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Abstract: This paper develops numerical methods for solving a system of two nonlinear integro-differential equations that
arise in biological modeling. A spectral collocation method utilizing third-kind Chebyshev polynomials forms the basis of
the solutionmethodology, which efficiently converts the integro-differential system into a collection of nonlinear algebraic
equations. To guarantee precise and effective calculation, these algebraic equations are subsequently numerically solved
using Newton’s method. In comparison to current methods, the suggested approach offers notable gains in computational
efficiency and precision. The spectral collocation method’s accuracy is confirmed by contrasting the outcomes with
those derived from other numerical methods that are published in the literature. To further illustrate the applicability,
dependability, and computational efficiency of the suggested approach in resolving complicated biological systems, a
number of illustrative instances are provided. The ability of spectral collocation techniques based on third-kind Chebyshev
polynomials to solve integro-differential equations in a variety of scientific and engineering applications is highlighted by
this work.
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1. Introduction
Integral equations have become crucial in various areas of applied mathematics due to their wide applicability in

modeling real-world phenomena. These equations naturally emerge in many disciplines, including dynamics of fluid,
biological living systems, and reaction kinetics [1]. Among these, integro-differential equations are particularly significant,
as they combine the features of both differential and integral equations and appear in glass processing [2], hydrodynamics
of nano-materials [3].

The system of integro-differential equations that follows is examined in this paper as

d p(η)

dη
= p(η)

[
c1 −ν1z(η)−

∫ η

η−T0

w1(η − τ)z(τ)dτ
]
+q1(η), 0 ≤ η ≤ l, ν1, c1 > 0, (1)
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dz(η)

dη
= z(η)

[
−c2 +ν2 p(η)+

∫ η

η−T0

w2(η − τ)p(τ)dτ
]
+q2(η), 0 ≤ η ≤ l, ν2, c2 > 0, (2)

with initial conditions

p(0) = α1, z(0) = α2,

where q1, q2, w1, w2 are given functions and p(η), z(η) are unknown functions. The number of two distinct species at
time η is represented by the variables p(η) and z(η), where the first species is increasing and the second is decreasing.

When both species are combined, and it is assumed that the second will feed on the first, the rate of the second species,
dz
dη

,

will increase. This rate depends on all past values of the first species and the current populations, p(η). The following
pair of integro-differential equations describe what happens when equilibrium shifts between these species.

d p(η)

dη
= p(η)

[
c1 −ν1z(η)−

∫ η

η−T0

w1(η − τ)z(τ)dτ
]
, c1 > 0, (3)

dz(η)

dη
= z(η)

[
−c2 +ν2 p(η)+

∫ η

η−T0

w2(η − τ)p(τ)dτ
]
, c2 > 0. (4)

Where the coefficients of raising and reducing the first and second species are, respectively, c1 and −c2. The
corresponding species determines the values of v1, w1, and v2, w2. Let T0 represent the finite heredity period for each
species. The Integro-derivational system with p(0) = α1, z(0) = α2, Eqs. (3)-(4) represent a particular instance of Eqs.
(1)-(2). You may find the comprehensive formulations of Eqs. (3)-(4) in [4].

Many analytical and numerical methods have been tamed to solve integro-differential problems [5]. Techniques like
the variational iteration method have been used to address these equations and systems [6]. Biazar et al. tackled them
using He’s homotopy perturbation method [7], while the homotopy analysis method has also been effective for solving
high-order equations [8]. Lately, the ADM has been employed to solve such systems [9].

Many numerical methods have been used to solve systems of integro-differential equations. Maleknejad et al.
addressed linear integro-differential equations using Bernstein polynomials [10] and the Galerkin method [11]. Other
methods, like the differential transform method [12] and the tau method [13], have also been applied. For nonlinear
integro-differential equations in population dynamics and growth models [14], Dehghan et al. used the pseudospectral
Legendre-Galerkin approach [15] and the rational pseudospectral approximation [16]. Optimization method [17].

Numerical methods for interacting population modeling in predator-prey systems and nonlinear age-structured
population models have been improved in [18, 19]. Additionally, the current authors have lately solved numerically
the fuzzy integral-differential equations [20], the system of integral equations [21], and the system of nonlinear Volterra
integro-differential equations [22, 23]. Spectral methods have been increasingly appearing in the literature due to their
remarkable convergence properties, which make them highly effective for solving a wide range of mathematical and
physical problems. These methods offer exponential or high-order accuracy, especially when applied to problems with
smooth solutions, for recent advances in spectral methods, see [24–35].

Several researchers have worked on solving the biological species coexisting model. Biazar et al. applied the
Adomian decomposition method (ADM) to solve this model [36]. Shakeri and Dehghan used the variational iteration
method (VIM) and the pseudospectral Legendre method for the same purpose [37]. Their findings showed that VIM
provided more accurate results than both the Legendre-spectral method and ADM.
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In the study of biological species living together, differential-integral equations play a key role in describing the
interaction between species. Traditionally, methods such as the Legendre spectral collocation method have been employed
to solve these complex equations [38]. However, in recent times, alternative spectral methods have gained popularity due
to their efficiency and accuracy.

This work introduces a numerical technique using Chebyshev polynomials of the third-kind for solving a system
of nonlinear integro-differential equations that arise in biological modeling. Chebyshev polynomials are well-known for
their optimal interpolation properties and are particularly advantageous in spectral methods due to their minimization of
Runge’s phenomenon [39].

By using Chebyshev polynomials of the third-kind, we aim to enhance the accuracy and convergence of the solution,
providing an effective alternative to the Legendre spectral collocation method. The current method reduces the system of
integro-differential equations to a simple set of nonlinear equations, which are then solved using numerical techniques. It
is worthy to report here that, Chebyshev polynomials are essential basis functions in the field of numerical solutions of
differential problems, the interested reader is referred to [40–43].

We compare the results obtained through this method with those from existing approaches in the literature,
demonstrating the applicability and effectiveness of the Chebyshev polynomial approach.

This work is structured as follows: we introduce the properties of the Chebyshev polynomial in section 2. In section 3,
we go into function approximation and the Chebyshev spectral collocation technique. In section 4, verify the convergence
and analyze the errors of the suggested polynomial series expansion. Section 5 covers the illustrated examples that
demonstrate the correctness and efficiency of the current approach. Section 6 concludes by summarizing the research
results.

2. Chebyshev polynomial of third-kind and its properties
Third-kind Chebyshev polynomials, or V (ι), are a class of orthogonal polynomials having unique properties that

make them useful for certain uses in spectral methods, approximation theory, and numerical analysis. While the first
and second kinds of Chebyshev polynomials are more widely recognized and applied, the third-kind is essential to
solving some boundary value issues because it provides special benefits for managing particular boundary conditions
and numerical difficulties.

Third-kind Chebyshev polynomials are orthogonal to the weight function (1− ι)−1/2(1+ ι)1/2 and defined across
the interval [−1, 1]. One of the main characteristics that make these polynomials helpful for solving differential equations
and completing polynomial approximations is their orthogonality. An explicit expression of a polynomial in terms of
powers of the variable ι can be found in its power form. The recursive definition can be used to construct the power form
for Chebyshev polynomials of the third-kind, V (ι) [44]:

Vn(ι) =
cos
(

n+
1
2

)
θ

cos
1
2

θ
ι ∈ [−1, 1], n ≥ 0; θ = cos−1 ι .

V0(ι) = 1, V1(ι) = 2ι −1,

Vn(ι) = 2ιVn−1(ι)−Vn−2(ι) for n ≥ 2.

Higher-order polynomials Vn(ι) for any n can be calculated using this recurrence relation and given as powers of ι .
As an illustration:
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V2(ι) = 4ι2 −2ι −1

V3(ι) = 8ι3 +4ι2 −4ι +1

Generally, the process of obtaining the power form of V (ι) for any n involves expanding the recurrence relation
and expressing the result as a sum of terms containing powers of ι . An essential characteristic of third-kind Chebyshev
polynomials is their orthogonality with respect to a given weight function. The expression for this orthogonality is:

∫ 1

−1
(1− ι)−1/2(1+ ι)1/2Vm(ι)Vn(ι)dι = 0 for m ̸= n.

This characteristic is crucial for solving differential equations and approximating functions with orthogonal
polynomials, as in spectral collocation and other numerical approaches.

3. Chebyshev spectral collocation method
In this section, we present the basic idea of the Chebyshev spectral collocation method for solving integro-differential

equations defined in (1)-(2). The procedure of approximation involves using Chebyshev-Gauss nodes, which are the
zeros of Chebyshev polynomials of the third-kind. To use the Chebyshev spectral collocation method, we consider the
collocation nodes are given by the zeros of the Chebyshev polynomial of the third-kindVM+1(s) = 0whereM is the degree
of the polynomial. Let us approximate the unknown functions p(η) and z(η) as:

p(η) =
M

∑
k=0

pkVk(η), (5)

z(η) =
M

∑
k=0

zkVk(η), (6)

Now, approximate the integro-differential system using the above approximations. The system of integro-differential
equations (1)-(2) is reduced as follows:

M

∑
k=0

pk
d

dη
Vk(η) =

(
M

∑
k=0

pkVk(η)

)[
c1 −ν1

M

∑
k=0

zkVk(η)−
∫ η

η−T0

w1(η − τ)
M

∑
k=0

zkVk(η)dτ

]
+q1(η), (7)

M

∑
k=0

zk
d

dη
Vk(η) =

(
M

∑
k=0

zkVk(η)

)[
−c2 +ν2

M

∑
k=0

pkVk(η)+
∫ η

η−T0

w2(η − τ)
M

∑
k=0

pkVk(η)dτ

]
+q2(η). (8)

To handle the integral terms, we use the Chebyshev-Gauss quadrature for the third-kind. We change the interval
[η −T0, η ] to [−1, 1] by the substitution
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s = 1+2
(

τ −η
T0

)
.

Thus, the integral becomes

∫ η

η−T0

w1(η − τ)
M

∑
k=0

zkVk(η)dτ =
T0

2

∫ 1

−1
w1

(
−T0

2
(s−1)

)( M

∑
k=0

zkVk

(
η +

T0

2
(s−1)

))
ds,

=
T0

2

M

∑
j=0

B jw1

(
−T0

2
(s j −1)

)( M

∑
k=0

zkVk

(
η +

T0

2
(s j −1)

))
. (9)

∫ η

η−T0

w2(η − τ)
M

∑
k=0

pkVk(η)dτ =
T0

2

∫ 1

−1
w2

(
−T0

2
(s−1)

)( M

∑
k=0

pkVk

(
η +

T0

2
(s−1)

))
ds,

=
T0

2

M

∑
j=0

B jw2

(
−T0

2
(s j −1)

)( M

∑
k=0

pkVk

(
η +

T0

2
(s j −1)

))
. (10)

Here, s j for j = 0, 1, . . . , M are the Chebyshev-Gauss nodes, which are the zeros of the Chebyshev polynomial of
the third-kind VM+1(t) = 0, and B j are the corresponding weights defined as

B j =
π

M+1
·
(1+ t j)

(1− t2
j )
, j = 0, 1, . . . , M.

Substituting (9)-(10) into (7)-(8), we derive the following equations:

M

∑
k=0

pk
d
dt

Vk(t) =

(
M

∑
k=0

pkVk(t)

)[
c1 −ν1

M

∑
k=0

zkVk(t)

− T0

2

M

∑
j=0

B jw1

(
−T0

2
(s j −1)

)( M

∑
k=0

zkVk

(
t +

T0

2
(s j −1)

))]
+q1(t), (11)

M

∑
k=0

zk
d
dt

Vk(t) =

(
M

∑
k=0

zkVk(t)

)[
−c2 +ν2

M

∑
k=0

pkVk(t)

+
T0

2

M

∑
j=0

B jw2

(
−T0

2
(s j −1)

)( M

∑
k=0

pkVk

(
t +

T0

2
(s j −1)

))]
+q2(t). (12)

Next, we apply the Chebyshev-Gauss collocation nodes ti for i = 0, 1, . . . , M to discretize the equations (11)-(12):

Volume 5 Issue 4|2024| 6193 Contemporary Mathematics



M

∑
k=0

pk
d

dti
Vk(ti) =

(
M

∑
k=0

pkVk(ti)

)[
c1 −ν1

M

∑
k=0

zkVk(ti)

− T0

2

M

∑
j=0

B jw1

(
−T0

2
(s j −1)

)( M

∑
k=0

zkVk

(
ti +

T0

2
(s j −1)

))]
+q1(ti), (13)

M

∑
k=0

zk
d

dti
Vk(ti) =

(
M

∑
k=0

zkVk(ti)

)[
−c2 +ν2

M

∑
k=0

pkVk(ti)

+
T0

2

M

∑
j=0

B jw2

(
−T0

2
(s j −1)

)( M

∑
k=0

pkVk

(
ti +

T0

2
(s j −1)

))]
+q2(ti). (14)

Equations (13)-(14) form a system of nonlinear equations with dimension 2M+2. Continuing from the given initial
conditions, we end-up with

M

∑
k=0

pkVk(0) = α1,

M

∑
k=0

zkVk(0) = α2.

Therefore, for k = 0, 1, . . . , M, the set of nonlinear algebraic equations formed by equations (13)-(14) has 2M + 2
unknowns for each of the variables pk and zk. By applying a numerical solution to this system, wemay determine the values
of the unknowns pk and zk, where k = 0, 1, . . . , M. Therefore, we use Equations (5)-(6) to derive the approximate/semi-
analytic solutions of the integro-differential equations (1)-(2).

4. Error estimate
The convergence and error analysis of the suggested polynomial approximation are thoroughly examined in this

section. Therefore, this research uses a number of necessary lemmas.
Lemma [44] For all i > 0, we have:

|pi(η)| ≤ 2i+1,

|zi(η)| ≤ 2i+1.

Theorem 1 [44] For µ > 3, assume that p(η) and z(η) are Cµ -functions. Let p(η) and z(η) can be approximated
as:
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p(η)≈ pn(η) =
n

∑
i=0

ui pi(η),

z(η)≈ zn(η) =
n

∑
i=0

ui pi(η),

then, the following estimate can be obtained

|ui| ≤ i−µ .

If p(η) and z(η) meet the assumptions of Theorem 1, the following two theorems apply.
Theorem 2 [44] This estimate of the truncation error is accurate:

|p− pn| ≤ n2−µ , (15)

|z− zn| ≤ n2−µ . (16)

Where µ > 3.
We now derive an upper bound for the global error associated with the two residuals of the system of integral

equations. These residuals are defined as the difference between the left-hand side (LHS) and right-hand side (RHS) of
the equation, obtained by substituting the approximate solution into the integral equation. Using the collocation method,
an error is introduced, and we establish a dominant term for this error in the following theorem.

Theorem 3 [44] If we define

R1 = p′n(η)− pn(η)

[
c1 −ν1zn(η)−

∫ η

η−T0

w1(η − τ)zn(τ)dτ
]
−q1(η), (17)

R2 = z′n(η)− zn(η)

[
−c2 +ν2 pn(η)+

∫ η

η−T0

w2(η − τ)pn(τ)dτ
]
−q2(η) (18)

We will substitute q1 from (1) into (17) and substitute q2 from (2) into (18), then we will get

R1 = p′n(η)− pn(η)

[
c1 −ν1zn(η)−

∫ η

η−T0

w1(η − τ)zn(τ)dτ
]

−
[

p′(η)− p(η)

[
c1 −ν1z(η)−

∫ η

η−T0

w1(η − τ)z(τ)dτ
]]

,
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R2 = z′n(η)− zn(η)

[
−c2 +ν2 pn(η)+

∫ η

η−T0

w2(η − τ)pn(τ)dτ
]

−
[

z′(η)− z(η)

[
−c2 +ν2 p(η)+

∫ η

η−T0

w2(η − τ)p(τ)dτ
]]

.

Now, we will expand the brackets and collect the same terms together

R1 = (p′n(η)− p′(η))− c1(pn(η)− p(η))+ν1(pn(η)zn(η)− p(η)z(η))

+ pn(η)
∫ η

η−T0

w1(η − τ)zn(τ)dτ − p(η)
∫ η

η−T0

w1(η − τ)z(τ)dτ,

R2 = (z′n(η)− z′(η))+ c2(zn(η)− z(η))−ν2(zn(η)pn(η)− z(η)p(η))

− zn(η)
∫ η

η−T0

w2(η − τ)pn(τ)dτ − z(η)
∫ η

η−T0

w2(η − τ)p(τ)dτ.

Now, we will use the triangle inequality

|R1| ≤ |p′n(η)− p′(η)|− |c1||pn(η)− p(η)|+ |ν1||(pn(η)zn(η)− p(η)z(η)|

+

∣∣∣∣pn(η)
∫ η

η−T0

w1(η − τ)zn(τ)dτ − p(η)
∫ η

η−T0

w1(η − τ)z(τ)dτ
∣∣∣∣ , (19)

|R2| ≤ |z′n(η)− z′(η)|+ |c2||zn(η)− z(η)|− |ν2||zn(η)pn(η)− z(η)p(η)|

−
∣∣∣∣zn(η)

∫ η

η−T0

w2(η − τ)pn(τ)dτ − z(η)
∫ η

η−T0

w2(η − τ)p(τ)dτ
∣∣∣∣ . (20)

We will make some simplifications

|zn(η)pn(η)− z(η)p(η)|= |zn(η)pn(η)− p(η)zn(η)+ p(η)zn(η)− z(η)p(η)|

≤ |zn||pn(η)− p(η)|+ |p(η)||zn(η)− z(η)| (21)
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∣∣∣∣pn(η)
∫ η

η−T0

w1(η − τ)zn(τ)dτ − p(η)
∫ η

η−T0

w1(η − τ)z(τ)dτ
∣∣∣∣= ∣∣∣∣pn(η)

∫ η

η−T0

w1(η − τ)zn(τ)dτ

− pn(η)
∫ η

η−T0

w1(η − τ)z(τ)dτ + pn(η)
∫ η

η−T0

w1(η − τ)z(τ)dτ − p(η)
∫ η

η−T0

w1(η − τ)z(τ)dτ
∣∣∣∣

≤ |pn(η)|
∫ η

η−T0

|w1(η − τ)||zn(τ)− z(τ)|dτ + |pn(η)− p(η)|
∣∣∣∣∫ η

η−T0

w1(η − τ)z(τ)dτ
∣∣∣∣ (22)

∣∣∣∣zn(η)
∫ η

η−T0

w2(η − τ)pn(τ)dτ − z(η)
∫ η

η−T0

w2(η − τ)p(τ)dτ
∣∣∣∣= ∣∣∣∣zn(η)

∫ η

η−T0

w2(η − τ)pn(τ)dτ

− zn(η)
∫ η

η−T0

w2(η − τ)p(τ)dτ + zn(η)
∫ η

η−T0

w2(η − τ)p(τ)dτ − z(η)
∫ η

η−T0

w2(η − τ)p(τ)dτ
∣∣∣∣

≤ |zn(η)|
∫ η

η−T0

|w2(η − τ)||pn(τ)− p(τ)|dτ + |zn(η)− z(η)|
∣∣∣∣∫ η

η−T0

w2(η − τ)p(τ)dτ
∣∣∣∣. (23)

Now, we will substitute (21) into (19) and (20) then substitute (22) into (19) and substitute (23) into (20) then, we
will get

|R1| ≤ |p′n(η)− p′(η)|− |c1||pn(η)− p(η)|+ |ν1|
∣∣|zn||pn(η)− p(η)|+ |p(η)||zn(η)− z(η)|

∣∣
+

∣∣∣∣|pn(η)|
∫ η

η−T0

|w1(η − τ)||zn(τ)− z(τ)|dτ + |pn(η)− p(η)|
∣∣∣∣∫ η

η−T0

w1(η − τ)z(τ)dτ
∣∣∣∣∣∣∣∣,

|R2| ≤ |z′n(η)− z′(η)|+ |c2||zn(η)− z(η)|− |ν2|
∣∣|zn||pn(η)− p(η)|+ |p(η)||zn(η)− z(η)|

∣∣
−
∣∣∣∣|zn(η)|

∫ η

η−T0

|w2(η − τ)||pn(τ)− p(τ)|dτ + |zn(η)− z(η)|
∣∣∣∣∫ η

η−T0

w2(η − τ)p(τ)dτ
∣∣∣∣∣∣∣∣.

We will suppose that

|p(η)| ≤ B1, (24)

|z(η)| ≤ B2, (25)

∫ η

η−T0

w1(η − τ)dτ = A1, (26)
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∫ η

η−T0

w2(η − τ)dτ = A2, (27)

where A1, A2, B1, and B2 are constants.
Now, we will use (15), (16), (24), (25), (26), and (27) to bound |R1| and |R2|

|R1| ≤ |p′n(η)− p′(η)|− |c1||pn(η)− p(η)|+ |ν1|
[
B2|pn(η)− p(η)|+B1|zn(η)− z(η)|

]

+

∣∣∣∣|pn(η)|
∫ η

η−T0

|w1(η − τ)||zn(τ)− z(τ)|dτ + |pn(η)− p(η)|A1

∣∣∣∣,
|R2| ≤ |z′n(η)− z′(η)|+ |c2||zn(η)− z(η)|+ |ν2|

[
B2|pn(η)− p(η)|+B1|zn(η)− z(η)|

]

+

∣∣∣∣|zn(η)|
∫ η

η−T0

|w2(η − τ)||pn(τ)− p(τ)|dτ + |zn(η)− z(η)|A2

∣∣∣∣.
making simplify

|R1| ≤ n1−µ −|c1|n2−µ + |ν1|
(
(2n+1)n2−µ +B1n2−µ +(2n+1)A1n2−µ +n2−µ B2A1

)
,

|R2| ≤ n1−µ + |c2|n2−µ −|ν2|
(
(2n+1)n2−µ +B1n2−µ +(2n+1)A2n2−µ +n2−µ A2B1

)
.

|R1|= O(n1−µ),

|R2|= O(n1−µ).

with 1−µ < 0, and O denotes the lagrange notations.

5. Illustrative examples
We demonstrate the application of the Chebyshev spectral collocation method on several biological models and

compare the results with other existing methods to verify the accuracy and efficiency of the proposed method.
Example 1 [37] We examine the system specified in Eqs. (1)-(2) with

w1(η) = 1, w2(η) = e−η , c1 = 1, c2 = 2, ν1 =
1
3
, ν2 = 1,

α1 = 1, α2 = 0, T0 =
1
2
,
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q1(η) =−5
2

η3 +
49
12

η2 +
17
12

η − 23
6
,

q2(η) =
15
8

η3 − 1
4

η2 +
3
8

η −1.

the smooth solution to this system is P(η) = −3η + 1 and z(η) = η2 −η . The computed results obtained using the
Chebyshev spectral collocation method for M = 6 have been compared with those from the Legendre spectral collocation
method (LSCM) [38] and the variational iteration method (VIM) [37] at n = 6. These comparisons are shown in Table 1.
Newton’s method was used to solve the resulting system of nonlinear algebraic equations for this system.

Table 1. Comparison of numeric results for Example 1

η
Absolute error (AE) for p(η) AE for z(η)

LSCM [38] VIM [37] Our method LSCM [38] VIM [37] Our method

0.1 1.41e−11 3.15e−4 5.4173e−16 1.22e−12 3.34e−5 3.42346e−17

0.2 2.15e−11 4.27e−4 3.40208e−16 2.96e−12 8.54e−5 3.12711e−17

0.3 2.58e−11 4.72e−4 1.29306e−16 4.16e−12 1.33e−4 1.21995e−16

0.4 2.85e−11 4.85e−4 2.27676e−15 5.12e−12 1.79e−4 2.00528e−16

0.5 2.98e−11 4.74e−4 2.99641e−14 6.58e−12 2.22e−4 2.31485e−16

0.6 2.84e−11 4.45e−4 1.64593e−13 9.19e−12 2.37e−4 2.00528e−16

0.7 2.56e−11 4.36e−4 6.02949e−13 1.29e−11 1.62e−4 1.21995e−16

0.8 1.22e−11 4.35e−4 1.73236e−12 1.69e−11 1.07e−4 3.12711e−17

0.9 3.33e−12 9.10e−4 4.22502e−12 1.92e−11 7.31e−4 3.42346e−17

1.0 2.12e−11 1.82e−3 9.15113e−12 1.69e−11 1.90e−3 5.55112e−17

From the result reports for Table 2 we can see that the maximum absolute error is strictly less than the theoretical
error at n = 6.

Table 2. Error analysis of Example 1

Absolute error of pi Absolute error of zi Theoretical error

9.15113e−12 2.31485e−16 0.0277777778
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Figure 1. Log errors of Example 1

Example 2 [37] We examine the system specified in Eqs. (1)-(2) with

w1(η) = 2η −3, w2(η) = η , c1 = 2, c2 = 2, ν1 = 1, ν2 = 1,

α1 = 0, α2 = 0, T0 =
1
3
,

q1(η) = η2
(

2−3ηe−η − 7
2

e−η +
13
6

ηe
1
3−η +

22
9

e
1
3−η
)
−2η ,

q2(η) =
1

648
e−η (342η3 −8η2 +325η +324

)
.

the smooth solution to this system is x(η) =−η2 and y(η) =
1
2

ηe−η . The numerical results from the Chebyshev spectral
collocation method for M = 6 have been compared with the results from LSCM [38] (where n = 6), and VIM [37]. These
comparisons are shown in Table 3. For this system, the resulting system of nonlinear algebraic equations has been tackled
using Newton’s method.
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Table 3. Comparison of numeric results for Example 2

η
AE for p(η) AE for z(η)

LSCM [38] VIM [37] Our method LSCM [38] VIM [37] Our method

0.1 5.27e−8 4.50e−10 5.1473e−16 1.54e−6 9.80e−8 3.42346e−17

0.2 8.03e−8 4.07e−9 3.40208e−16 1.36e−6 6.93e−8 3.12711e−17

0.3 1.00e−7 4.72e−8 1.29306e−16 1.05e−6 2.69e−7 1.21995e−16

0.4 1.20e−7 3.64e−7 2.27676e−15 8.60e−7 3.55e−7 2.00528e−16

0.5 1.41e−7 2.03e−6 2.99641e−14 7.06e−7 2.49e−6 2.31485e−16

0.6 1.66e−7 8.80e−6 2.41663e−12 5.50e−7 1.08e−5 1.74917e−13

0.7 1.95e−7 3.12e−5 5.0219e−12 4.30e−7 3.85e−5 1.96878e−13

0.8 2.29e−7 9.44e−5 1.03658e−11 3.57e−7 1.14e−4 2.0789e−13

0.9 2.72e−7 2.51e−4 2.11792e−11 2.57e−7 3.00e−4 2.12756e−13

1.0 3.21e−7 6.04e−4 4.2663e−11 1.31e−7 7.11e−4 2.14075e−13

From the result reports for Table 4 we can see that the maximum absolute error is strictly less than the theoretical
error at n = 6.

Table 4. Error analysis of Example 2

Absolute error of pi Absolute error of zi Theoretical error

4.2663e−11 2.14075e−13 0.0277777778

Figure 2. Log errors of Example 2

Example 3 [37] Consider the system of integro-differential equations defined in Eqs. (1)-(2) with
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w1(η) = 1, w2(η) = e−η , c1 =
1
3
, c2 =

1
2
, ν1 = 2, ν2 = 1,

α1 = 0, α2 = 0, T0 =
3
10

.

q1(η) =
1
4

cosη − 1
4

sinη
(

1
3
+

1
2

sinη − 1
4

cosη +
1
4

cos
(

η − 3
10

))
,

q2(η) =−1
4

cosη +
1
4

sinη
(
−1

2
+

3
8

sinη − 1
8

cosη +
1
8

e−
3
10

(
cos
(

η − 3
10

)
− sin

(
η − 3

10

)))
.

the smooth solution to this system is p(η) =
1
4

sinη and z(η) = −1
4

sinη . The numerical results from the Chebyshev
spectral collocation method for M = 6 have been compared with the results from LSCM [38] (where n = 6), and VIM
[37]. These comparisons are shown in Table 5. For this system, the resulting system of nonlinear algebraic equations has
been tackled using Newton’s method.

Table 5. Comparison of numeric results for Example 3

η
AE for p(η) AE for z(η)

LSCM [38] VIM [37] Our method LSCM [38] VIM [37] Our method

0.1 2.4e−7 5.2e−10 3.3586e−8 2.1e−7 4.6e−10 5.63295e−11

0.2 2.7e−7 6.2e−9 4.80769e−8 2.2e−7 2.9e−9 2.85664e−10

0.3 2.8e−7 1.6e−7 5.0535e−8 2.02e−7 7.5e−8 8.09017e−10

0.4 2.9e−7 1.24e−6 4.63195e−8 2.0e−7 6.1e−7 1.7777e−9

0.5 3.2e−7 6.12e−6 3.91855e−8 2.0e−7 3.0e−6 3.35956e−9

0.6 3.5e−7 2.20e−5 3.15258e−8 1.9e−7 1.06e−5 5.71428e−9

0.7 3.7e−7 6.4e−5 2.46773e−8 2.0e−7 3.1e−5 8.95948e−9

0.8 4.14e−7 1.6e−4 1.92269e−8 2.0e−7 7.5e−5 1.31323e−8

0.9 4.5e−7 3.5e−4 1.52801e−8 2.0e−7 1.6e−4 1.81548e−8

1.0 4.9e−7 7.0e−4 1.26717e−8 2.0e−7 3.2e−4 2.3812e−8

From the result reports for Table 6 we can see that the maximum absolute error is strictly less than the theoretical
error at n = 6.

Table 6. Error analysis of Example 3

Absolute error of pi Absolute error of zi Theoretical error

5.0535e−8 2.3812e−8 0.0277777778
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Figure 3. Log errors of Example 3

Example 4 [37] We examine the system specified in Eqs. (1)-(2) with

w1(η) = η , w2(η) = η +1, c1 = 1, c2 = 1, ν1 =
1
2
, ν2 = 3,

α1 = 0, α2 =−1, T0 =
1
4
.

q1(η) = 2η −1− (η2 −η)

(
1+

11
18

e−3η − 1
36

e
3
4−3η

)
,

q2(η) =
1

3,072
e−3η (10,080η2 −10,304η +6,275

)
.

the smooth solution to this system is p(η) = η2 − η and z(η) = −e−3η . The numerical results from the Chebyshev
spectral collocation method for M = 6 have been compared with the results from LSCM [38] (where n = 6), and VIM
[37]. These comparisons are shown in Table 7. For this system, the resulting system of nonlinear algebraic equations
have been tackled using Newton’s method.
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Table 7. Comparison of numeric results for Example 4

η
AE for p(η) AE for z(η)

LSCM [38] VIM [37] Our method LSCM [38] VIM [37] Our method

0.1 1.2e−6 3.6e−7 7.19241e−10 4.5e−4 1.1e−5 0.0129161

0.2 4.4e−6 2.7e−7 1.70245e−9 4.2e−4 1.5e−5 0.0016647

0.3 8.4e−6 1 4.7e−7 2.73166e−9 3.4e−4 8.2e−6 0.000264965

0.4 1.4e−5 1.6e−5 3.51544e−9 2.9e−4 9.3e−5 0.0000516318

0.5 2.0e−5 6.9e−5 3.80848e−9 2.4e−4 3.9e−4 0.0000121728

0.6 2.5e−5 1.7e−4 3.51544e−9 2.0e−4 9.4e−4 3.42229e−6

0.7 3.0e−5 3.2e−4 2.73166e−9 1.6e−4 1.6e−3 1.1288e−6

0.8 3.5e−5 4.9e−4 1.70245e−9 1.4e−4 2.3e−3 4.29302e−7

0.9 4.0e−5 6.4e−4 7.19241e−10 1.2e−4 2.6e−3 1.84961e−7

1.0 4.5e−5 7.4e−4 1.0568e−16 1.0e−3 2.6e−3 8.87108e−8

From the result reports for Table 8 we can see that the maximum absolute error is strictly less than the theoretical
error at n = 6.

Table 8. Error analysis of Example 3

Absolute error of pi Absolute error of zi Theoretical error

3.80848e−9 3.42229e−6 0.0277777778

Figure 4. Log errors of Example 4
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The results presented in Tables 1-8 clearly demonstrate that the Chebyshev Spectral CollocationMethod outperforms
other approaches, providing superior accuracy and precision, the log-errors presented in Figures 1-4 clearly demonstrate
the exponential convergence of the proposed spectral method.

6. Conclusion
This work showed how well the Chebyshev spectral collocation approach works for solving integro-differential

equation systems, emphasizing how accurate and computationally efficient it is in comparison to other methods. The
approach produced accurate answers with little computer work by converting these equations into nonlinear algebraic
systems. Though there are still issues with implementation complexity, sensitivity to solution smoothness, and scalability,
its principal benefits include high accuracy, quick computing, and adaptation to different types of equations. In order
to ensure its continuous relevance and usefulness, future research could overcome these constraints by extending
its applicability to larger, real-world issues in domains like fluid dynamics and quantum mechanics through hybrid
approaches, better management of discontinuities, and parallel computing.
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