve the accuracy and fairness of credit evaluations by identifying
patterns, automating risk assessments, and mitigating biases. AI further enhances this approach by enabling personalized,
secure, and unbiased credit risk evaluations and fraud detection through federated learning and encrypted data processing.
Despite challenges like computational complexity, advancements in HE schemes (e.g., CKKS, TFHE)make it increasingly
efficient, allowing financial institutions to balance robust privacy with precision in risk assessment, fostering trust and
regulatory compliance.

In this paper, we propose a CRA system that leverages an HE-aware neural network. This system is specifically
designed to provide data privacy throughout all stages of the machine learning process, including input, output, training,
and model.

1.1 Contributions

The main contribution of this study is the development of a PPCRA Framework, which includes:
• Construction of a HE-enabled NN model capable of operating on encrypted data.
• Conducting a comprehensive security analysis demonstrating the system’s resilience against numerous privacy

attacks, such as poisoning, member inference, evasion, model inversion, and model extraction.
• Performing experiments using authentic financial datasets from Germany, Japan, Australia, and Taiwan.
• Performance evaluation of the NN within the proposed system with and without privacy preservation measures.
The paper’s structure is outlined as follows: Section 2 analyses of related work on privacy-preserving neural networks

(PPNN). Section 3 introduces the background knowledge of NNs and HE. The PPCRA framework are proposed in the
paper explained in Section 4. Section 5 conducts a security analysis, in Section 6 presents experiments demonstrating the
efficacy and accuracy of this approach. Finally, Section 7 concludes by summarizing the key findings comprehensively.

2. Related work
There’s been a growing interest in utilizing HE to safeguard privacy in data analysis, particularly in bank loan

processing using artificial neural networks (ANN). This section presents recent advancements in PPNN for credit risk
assessment systems.

A range of studies have explored the use of various prediction models. Ziru et al. [5], Vijaya et al. [2], Gide et al.
[6], Ayad et al. [7], Mijwel et al. [8] emphasize the importance of ML algorithms including neural networks. With Ziru
focusing on using historical transaction data and Vijaya “predicting credit risk in financial institutions using ensemble ML
models”. Li et al. [9] propose a “model for listed companies that combines a CNN-LSTM and an attention mechanism”,
while Balakrishnan et al. [10] developed “a credit risk model for Indian debt securities using ML techniques, including
artificial NNs, support vector machines, and random forest”. These studies collectively highlight the potential of ML and
data mining in improving the accuracy of credit risk prediction models. However, these studies did not address privacy
concerns regarding user data.

Various privacy-preserving techniques have been proposed for credit risk prediction. Zheng et al. [11] introduce
PCAL, a framework based on adversarial learning that masks private information while maintaining utility. Maniar et
al. [12] explore the application of differential privacy in credit risk modelling, evaluating its performance against a non-
differentially private model. Andolfo et al. [13] evaluate the use of functional encryption for privacy-preserving credit
scoring, highlighting its potential performance impact. Lin et al. [14] introduced “a privacy-preserving credit score
system based on noninteractive zero-knowledge proof, which ensures that user information is not revealed during the
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credit scoring process”. These techniques offer promising solutions for maintaining data privacy in credit risk prediction.
However, these models lack consideration for privacy protection in existing credit score computation, leaving user
information vulnerable to potential leaks and increasing the risks of identity theft and credit card fraud.

Various investigations have explored the use of HE in credit risk prediction, with promising results. Allavarpu et al.
[15] introduced a PPCRA framework using HE-aware logistic regression, demonstrating minimal accuracy differences
compared to non-HE models. Nugent et al. [16] proposed a system for private fraud detection on encrypted transactions,
achieving low latency and discussing use cases and deployment feasibility. Xiao et al. [17] developed “a privacy-
preserved approximate classification algorithm based onHE, achieving feasible results for real-world problems”. Cheon et
al. [18] proposed “an ensemble method for privacy-preserving logistic regression, which reduces the number of iterations
and improves performance”. However, it suffers from higher execution costs due to the large number of iterations.
Standard GD requires more iterations than the ensemble method. Bonte et al. [19] introduce logistic regression in machine
learning, discuss the motivation for outsourcing computation to a cloud service, emphasize the need for privacy-preserving
measures, and demonstrate the method’s effectiveness in handling large datasets for real-life applications in medicine and
finance. However, this model contains many approximations, which may lead to slightly worse performance compared
to standard methods. The generalizability of the technique to other ML problems, such as NNs, is not straightforward and
would require more complicated algorithms. These studies collectively suggest that HE holds promise for enhancing the
privacy and security of credit risk prediction models.

Further, Amorim et al. [20] andWingarz et al. [21] both highlight the potential of HE in preserving data privacy using
NNs. Amorim et al. emphasize addressing a reliable and efficient privacy preservation approach. However, this model
has limited support for advanced NN operations and scalability issues. Wingarz et al. discuss the significant overhead of
running CNNs on homomorphically encrypted inputs. The ReActHE system by Song et al. [19] is a deep NN designed
to facilitate privacy-preserving biomedical predictions through HE. This system aims to ensure the security of sensitive
biomedical data while allowing for accurate predictions. It utilizes HE to enable computations on encrypted data without
compromising privacy. Ivone et al. [22] “provide a comprehensive analysis of using HE for NN training and classification
to enhance data privacy and security, highlighting challenges that need to be addressed for a reliable and efficient privacy
preservation approach”.

Given the constraints highlighted regarding the current CRA, there’s a pressing need to develop a PPCRA. This
arises from the necessity to balance evaluating individuals’ creditworthiness effectively and safeguarding their sensitive
personal data. The concept of a privacy-preserving CRA is founded on the imperative of maintaining an accurate risk
assessment while upholding ethical and legal obligations to safeguard individuals’ privacy, adhere to regulations, foster
consumer trust, and bolster cybersecurity across the financial domain. Furthermore, Table 1 presents a comparison of
various privacy-preserving methods discussed in the literature.

Table 1. Privacy-preserving methods and its applications

Sl. No Paper Insights Applications Limitations/Remarks

1 Jestine
et al. [23]

The paper focuses on PPHE collective
learning for in-hospital mortality prediction.
Collective Learning protocol as mentioned
in this paper presents a secure protocol to
train a binary classifier model of time-series
data using homomorphic encryption and

logistic regression.

Medical applications.

The computational complexity of
encrypted operations renders
gradient descent training

impractical. Previous works have
focused solely on encrypted

processes during the inference phase.

2 Mohammad
et al. [24]

The study presents an integrated predictive
accuracy algorithm for credit risk

classification, utilizing ML classifiers like
SVM, KNN, ANN, and DNN, and

employing resampling techniques to improve
prediction accuracy for default payments in

imbalanced datasets.

Predicting default
payments in credit
risk assessments.

Limitations of current credit
risk assessment methods discussed

and no privacy for the
user data.
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Table 1. (cont.)

Sl. No Paper Insights Applications Limitations/Remarks

3 Emmanuel
et al. [25]

The paper introduces an ML-based credit
risk prediction model employing a
classification that combines Gradient
Boosting, Extreme Gradient Boosting
and Random Forest. The model is

evaluated across multiple
datasets using metrics such as
accuracy, AUC and F1-score.

Credit risk prediction
for financial institutions. No Privacy techniques used.

4 Yong et al.
[26]

The paper presents an integrated
graph representation learning approach

for credit risk prediction,
utilizing KNN for edge construction
and GNN for node classification,
enhancing predictive accuracy by
combining unsupervised graph

transformation with supervised classification,
focusing solely on internal information.

Future applications of
GNN in operational
research tasks.

There is a need to
explore methods for enhancing

forecasting performance
without relying on explicit
relationships. Additionally,
conducting a sensitivity

analysis of the hyperparameter
kk is crucial for
optimal selection.

5 Yung et al.
[27]

The paper discusses a multi-objective
ensemble learning scheme for loan default
prediction, which enhances credit risk

analysis classification by
integrating credit rating-specific
features, improving predictive
accuracy, and addressing the

complexities of borrower behavior in
default scenarios.

Loan default prediction
using ensemble learning

techniques.

Highly imbalanced class
distribution in loan default
prediction. Difficulty
in achieving good

classification accuracy.

6 Divakar et al.
[15]

The paper presents a PPML framework
for CRA using HE aware

Logistic Regression (HELR),
ensuring data privacy during training and

inference phases while
achieving satisfactory accuracy compared
to non-HE models across various datasets.

PPCRA using HELR
on various datasets.

Less Accuracy
compared with proposed.

7 Lin et al.
[14]

The paper proposes a PP credit
score computation that utilizes Paillier
encryption and zero-knowledge proofs
to safe guard users information during

credit risk analysis, addressing
privacy concerns of existing

credit score models.

Banking, financial
institutions, insurance policy

purchases and rental
applications.

Privacy protection of existing
CSC models is inadequate.

Potential for leakage
of user private

information exists.

8 Ezgi et al.
[28]

The paper focuses on privacy
preserving classification algorithms,
analyzing their performance on
differentially private data.

While it does not specifically address
credit risk analysis, the techniques

discussed can be applied to
similar classification tasks
requiring data privacy.

Privacy preserving
classification in

data mining applications.

Privacy levels decrease
as classification

accuracy improves.
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Table 1. (cont.)

Sl. No Paper Insights Applications Limitations/Remarks

9 Qiao et al.
[29]

The paper proposes a PP credit
assessment system utilizing

blockchain, featuring secure data
sharing and multiparty

computation. It employs linear
transformation and homomorphic

encryption to protect
data privacy while

enabling accurate credit
risk analysis without

exposing raw.

Privacy-preserving credit
evaluation system. Secure

sharing and multiparty computation.

Need for secure data
sharing in multiparty

computing.

10 Zheng et al.
[11]

PCAL is a framework that
utilizes adversarial learning
to anonymize user data for

credit risk modeling, balancing
privacy protection and
predictive utility. It

aims to mitigate privacy leaks
while maintaining effective
risk analysis for financial

institutions.

Credit risk modeling for
loan decisions. Privacy-preserving

machine learning for
financial companies.

The effectiveness is contingent
upon the robustness of the
adversarial model, the
complexity of balancing
privacy and utility,
and the specific
datasets used
for evaluation.

11 Maniar et al.
[12]

The paper explores differential
privacy in credit risk
modeling, assessing its

effectiveness in protecting
customer data during model
training. It compares the

performance of differentially
private models against
non-differentially private

models for banks.

Credit risk modeling
for loan decisions.

Customer data leakage
and mishandling risks.

Need for privacy protections
in model development.

12 Andolfo et al.
[13]

The paper explores
privacy-preserving credit risk
scoring using functional

encryption (FE), enabling users
to learn only specific functions

of encrypted data,
thus enhancing security while

addressing performance
concerns associated with traditional

methods like Homomorphic
Encryption and Trusted
Execution Environments.

Secure financial computations
with Intel SGX and HE-based
Zero-Knowledge Proofs.

High-performance overhead
of homomorphic

encryption (HE). Trusting Intel
and availability of SGX
hardware extension.

13 Nugent et al.
[16]

System uses homomorphic
encryption for private fraud
detection on transactions.

XGBoost model has better performance
with low encrypted
inference latency.

Private fraud detection
on financial institutions.

Latency and storage requirements
for encrypted inference.

Complexity of securely deploying
the neural network implementation.

14 Cheon et al.
[18]

The paper discusses ensemble
methods for PPLR based
on HE. It focuses on
an efficient algorithm

using mini-batch enhanced
Nesterov’s accelerated gradient
for training logistic regression

on large encrypted
datasets.

Evaluation on private financial
data and public MNIST dataset.

Computational overhead increases
training and inference times
significantly. Inadequate
support for advanced

operations affects accuracy.
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Table 1. (cont.)

Sl. No Paper Insights Applications Limitations/Remarks

15 Amorim et al.
[19]

Homomorphic encryption (HE)
enhances data privacy in

neural networks (NNs) by enabling
computations on encrypted data.
However, challenges include

computational overhead, limited
support for advanced NN

operations, and performance
trade-offs, necessitating

further research for optimization
and scalability.

Milk yield forecasting
in the agri-food sector.

Limited support for
advanced NN operations affects
accuracy and performance.

16 Song et al.
[21]

ReActHE is a novel HE-friendly
DNN designed for PP

biomedical predictions. It
utilizes a residue activation
approach with a scaled

power activation function,
enabling secure computation

over encrypted data
while maintaining low approximation

errors in various tasks.

Biomedical image datasets for
privacy-preserving predictions

and Secure machine
learning evaluation.

Current homomorphic encryption
supports limited arithmetic

operations. Nonlinear activation
functions hinder secure

deep learning applications.

3. Background knowledge
This section offers a concise overview of NN and HE pertinent to the proposed system.

3.1 Homomorphic encryption (HE)

HE is a cryptographic method that enables computations to be conducted on encrypted data, preserving the
confidentiality of sensitive information. It allows the third party to perform computations on encrypted cipher text without
accessing the underlying plaintext. This is crucial for scenarios where privacy needs to be maintained while processing
data. The core concept of HE ensures that operations on encrypted data yield results equivalent to those performed on
unencrypted data upon decryption.

HE supports two basic operations on encrypted data:
1. Addition (Homomorphic Addition): If two numbers a and b are encrypted as Enc(a) and Enc(b), the addition

operation Enc(a)+Enc(b) produces Enc(a+b) still in encrypted form.
2. Multiplication (HomomorphicMultiplication): Similarly, multiplying Enc(a) and Enc(b) produces Enc(a×b).
These operations form the foundation for performing more complex computations on encrypted data.
HE finds applications in various fields:
• Secure Computation Outsourcing: Third parties can compute encrypted data without accessing the raw

information, ensuring privacy.
• Privacy-Preserving Cloud Computing: Users can store encrypted data on cloud servers while performing

computations on it.
• Machine Learning on Encrypted Data: Enables training and inference on encrypted data, preserving data

confidentiality.
• Secure Multi-Party Computation: Facilitates collaborative computations among multiple parties without

disclosing private inputs.
AlthoughHE offers robust privacy preservation, it involves computational overhead and complexity. The introduction

of FHE by Gentry [22] in 2009 revolutionized the field, permitting computations on encrypted data. Our adoption of the
CKKS [30] FHE scheme efficiently handles computations on encrypted data with real-number arithmetic operations. FHE
empowers privacy-preserving computation across various applications without compromising data confidentiality.
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3.2 Artificial neural networks (ANN)

ANNs are computational models inspired by biological NNs, like the human brain, characterized by interconnected
nodes called neurons arranged into layers is shown in Figure 1.

Figure 1. Artificial neural network structure

In CRA, ANNs are increasingly utilized to improve the accuracy of evaluating the credit worthiness of individuals
or entities. This involves weights adjustment and biases of the NN to reduce the disparity among predicted outputs and
actual target values. Through the training process, ANNs learn patterns and relationships inherent in the data. Here are the
critical steps involved in training an ANN. The adoption of ANNs in CRA continues to grow, with financial institutions
seeking to improve their credit scoring models’ accuracy and predictive power. Regular validation, model monitoring,
and adherence to regulatory standards are essential to deploying ANNs in credit risk.

3.3 HE integrates with NN

NN are widely used in tasks like image recognition, NLP, and medical diagnostics. However, training and using
these networks often require access to sensitive data. Integrating HE with NN ensures:

1. Data Privacy: Sensitive data (e.g., medical records or financial details) never needs to be decrypted, safeguarding
privacy.

2. Secure Outsourcing: Enables secure use of third-party computational resources without exposing raw data.
3. Regulatory Compliance: Addresses data protection laws like GDPR, HIPAA, etc.
The integration of HE with NN involves adapting neural network operations (e.g., matrix multiplications, activation

functions) to work on encrypted data. Here’s a simplified workflow:
1. Encryption: Input data (e.g., images, text) is encrypted using a public encryption key.
2. Processing: The encrypted data is fed into the neural network. Key computations, like forward passes, are

performed directly on the encrypted data.
3. Decryption: The output remains encrypted until the user decrypts it with their private key.
This process ensures that at no point is the raw data exposed, even during computation (Figure 2).
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Figure 2. Workflow of HE integration with NN

4. Proposed system
4.1 System model

The proposed CRA system model involves three key entities: Customer (C), Bank (B), and Cloud Service Provider
(CSP), as illustrated in Figure 3. The CSP is a semi-trusted third party and it provides extensive storage and computation
resources through the Internet. The resources are used to compute on encrypted data while maintaining privacy details of
the users.

Figure 3. System model for PPCRA

Customer (C): Represents individuals or organizations seeking loans from the bank. To apply for a loan, customers
provide sensitive personal information. Customers encrypt their data before outsourcing to safeguard privacy on the public
cloud.

Bank (B): An institution offering loans and other financial services to consumers based on their credit history. With
limited resources, the bank utilizes the CSP for data analysis services on encrypted data to train an NN model without
compromising training data privacy. Encrypted training data is stored on the CSP. The bank utilizes the encrypted NN
model for loan decision-making.

4.2 Privacy-preserving credit risk analysis framework (PPCRAF)

The framework comprises three phases:
(i) Privacy-preserving artificial neural network training (PPANNT).
(ii) Privacy-preserving prediction query (PPPQ).
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(iii) Privacy-preserving result extraction (PPRE).
i. Privacy-preserving artificial neural network training (PPANNT)
This phase involves training an NN classifier over encrypted CRA data owned by the bank. The process follows the

CKKS mechanism.
• Initially, plaintext data is encrypted with the bank’s public key (pkb) to generate ciphertext, outsourced to the CSP

for building the encrypted NN model.
• Upon receiving the encrypted training dataset D =⌈xi⌉pkb , ⌈yi⌉pkb , where 1 ≤ i ≤ N and yi represents the binary

class label (0 or 1), the CSP initializes weights and biases randomly.
• Forward propagation computes the network’s output based on input data, current weights, and biases, utilizing an

activation function approximation for each neuron.
• Backpropagation calculates the gradient of the loss function for network parameters. This gradient updates weights

and biases using optimization algorithms like gradient descent.
• The optimized approximation of ⌈yi⌉pkb is obtained using the classifier model ϕ(⌈xi⌉pkb , ⌈yi⌉pkb), where ϕ(D , θ)

denotes the hypothesis class, and θ represents a specific hypothesis parameter.
We depicted CRAF processing in the above phases in Figure 4.

Figure 4. PPCRA framework

The CRA based on the artificial neural network (ANN) computational model is shown in Figure 5.

Contemporary Mathematics 1060 | Vankamamidi S. Naresh, et al.



Figure 5. Artificial neural network computational model

The proposed NNmathematical formulation steps for the classification of plain text inputs are summarized as follows:

1. Let’s consider the input vector: X =

x1

x2

x3

 with other network parameters, such as weight matrices W1 and bias

vector bi are initialized as follows.

W1 =


W11 W21 W31

W12 W22 W32

W13 W23 W33

W14 W24 W34

 , b1 =


b11

b21

b31

b41


2. The input data is fed into the input layer of the network. After that, each neuron in the first hidden layer receives

inputs from the input data layer. The inputs are multiplied by corresponding weights, and these weighted inputs are
summed up as:

Z1 =W1X +b1 =


W11x1 +W21x2 +W31x3 +b11

W12x1 +W22x2 +W32x3 +b12

W13x1 +W23x2 +W33x3 +b13

W14x1 +W24x2 +W34x3 +b14

=


Z
′
11

Z
′
21

Z
′
31

Z
′
41

 (1)

3. Next, each neuron in a second hidden layer receives inputs from the first hidden layer. The inputs are multiplied
by corresponding weights, and these weighted inputs are summed up as follows:
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W2 =


W
′
11 W

′
21 W

′
31 W

′
41

W
′
12 W

′
22 W

′
32 W

′
42

W
′
13 W

′
23 W

′
33 W

′
43

W
′
14 W

′
24 W

′
34 W

′
44



b2 =

[
b
′
11

b
′
21

]

Compute

Z2 =W2Z1 +b2 =

[
W
′
11Z

′
11 +W

′
21Z

′
21 +W

′
31Z

′
31 + W

′
41Z

′
41 +b

′
11

W
′
12Z

′
11 +W

′
22Z

′
21 +W

′
32Z

′
31 + W

′
42Z

′
41 +b

′
21

]
(2)

4. A Sigmoid activation function is applied to the weighted sum Z2 to introduce non-linearity into the network. The
output of the activation function becomes the input to the next layer of neurons. This process is repeated for each layer
until the output layer arrives.

Z3 = Sigmod(Z2) =
1

1+ e−Z2
= Z1

3 , Z2
3 (3)

5. Finally, the output of the NN is compared to the expected output, and the arg max function is often used during
inference to determine the predicted classCi, i = 1, 2 based on the output probabilities from the network’s final layer for
classification.

Ci = argmax(Z3) =
1

1+ e−Z2
= argmax

(
Z
′
3, Z

′′
3

)
=C1 or C2 (4)

Encrypted model
The proposed privacy-preserving artificial NN-based CRA with the above methodology is applied on encrypted text

inputs are summarized as follows:
1. Input layer processing:

Let’s consider the encrypted input polynomial vector: [X ] =

[x1]

[x2]

[x3]

, initialized weight matrices [W ], bias vector [bi].
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[W 1] =


[W 11] [W21] [W 31]

[W12] [W22] [W32]

[W 13] [W23] [W 33]

[W 14] [W24] [W34]



[b1] =


[b11]

[b21]

[b31]

[b41]



[Z1] = [W1X +b1] =


[W 11x1 +W21x2 +W31x3 +b11]

[W 12x1 +W22x2 +W32x3 +b12]

[W13x1 +W23x2 +W33x3 +b13]

[W14x1 +W24x2 +W34x3 +b14]

=


[Z
′
11]

[Z
′
21]

[Z
′
31]

[Z
′
41]

 (5)

2. First, hidden layer processing

[W2] =


[W
′
11] [W

′
21] [W

′
31] [W

′
41]

[W
′
12] [W

′
22] [W

′
32] [W

′
42]

[W
′
13] [W

′
23] [W

′
33] [W

′
43]

[W
′
14] [W

′
24] [W

′
34] [W

′
44]



[b2] =

[
[b
′
11]

[b
′
21]

]

Compute

[Z2] = [W2Z1 +b2] =

[
[W
′
11Z

′
11 +W

′
21Z

′
21 +W

′
31Z

′
31 + W

′
41Z

′
41 +b

′
11]

[W
′
12Z

′
11 +W

′
22Z

′
21 +W

′
32Z

′
31 + W

′
42Z

′
41 +b

′
21]

]
(6)

3. Second hidden layer processing
Compute

[Z3] = Sigmod([Z2]) =
1

1+ e−[Z2]
= ([Z1

3], [Z2
3 ]) (7)

Here, Sigmod([Z2]) is polynomial approximation of encrypted data with the homomorphic properties are: [X ]+ [Y ]
= [X +Y ] and [X ]∗ [Y ] = [X ∗Y ].

4. Output layer processing
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[Ci] = argmax([Z3]) =
1

1+ e−[Z2]
= argmax

(
[Z
′
3], [Z

′′
3]
)
= [C1] or [C2] (8)

ii. Privacy-preserving prediction query (PPPQ)
The Classification model ϕ(.) generated over an encrypted data by using the parameters θ ∗ by NN-training phase.

The bank quries with m attributes z = (z1, z2, . . . , zm), and encrypts it as [z]pkb ← Encrypt(z, pkpkb), in the CSP. The
CSP executes the classifier ϕ(.) on the new record [z]pkb using the encrypted parameter [θ

∗]pkb to generate the prediction
[y]pkb = ϕ([z]pkb , [θ

∗]pkb).
iii. Privacy-preserving result extraction (PPRE)
After getting the prediction results [y]pkb , the CSP sends it to the bank. Then the bank decrypt using y ←

Decrypt(skpkb , [y]pkb)with bank’s private key skb to retrieve the original prediction. Following the classification outcome,
the bank informs the customer about the approval or rejection of the credit in an encrypted format.

5. Security analysis
In this section, we demonstrated a range of privacy attacks on HE-based NN solutions to defend against these attacks.

Initially, we have established various possible privacy attacks on NN over financial data are visualized in Figure 6.

Figure 6. Privacy attacks on neural networks

The NN model can be defined as follows:
Let X be an n×m matrix representing the input data, where n is the number of data points, and m is the number of

features. Each row of X corresponds to a data point, and each column represents a feature. Let Y be 1×n column vector
for labeled data, where Y = 0 or 1, denoting the binary classification. Let L be the number of layers in NN, including the
input and output layers. The activation of the neurons in the output and hidden layers is using activation functions. Let
σ(z) denote the activation function applied element-wise to the vector z.

The output of the i-th neuron in the l-th layer, denoted as a(l)i , is computed as follows:

a(l)i = σ

(
n(l−1)

∑
j=1

w(l)
i j a(l−1)

j +b(l)i

)
(9)
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where: w(l)
i j is the weight of the the j-th neuron in layer l−1 and the i-th neuron in layer l, b(l)i is the bias, and −a(l−1)

j is
the activation.

Theweights and biases of the NN are attaind in training process with optimization algorithms such as gradient descent.
Training aims to minimize a predefined loss function, typically the cross-entropy loss for binary classification tasks.

The prediction of the NN for a given input x is obtained by forward propagating x through the network to compute
the output of the output layer. If the output is more significant than a threshold (typically 0.5 for binary classification),
the prediction is 1; otherwise, it is 0.

5.1 Poisoning attack’s mathematical model

A poisoning attack on an NN involves modifying the training data and labels to compromise the model’s performance.
Let’s denote the original training data as X and the true labels as Y . The attacker’s goal is to craft perturbations to X and
Y to create a poisoned dataset, denoted as Xpoisoned and Ypoisoned, respectively.

Mathematically, the attacker aims to maximize the NN’s loss function by perturbing X and Y , while ensuring that the
poisoned dataset still yields similar predictions as the original. This is typically formulated as an optimization problem:

maximize L(θ) subject to Ypoisoned = f (Xpoisoned, θ) (10)

Here, L(θ) represents the loss function of the NN model, and f (·) represents the forward propagation process of the
NN with parameters θ .

The success of the attack depends on factors like the NN’s architecture, the training algorithm used, and the attacker’s
understanding of the model’s vulnerabilities.

Poisoning attack’s defense through HE:
A HE-based solution to defend against poisoning attacks on an NN involves encrypting the training data and model

parameters, allowing computations on encrypted data.
Here’s how it works:
• Encrypt both the training data X and the model parameters ω using FHE before training the model:

[X ], [ω] = HE ·Encryption(X , ω)

• Perform gradient descent updates on the encrypted data and parameters to compute the new model parameters
without decryption:

[ω ′] = [ω]−α · [X ] · ([Y ]− [Y ′])

• The attacker cannot manipulate the data or model parameters directly on encrypted data.
Since computations occur on encrypted data and weights entire training phase. The attacker cannot modify the

weights and training data without key. Consequently, HE can serve as a defense mechanism against poisoning attacks on
NNs.

5.2 Evasion attack’s mathematical model

In this evasion attack, the attacker alters the input data to appear authentic while deceiving the model’s forecasts.
Let f : Rn→{1, 2, . . . , C} be a NN classifier that maps an input vector x ∈ Rn to one of C class labels. The goal of

an evasion attack is to find a perturbed input x′ = x+δδδ such that f (x) ̸= f (x′) while keeping δδδ small.
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The primary objective is to maximize the misclassification error:

max
δ

L( f (x+δδδ ), y) (11)

where L is the loss function (e.g., cross-entropy loss), y is the true label of x, and δ is the perturbation vector.
The attacker modifies the input vector xi′ by adding a small perturbation ∆xi, such that: xi′ = xi +∆xi

Minimize ∥ ∆xi ∥ (12)

subject to f (x
′
i) ̸= yi

where f (x
′
i) is the predicted label.

Evasion attack’s defense through HE:
We aim to demonstrate that HE operations to perform on encrypted data that do not compromise the NN model

performance. This assurance is pivotal, as it implies that even if an attacker manipulates the encrypted input data, the
resulting decrypted output remains a precise prediction of the original NN model.

Let’s consider the scenario where an attacker attempts to modify the encrypted input vector [X ] by introducing a
perturbation vector Enc(P). Consequently, the new encrypted input becomes:

[Xnew] = [X ]+ [P] (13)

The attacker’s objective is to induce a discrepancy between the decrypted output, Ynew and the original output Y ,
achieved through careful selection of the perturbation vector [P].

We assume that a maximum norm constrains the attacker’s perturbation vector, denoted as ∥ [P] ∥≤ ε , where ε
represents a small value. Such an assumption is typical in evasion attacks, where the attacker’s ability to modify input
data is restricted.

To establish the capability of HE in preserving the NN model’s accuracy amidst such attacks, we seek to prove that
the disparity between the decrypted outputs y and Ynew remains bounded by a small value, even subsequent to the addition
of the perturbation vector to the encrypted input as given:

• Encrypt the original input data x using the public key: c = Encpk(x).
• Generate a small perturbation ∆c in the encrypted domain.
• Add the perturbation to the encrypted input: c′ = c+∆c.
• Perform forward propagation on the encrypted perturbed input using the encrypted model parameters to obtain an

encrypted prediction: c′′ = f (c′).
• Decrypt the prediction using the private key: ŷ′ = Decsk(c′′).
• Compare the decrypted prediction ŷ′ with the true label y to assess the effectiveness of the evasion attack.
By integrating HE into the defence mechanisms against evasion attacks on NNs, we can ensure the confidentiality

and integrity of both the model and the input data, thereby mitigating the effectiveness of adversarial perturbations.
Additionally, leveraging HE for secure computation enables robust defences against evasion attacks while preserving
the privacy of sensitive information.
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5.3 Member inference attack’s mathematical model

Member inference attacks on NNs involve adversaries attempting to determine whether specific data points were
part of the training dataset used to train the model.

Let D represent the training dataset containing N data points, each with n features: D = {(xi, yi)}N
i=1, where xi ∈ Rn

is the input data and yi is the corresponding label. Consider a trained NN classifier f : Rn→{0, 1} that predicts whether
an input data point belongs to the training dataset ( f (x) = 1) or not ( f (x) = 0).

The attacker’s goal is to infer whether a given input data point x′ was part of the training dataset by exploiting the
predictions of the NN model f . For a given input x′, the attacker observes the model’s prediction f (x′). If f (x′) = 1, the
attacker infers that x′ was likely a member of the training dataset; otherwise, x′ is considered non-member.

Member inference attack’s defense through HE:
To safeguard against membership inference attacks employing HE, a strategy involves encrypting both the training

data and the weights using FHE. This approach enables computations to occur on encrypted data without disclosing the
original plaintext.

Let’s consider the Public Key: pk and Private Key: sk. The encrypted training dataset is Denc = {Encpk(xi, yi)}N
i=1

and encrypted model parameters: Θenc.
• Encrypt the training dataset and the NN model parameters using the public key.
- NN Model: fenc(xenc, Θenc),
- Encrypted Input Data: xenc = Encpk(x),
- Encrypted Prediction: ŷenc = fenc(xenc, Θenc).
• Τrain the NN model on the encrypted training dataset using encrypted computations.
- Encrypted training dataset: Denc = {Encpk (xi, yi)}N

i=1,
- Encrypted model parameters: Θenc.
• Homomorphically forward and backward propagation are performed to maintain the privacy of the training process,

which will generate:
- NN Model: fenc(xenc, Θenc).
• In the inferencing process using encrypted input data: xenc = Encpk(x) forecast encrypted prediction: ŷenc =

fenc(xenc, Θenc).
• The decryption function is used to get the plain text prediction as follows:
- Ypred = Decsk([ŷenc]).
Using HE, it is possible to defend against member inference attacks onNNswhile preserving the privacy of individual

data points. By encrypting both the training data and the model parameters and ensuring that all computations are
performed homomorphically, sensitive information is protected from adversaries attempting to infer membership.

5.4 Inversion attack’s mathematical model

Model inversion attacks involve reconstructing training data from the model’s outputs. We defend against these
attacks by encrypting the weights and adding noise to the predicted probability vector.

Consider a trained NN model f : Rn → Rm, where n is the input dimension, and m is the output dimension. The
model is trained on a dataset D consisting of input-output pairs {(xi, yi)}N

i=1, where xi ∈ Rn represents the input data and
yi ∈ Rm represents the corresponding sensitive information about individuals.

The attacker aims to infer sensitive information yi associated with a specific input xi by exploiting the trained NN
model f . By applying the reverse mapping g to the model’s output f (xi), the attacker attempts to reconstruct the original
input data xi, thereby inferring the sensitive information associated with it.

Inversion attack’s defense through HE:
Defending against model inversion attacks in NNs using HE involves protecting the privacy of sensitive information

while still allowing theNN to perform its intended tasks. Here’s a HE-based solution for defending against model inversion
attacks:
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Let’s consider the Public Key: pk and Private Key: sk. The encrypted training dataset is Denc = {Encpk(xi, yi)}N
i=1

and encrypted model parameters: Θenc.
• Encrypt the training dataset and the NN model parameters using the public key.
- NN Model: fenc(xenc, Θenc),
- Encrypted Input Data: xenc = Encpk(x),
- Encrypted Prediction: ŷenc = fenc(xenc, Θenc).
• Τrain the NN model on the encrypted training dataset using encrypted computations.
- Encrypted training dataset: Denc = {Encpk (xi, yi)}N

i=1,
- Encrypted model parameters: Θenc.
• Homomorphically forward and backward propagation are performed to maintain the privacy of the training process,

which will generate:
- NN Model: fenc(xenc, Θenc).
• In the inferencing process using encrypted input data: xenc = Encpk(x) forecast encrypted prediction: ŷenc =

fenc(xenc, Θenc).
• Decrypt the output using decryption function:
- Ypred = Decsk([ŷenc]).
• Add noise to the output of the NN to mask sensitive information and prevent attackers from accurately inferring it.
• We add some noise to the predicted output to prevent the attacker from accurately reconstructing the input data.
- ŷpred = Ypred+Noise.
This representation outlines the steps in the HE-based defence against model inversion attacks in NNs. By encrypting

both the input data and the model parameters and ensuring that all computations are performed homomorphically,
the privacy of sensitive information is preserved. Additionally, incorporating privacy-preserving techniques such as
randomized response enhances the defence mechanism’s robustness against model inversion attacks.

5.5 Model extraction attack’s mathematical model

Model extraction attacks aim to extract a copy of a target NN model by querying it and using the responses to train
a surrogate model.

Consider a target NN model. Ftarget: Rn→ Rm with parameters Θtarget. The attacker’s objective is to extract a copy
of the target model by querying it and using the responses to train a surrogate model.

The attacker aims to approximate the behaviour of the targetmodelFtarget by training a surrogatemodelFsurrogate:Rn→
Rm with parameters Θsurrogate.

The attacker queries the target model with input data points xi to obtain the corresponding outputs Ftarget(xi). The
attacker uses the input-output pairs {(xi, Ftarget(xi))}N

i=1 to train the surrogate model Fsurrogate.
Model extraction attack’s defense through HE:
Defending against model extraction attacks in NNs using HE involves protecting the confidentiality of the model

parameters and the privacy of the model’s responses during querying.
• Encrypt the input data points xi using the public key. Query the encrypted model with the encrypted input data to

obtain the encrypted responses Ftarget(xi).
• Keep the model parameters encrypted throughout the querying process to prevent adversaries from accessing them

directly.
• Incorporate noise into the encrypted responses before returning them to the querying party.
By leveragingHE, it is possible to defend againstmodel extraction attacks onNNswhile preserving the confidentiality

of the model parameters and the privacy of the model’s responses. By encrypting both the model parameters and the
input data and ensuring that all computations are performed homomorphically, sensitive information is protected from
adversaries attempting to extract a copy of the model.
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6. Experiments and result analysis
This section presents experimental results and parameter sets used in our implementation, leveraging using TenSEAL

library [21]. This library enables the construction of CKKS scheme for PPML using HE. All experiments were conducted
on an Intel-i5-10500 CPU running at a 3.10 GHz processor with four cores and 16 GB of RAM.

Datasets
We conducted experiments on financial datasets obtained from the UCI ML Repository, including banks from

Germany, Taiwan, Japan, and Australia [12–15]. These datasets contain a single binary outcome variable, making them
suitable for training binary classifiers. Table 2 provides an overview of the datasets, including the number of observations
(rows) and features (columns). During the study, we divided the datasets into training and testing subsets.

Description of datasets

Table 2. Description of datasets

# Sample # Features

German 1,000 20

Taiwan 30,000 25

Japan 691 16

Australia 690 14

Parameters and timings for the HE scheme
Training a PPNN using HE encounters challenges in directly calculating the sigmoid function within the NN model.

Therefore, we adopted a sigmoid polynomial approximation approach. For security settings, we utilized a polynomial
degree of 8,192 with coefficient module bit sizes [40, 21, 21, 21, 21, 21, 21, 40].

Table 3 evaluates the model performance based on the average inference time for the above datasets. The inference
time varies depending on the number of features and data type. Additionally, it provides the transaction size for both
encrypted and unencrypted inference across all datasets. The transaction size increases based on the number of features,
data type, and security settings.

Table 3. Dataset encryption time and encrypted training time

Dataset
ANN without privacy ANN with privacy

Inference time Transaction size Inference time Transaction size

German 100.600 µs 0.307 KB 111.889 ms 324.831 KB

Taiwan 110.841 µs 0.331 KB 138.915 ms 323.187 KB

Japan 105.523 µs 0.267 KB 116.523 ms 322.845 KB

Australia 103.779 µs 0.259 KB 114.827 ms 323.335 KB

Tables 4 and 5 compare the models generated using our PPANN approach with HE and the standard ANN without
privacy for the German, Taiwan, Japan, and Australia datasets. To assess the effectiveness of the models, we computed
accuracy (%) and area under the curve (AUC) values while varying the learning rate with a fixed number of epochs set to
five hundred.
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Table 4. Accuracy comparison of ANN with privacy and without privacy by varying learning rate

Data set

Learning rate

ANN with privacy ANN without privacy

0.01 0.02 0.03 0.1 0.2 0.3 0.01 0.02 0.03 0.1 0.2 0.3

German 77% 77% 79% 79% 79% 77% 77% 77% 79% 79% 79% 77%

Taiwan 63% 61% 61% 62% 61% 60% 63% 61% 61% 62% 61% 59%

Japan 83% 85% 85% 83% 83% 83% 83% 85% 85% 83% 83% 83%

Australia 87% 87% 88% 86% 86% 87% 87% 87% 87% 86% 86% 87%

Table 5. Comparison of ANN with privacy and without privacy of AUC with varying learning rate

Data set

Learning rate

ANN with privacy ANN without privacy

0.01 0.02 0.03 0.1 0.2 0.3 0.01 0.02 0.03 0.1 0.2 0.3

German 0.76 0.76 0.78 0.78 0.78 0.77 0.82 0.81 0.82 0.82 0.83 0.83

Taiwan 0.63 0.61 0.62 0.62 0.61 0.60 0.70 0.68 0.67 0.64 0.64 0.63

Japan 0.83 0.85 0.85 0.83 0.82 0.83 0.91 0.91 0.90 0.88 0.88 0.88

Australia 0.88 0.87 0.87 0.86 0.86 0.87 0.94 0.94 0.94 0.90 0.90 0.89

Further, Figures 7 and 8 depict comparison of accuracy and AUC for proposed model with and without privacy
respectively. To evaluate the effectiveness of the models, we computed the accuracy (%) metric by varying the number
of epochs.

Figure 7. Accuracy comparison of ANN by varying learning rate
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Figure 8. Comparison of AUC with privacy and without privacy using ANN

The comparative analysis of the accuracy and AUC with and without privacy using HE are shown in Figure 9. The
experiment was conducted by varying 500 epochs.

Table 6. State-of-the-art comparison: Privacy-preserving techniques and key insights

Study Approach Privacy technique Applications Key findings/limitations

Zheng
et al. [11] PCAL framework. Adversarial learning. Credit risk modeling.

Balances privacy and predictive
utility but requires further

dataset validation.

Maniar
et al. [12]

Differential privacy
in CRA. Differential privacy. Loan default prediction.

Accuracy decreases as privacy
improves; focus on customer

data protection.

Andolfo
et al. [13]

Functional encryption
for credit scoring. Functional encryption. Financial data processing. High computational overhead;

hardware reliance on Intel SGX.

Lin
et al. [14]

Privacy-preserving
credit scoring.

Non-interactive
Zero-Knowledge proofs. Banking applications.

Challenges in scalability and
potential for privacy leaks

in deployment.

Divakar
et al. [15]

Privacy-preserving
credit scoring. Homomorphic encryption. Privacy-preserving

credit scoring.
Comparable accuracy to non-HE

models; slightly lower
computational efficiency.

Nugent
et al. [16]

Fraud detection on
encrypted transactions. Homomorphic encryption. Fraud detection.

Low latency but storage
and complexity issues
during deployment.

Song
et al. [21] ReActHE neural network. Homomorphic encryption. Biomedical predictions.

Effective privacy but
requires advanced NN

optimizations for scalability.

Proposed work HE-integrated NN
for CRA. Homomorphic encryption. Multi-national financial datasets.

Maintains privacy with minimal
accuracy loss; computational
overhead remains significant.

The results show that ANN with privacy has a deviation from ANN without privacy of around 1%, 1%, 0.5%, and
1%; in some instances, ANN with privacy outperforms ANN without privacy in accuracy and AUC. Additionally, the
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inference time is one thousand times faster in ANN without privacy over ANN with privacy. Further, the transaction
size of the ANN without privacy is one hundred times lesser size when compared to ANN with privacy as it includes
polynomial encryption that increases the size of the transaction.

The proposed PPCRA framework demonstrates notable advancements in balancing data privacy and predictive
accuracy for credit risk analysis. When compared with state-of-the-art approaches, it addresses gaps in privacy protection
while achieving competitive performance. Future work can explore hybrid approaches, such as integrating Federated
Learning with HE, to improve scalability and computational efficiency. Our implementation revealed that using ANN
with privacy attains accuracy and AUC like ANN without privacy (Table 6).

Figure 9. Average accuracy and AUC of unencrypted neural network and encrypted neural network
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7. Conclusions and future research
In this paper, we present a novel framework for privacy-preserving credit risk analysis (PPCRA) using neural

networks (NN) and homomorphic encryption. Our method tackles the urgent requirement for privacy protection in credit
risk assessment while maintaining accuracy as well as efficiency in decision-making processes. The use of HE enables
sensitive financial data to be encrypted and securely processed, ensuring that confidentiality is maintained throughout the
analysis. A HE-enabled NNmodel capable of operating on encrypted data was developed. Further, an exhaustive security
analysis showing resilience against privacy attacks and empirical validation using real-world financial datasets from
multiple countries is part of our achievements. We conducted evaluations under both preservation of privacy measures
and no such measures that gave insight into its effectiveness.

Experimental results showcased that our PPANN approach with HE achieved comparable accuracy and area under
the curve (AUC) values to standard NN models without privacy preservation. The performance was slightly affected
by privacy protecting model relative to its unsecured version only, which he subjected to several standard privacy
attacks. Nevertheless, we discovered experimentally that this privacy preserving model could be implemented in a fully
operational setting if time cost and HE transaction sizes are kept within tolerable bounds. This paper shows progress made
in confidentiality conservation methods for CRA and it is greatly relevant to financial institutions and data protection
experts. We have other future works on exploring additional private preservations approaches apart from scalability and
computational efficiency for our proposed framework.

In the future, we aim to explore the integration of advanced techniques to address privacy challenges in credit
risk analysis. Hybrid models hold significant promise, that combine the strengths of Homomorphic Encryption
(HE), Federated Learning, and Differential Privacy. Multi-key homomorphic encryption (MKHE) will enable secure,
collaborative data analysis, while blockchain technology offers a decentralized and transparent framework for safeguarding
sensitive data in privacy-preserving credit risk analysis (PPCRA). Additionally, with the rise of quantum computing, post-
quantum cryptographic solutions will become essential to ensure long-term security and resilience against quantum threats.
These innovations aim to create robust, scalable, and privacy-preserving frameworks for credit risk analysis.
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