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Abstract: Fractals are complex geometric objects that seem the same at different scales and have self-similarity. Because
of this special characteristic, fractals can be used to simulate intricate biological processes. Fractal binary and ternary trees
are novel data types that combine the productiveness of tree architectures with the ideas of fractal geometry. In addition
to self-similarity and scalability, these trees have potential across a range of computer science and medical applications.
The main goal of the study is to identify and analyze topological indices and graph entropy for fractal binary and fractal
ternary trees. By examining indices such as the Randić index, Zagreb indices, and entropy measurements, the study aims
to obtain a comprehensive knowledge of the structural complexity and information-theoretic properties of these fractal
graphs. The study starts with the vertex and edge partitioning of fractal binary and ternary trees in order to distinguish
different structural classes. Using these partitions, we obtained topological indices and graph entropy values for the
fractal trees. Also, this study compares the topological indices for each fractal tree with the number of copies in the fractal
dimension for a succession of graphs.
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1. Introduction
Mandelbrot [1] initially proposed and gave the name for the recently emerging field of fractals, which is used

to investigate nature and atypical images and patterns. Fractal geometry is a branch of mathematics that studies
shapes and patterns that exhibit self-similarity across different scales. Because they provide a glimpse into the limitless
complexity of geometric patterns, fractals have captivated scholars for millennia. While fractal geometry deals with
complicated, irregular structures that are hard to explain with conventional algebraic notions, traditional Euclidean
geometry concentrates on standard structures like triangles, squares, and circles. Usually, fractals are produced by iterative
procedures in which a fundamental principle is used over and over to produce a design that gets more intricate. Fractals are
scale-invariant, meaning that no matter how much they are magnified, their structure stays the same. The understanding
and modeling of intricate structures in mathematics and nature have been completely transformed by fractal geometry. Its
ideas are not simply intriguing, but they also have broad applications in many different fields of science and engineering.
Fractals provide a special lens by which it is possible to see the endless diversity of life around us whenever we strive to
investigate the geometric reality.
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The idea of fractal dimension was first presented by mathematician Benoit Mandelbrot in his book “The Fractal
Geometry of Nature” [1]. In order to describe the intricacy of fractal structures, Mandelbrot proposed the fractal dimension,
which allows observations to demonstrate how a fractal intricacy changes with scale. A fundamental framework for
deciphering the physical characteristics of erratic and self-similar structures in fractal geometry is provided by this concept.
The ability of a fractal to appear identical at various scales is known as self-similarity. This indicates that every tiny portion
of the fractal is either precisely or nearly like the whole. We can use this vital variable to characterize a wide range of
objects, including data sets and time series. Scalability in fractal geometry refers to the ability of a fractal to maintain its
structural complexity or pattern under different magnifications. The amount that determines whether the fractal dimension
shrinks or grows over each repetition is known as the scaling factor. Together, self-similarity and scalability define the
recursive and infinite complexity of fractals, making them distinct from traditional geometric objects. Since fractal objects
have non-integer fractional dimensions, they seem the same under various magnification levels. With N representing the
number of self-similar components at every repetition and S representing the scaling factor, the similarity dimension
formula for self-similar fractals will be employed to generate the fractal dimension FD.

FD =
log(N)

log(S)
(1)

A unique kind of fractal that graphically depicts the design of a binary tree, in which every node splits into two tiny
nodes, is a fractal binary tree [2, 3]. Unlike the usual binary trees utilized in computer science, which are abstract data
structures, a fractal binary tree is a geometrical form that is produced by a sequential method. The angle where every
branch emerges from the trunk is a significant factor called the branching angle. The fractal binary tree looks consistent
if the branching angle is throughout unique, and the tree looks inconsistent if the branching angle is distinct. The scaling
factor defines the width of the branches. The scaling factor employed affects the thickness and complexity of the tree.

A fractal binary tree generates a large variety of fractals bymerely altering the scaling factor and branching angle. The
fractal binary tree imitates a wide range of designs in nature by configuring its parameters. Figure 1 depicts a symmetric
binary tree with a branching angle of 45° and a scaling factor of

1√
2
. The branch extremities form a fractal that matches the

Lévy Dragon. Figure 2 demonstrates a golden 144° symmetric binary tree with a branching angle of 144° and a scaling
factor of

2
1+

√
5
. Four further copies of the tree are rotated by 72° around the bottom of the trunk, and their branch

ends will create a Golden Koch snowflake. They are the Golden Koch Snowflake, Lévy Dragon, Peano Curve, Barnsley
Fern, H-Tree fractal, Sierpiński Triangle, Vicsek fractal, Apollonian Gasket, Hilbert Curve, and so on. Considering
modifications to the branching angle, recursion rules, and scaling factor, the fractal binary tree can produce a vast array
of fractal patterns in addition to tree-like structures. The versatility of fractal binary tree makes it a potential tool and
important to the algorithmic study of complex natural design. Illustrations of the fractal binary tree include recursive
grids, space-filling trees, and biological structures.

Figure 1. A symmetric binary tree with a branching angle of 45° and a scaling factor of
1√
2
has branch extremities that generate a fractal that resembles

the Lévy Dragon
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Figure 2. The golden 144° symmetric binary tree with a branching angle of 144° and a scaling factor of
2

1+
√

5
with four additional copies rotated by

72° around the bottom of the trunk will form a “Golden Koch snowflake” with their branch tips

The intriguing continuation of fractal binary tree with increased complexity and a greater variety of potential forms
and designs forms the fractal ternary tree. By adjusting the factors like scaling factor and branching angle, it replicates
the wide range of natural designs making it a potential tool for investigation. Figure 3 shows the fractal fern is isomorphic
to fractal ternary tree by adjusting the fractal characteristics like scaling factor and branching angle. The tree can easily
change from one fractal form to another by gradually varying the angles or scaling factor. Self-similarity and Recursion
capture the elegance of fractals perfectly. For instance, you can begin with a Koch Snowflake arrangement and transform
it into a more fern-like structure by progressively increasing the branching angle. The Dragon Curve, Sierpinski Pyramid,
Cantor Set, and Tetrahedral Fractal are some of the fractals that can also be generated by a fractal ternary tree.

Figure 3. A fractal ternary tree resembles a fractal fern

Topological indices are generated from the graph-theoretical representation of molecules, networks, and other
structures, with vertices representing atoms, nodes, or entities and edges representing bonds, connections, or relationships.
Topological indices reduce complex structural information into numerical values by examining the patterns of adjacency
and connectivity within these graphs. This information can be utilized in various fields such as machine learning, structure-
activity relationship analysis, network analysis, molecular property prediction, complexity measurement, and simulation.
We investigate the topological indices of fractal binary and ternary trees using vertex and edge partitioning of these
respective graphs. The equivalence classes of vertex set and edge set helps in understanding of complex structures by
simplifying into smaller sets. In chemical graph theory, each vertex replicates atoms and each edge replicates the bonds
which is useful in analyzing the chemical properties. In network systems modeled by fractal trees, vertices represent
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nodes, and edges represent links. Partitioning helps in understanding the critical nodes (e.g., root or central vertices) and
vital connections (edges close to the root or between highly connected nodes).

Dendrimers are highly branched, tree-like polymers. Fractal trees serve as models for the graphical structure of
dendrimer growth. The fractal nature of these trees provides a useful framework for understanding the hierarchical,
self-similar structure of dendrimers, where each generation of branching closely resembles the overall structure [4–6].
Topological descriptors [7–15] derived from these trees are used in quantitative structure-activity relationship (QSAR) and
quantitative structure-property relationship (QSPR) studies. Entropy quantifies the connectivity and branching complexity
of dendrimers. The symmetry and recursive branching of fractal trees offer a robust theoretical foundation for advancing
the development and application of dendrimers in these fields.

The topological analysis of fractal trees has not received sufficient attention. Since fractal binary and ternary trees
are models for biological systems and highly branched chemical structures like dendrimers and polymers, it is crucial to
investigate their topology as it advances the understanding of complex hierarchical structures. This contribution bridges
theoretical graph analysis with real-world biological optimization. Our aim in this research is to work on the vertex and
edge-level generalization of fractal binary and ternary trees, which simplifies the understanding of complex structures.
For each of these trees, we analyze the degree-based topological descriptors and respected graph entropies, which are
used to predict molecular properties in dendrimers and polymers, analyze hierarchical networks in communication and
biological systems, measure complexity through entropy in diverse systems, and model natural systems such as vascular
or ecological branching patterns. Finally, we compare the descriptors with their number of copies in the fractal dimension.

2. Preliminaries
2.1 Topological descriptors

Let G be the graph with vertex set V and edge set E . The number of vertices incident with vertex v is called the
degree of vertex v, it is denoted by deg(v). The information regarding Randić index and its noteworthy characteristics
are provided by Bollobás et al. [16] and Amić et al. [17]. The Randić index helps determine the bioactivity of chemical
compounds, which aids in drug discovery. It also corresponds well with the heat of formation and hydrophobicity of
molecules. Let α be any real number. Rα is referred to as the generalized Randić index, where α =

1
2
, −1

2
.

Rα(G ) = ∑
vw∈E

(deg(v)deg(w))α (2)

An early degree-based descriptor known as the first [18] and second Zagreb [19] indices was developed by Gutman
and Trinajstić in 1972. Zagreb indices correlate with physicochemical properties like boiling points, melting points, and
solubility of drugs using QSAR and QSPR studies. Also, it is used to predict the elasticity and conductivity of polymers
and dendritic structures.

M1(G ) = ∑
vw∈E

deg(v)+deg(w) (3)

M2(G ) = ∑
vw∈E

deg(v)deg(w) (4)

The modified Zagreb index also called as Milan Randić index defined as
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mM2(G ) = ∑
vw∈E

1
deg(v)deg(w)

(5)

The Hyper Zagreb index is defined as

HM(G ) = ∑
vw∈E

(deg(v)+deg(w))2 (6)

Harmonic index [20] was given by Fajtlowicz. It contributes to chemical stability by assessing molecular interaction.
It is defined as follows,

H(G ) = ∑
vw∈E

2
deg(v)+deg(w)

(7)

In 2015, Furtula and Gutman [21] defined the Forgotten Index. It provides insights into the branching complexity
and reactivity of chemical compounds.

F(G ) = ∑
vw∈E

deg2(v)+deg2(w) (8)

The inverse sum indeg index [22] is defined as

I(G ) = ∑
vw∈E

deg(v)deg(w)
deg(v)+deg(w)

(9)

The author of the article “Geometric approach to degree-based topological indices: Sombor indices” has proposed
unique graph parameters based on vertex degree inspired by the Euclidean metric [23]. In a short period of time,
researchers from all around the world have carried out multiple investigations using the Sombor index [24–29]. From the
beginning, the Sombor index has had numerous modifications [30]. Additionally, there has been interest from researchers
to examine modified versions of the Sombor index. Following earlier productive research on the Sombor index and its
modifications, Gutman et al. [31] presented the Elliptic Sombor index, a novel vertex-degree-based topological index with
geometric properties. Sombor indices are useful in evaluating structural compactness and strength in complex polymers.
Also, it correlates well with thermodynamic properties of molecules.

SO(G ) = ∑
vw∈E

√
deg2(v)+deg2(w) (10)

SOred(G ) = ∑
vw∈E

√
(deg(v)−1)2 +(deg(w)−1)2 (11)
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SOinc(G ) = ∑
vw∈E

√
(deg(v)+1)2 +(deg(w)+1)2 (12)

SOmod(G ) = ∑
vw∈E

1√
deg2(v)+deg2(w)

(13)

KGSO(G ) = ∑
vw∈E

(
√

deg2(v)+(deg(v)+deg(w)−2)2 +
√

deg2(w)+(deg(v)+deg(w)−2)2) (14)

ESO(G ) = ∑
vw∈E

(deg(v)+deg(w))(
√

deg2(v)+deg2(w)) (15)

2.2 Graph entropy
Graph entropy was introduced in an effort to characterize the complexity of graphs [32]. Its initial use was meant to

highlight the complexity of interaction and knowledge transmission, but it is now widely used in many scientific domains
[33]. Let us describe the entropy of a graph G when analyzed with the topological descriptor D as in [34],

ENTD(G ) =− ∑
z∈E(G )

pzlog(pz) (16)

ENTD(G ) = log(D(G ))− 1
D(G ) ∑

z∈E(G )

f (z)log( fz) (17)

3. Graphical representation of fractal binary tree graph
A fractal binary tree is a fractal structure with self-similar and symmetric properties. Here, each vertex gives birth to

two child vertices. The left and right sub-trees are symmetric to each other. This symmetry, repeated at every level of the
tree, results in a fractal pattern. The graphical representation of a fractal binary tree starts with a vertical trunk. From the
vertex above, two child vertices are generated in a recursive manner. These trees are also observed in nature, modeling
branching patterns like those of fir trees and river networks.

Let Bi be the graph of the fractal binary tree with i iterations. Then the cardinality of the vertex and edge sets of Bi are
2i+1 and 2i+1 −1. In a fractal binary tree, the vertices are of degree 1 or 3. The edges of a fractal binary tree are classified
as E(da, db), where ab identifies the edge, da represents the degree of vertex a, and db represents the degree of vertex
b. Edges of the classifications E(1, 3) and E(3, 3) are included in the configuration; the cardinality of E(1, 3) is 2i +1,
while the cardinality of E(3, 3) is 2i − 2. Figure 4 displays the graphs of the fractal binary trees for i = 1, 2, 3, 4. The
number of copies N = 2, since each vertex grows into 2 new vertices. If the new branch grows half the size of the parent
branch, then the scaling factor S = 2. The fractal dimension of fractal binary tree FD with scaling factor 2 is 1. Reducing
the value of the scaling factor results in the convergence of the fractal dimension value to 2. The value of fractal dimension
depends on the value of the scaling factor and branching angle.
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Figure 4. Fractal binary trees

4. Topological descriptors of fractal binary tree graph
Theorem 1 For the fractal binary tree Bi, i > 1 the degree-based topological descriptors are
1. M1(Bi) = 10×2i −8
2. M2(Bi) = 12×2i −15

3. mM2(Bi) =
1
9
(2i+2 +1)

4. HM(Bi) = 52×2i −56

5. H(Bi) =
1
6
(5×2i −1)

6. F(Bi) = 28×2i −26

7. I(Bi) =
9
4
(2i −1)

8. For α =
1
2
,
−1
2
; Rα(Bi) = 2i(3α +9α)+3α −2×9α

9. SO(Bi) = 7.4049×2i −5.3230
10. SOred(Bi) = 4.8284×2i −3.6569
11. SOinc(Bi) = 10.1290×2i −6.8416
12. SOmod(Bi) = 0.5519×2i −0.1552
13. KGSO(Bi) = 15.8416×2i −14.1584
14. ESO(Bi) = 38.1050×2i −38.2626.
Theorem 2 For the fractal binary tree Bi, i > 1 the entropies are
1. ENTM1(Bi) = log(10×2i −8)− 1

10×2i −8
(4log(4)(2i +1)+6log(6)(2i −2))

2. ENTM2(Bi) = log(12×2i −15)− 1
12×2i −15

(3log(3)(2i +1)+9log(9)(2i −2))

3. ENTmM2(Bi) = log(
1
9
(2i+2 +1)− 9

2i+2 +1
(

1
3

log(
1
3
)(2i +1)+

1
9

log(
1
9
)(2i −2))

4. ENTHM(Bi) = log(52×2i −56)− 1
52×2i −56

(32log(4)(2i +1)+72log(6)(2i −2))

5. ENTH(Bi) = log(
1
6
(5×2i −1)− 6

5×2i −1
(

1
2

log(2)(2i +1)+
1
3

log(3)(2i −2))

6. ENTF(Bi) = log(28×2i −26)− 1
28×2i −26

(10log(10)(2i +1)+18log(18)(2i −2))

7. ENTI(Bi) = log(
9
4
(2i −1)− 4

9(2i −1)
(

3
4

log(
3
4
)(2i +1)+

3
2

log(
3
2
)(2i −2))

8. For α =
1
2
,

−1
2
; Rα(Bi) = log(3α(2i + 1) + 9α(2i − 2)) − 1

3α(2i +1)+9α(2i −2)
(3α log(3α)(2i + 1) +

9α log(9α)(2i −2))

9. ENTSO(Bi) = log(7.4049×2i−5.3230)− 1
7.4049×2i −5.3230

(
√

10log(
√

10)(2i+1)+
√

18log(
√

18)(2i−2))
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10. ENTSOred (Bi) = log(4.8284×2i −3.6569)− 1
4.8284×2i −3.6569

(2log(2)(2i +1)+
√

8log(
√

8)(2i −2))

11. ENTSOinc(Bi) = log(10.1290×2i−6.8416)− 1
10.1290×2i −6.8416

(
√

20log(
√

20)(2i+1)+
√

32log(
√

32)(2i

−2))

12. ENTSOmod (Bi)= log(0.5519×2i−0.1552)− 1
0.5519×2i −0.1552

(
1√
10

log(
1√
10

)(2i+1)+
1√
18

log(
1√
18

)(2i

−2))

13. ENTKGSO(Bi) = log(15.8416×2i −14.1584)− 1
15.8416×2i −14.1584

((
√

5+
√

13)log(
√

5+
√

13)(2i +

1)+10log(10)(2i −2))

14. ENTESO(Bi) = log(38.1050×2i −38.2626)− 1
38.1050×2i −38.2626

(4
√

10log(4
√

10)(2i +1)+18
√

2log(18
√

2)(2i −2)).

5. Comparison of topological descriptors of Bi

Using the descriptors, Figure 5 and Figure 6 presents the comparison graphs for the fractal binary tree Bi for a given i
sequence. The iteration count i and the predicted topological descriptors for the Bi sequences are shown on the horizontal
and vertical axes, respectively. In the graphs, each topological descriptor is indicated separately. The graphs demonstrate
how all the descriptor values rise in parallel with the number of iterations i. When comparing the amount of replicas in
the fractal dimension of the fractal binary tree, all topological descriptors yield replicas of two for every i.

Figure 5. Graphical comparison of topological descriptors of Bi

Figure 6. Graphical comparison of sombor indices of Bi
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In Figure 7 and 8, the graphical comparison of topological entropies and sombor entropies for the fractal binary tree
are given. These findings show that the entropy value increases with respect to the iteration value i of Bi. Additionaly
compared to other topological entropies, ENTM1 develop faster when the structure grows and ENTESO develop slower
compared to other sombor entropies of Bi.

Figure 7. Graphical comparison of topological entropies of Bi

Figure 8. Graphical comparison of sombor entropies of Bi

6. Graphical representation of fractal ternary tree graph
A fractal ternary tree begins from a single trunk with two vertices. From the top vertex, it splits into three new

branches symmetrically. For instance, if viewed from the top, the three branches might be evenly spaced around the trunk,
forming angles like 120 degrees between each pair. Each of the three branches at the first level itself becomes a trunk for
three new branches in the next iteration. This branching continues recursively, meaning that each new branch generates
three smaller branches, maintaining the symmetric arrangement. Typically, the length of each new set of branches is a
fraction of the branches in previous level. Due to the scaling property, the tree looks same as it develops. For example, if
the initial branch length is l, the branches at the next level might be l/2, and those at the following level l/4, and so on.
The fractal ternary tree exhibits radial symmetry and self-similar fractal properties. Since the new branches grow at equal
angles in all levels of recursion and each branch or segment of the tree resembles the entire tree.

Let Tn be the graph of fractal ternary tree with n iterations. Because of the complexity of structure, sequences are used
for generalization of vertex and edge sets. Consider a sequence vn with v2 = 14, then the total number of the vertex set is
given by (3×vn−1)−1. Similarly, consider a sequence en with e2 = 13, then the total number of edge set is (3×an−1)+1.
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In a fractal ternary tree, the vertices are of degree 1 or 4. The edges of a fractal ternary tree are classified as E(1, 4) and
E(4, 4). Let an and bn be two other sequences with a2 = 10 and b2 = 3, then 3× (an−1 − 1)+ 1 is the cardinality of
the edge set E(1, 4) and (3× bn−1)+ 3 is the cardinality of E(4, 4). Figure 9 depicts the graphs of fractal ternary trees
for n = 1, 2, 3. Every branch in a fractal ternary tree divides into three new branches. Thus, N = 3. The value assigned
to the branches determines the scaling factor S. S = 2 if every new branch is scaled by half of its branch size of the
parent. For fractal ternary tree, the fractal dimension FD is 1.585 with scaling factor 2. The exact fractal dimension
values are determined by the branching angles, particular scaling algorithms, and degree of complexity or randomness in
the structure of fractal ternary tree.

Figure 9. Fractal ternary trees

7. Topological descriptors of fractal ternary tree graph
Theorem 3 For the fractal ternary tree Tn, where n > 1, a2 = 10, b2 = 3 the degree-based topological descriptors

follows,
1. M1(Tn) = 15× (an−1 −1)+24×bn−1 +29
2. M2(Tn) = 12× (an−1 −1)+48×bn−1 +52
3. mM2(Tn) = 0.75× (an−1 −1)+0.1875×bn−1 +0.4375
4. HM(Tn) = 75× (an−1 −1)+192×bn−1 +217
5. H(Tn) = 1.2× (an−1 −1)+0.75×bn−1 +1.15
6. F(Tn) = 51× (an−1 −1)+96×bn−1 +113
7. I(Tn) = 2.4× (an−1 −1)+6×bn−1 +6.8

8. For α =
1
2
,
−1
2
; Rα(Tn) = 3×4α × (an−1 −1)+3×42α ×bn−1 +4α +3×42α

9. SO(Tn) = 12.3693× (an−1 −1)+16.9706×bn−1 +21.0937
10. SOred(Tn) = 9× (an−1 −1)+12.7279×bn−1 +15.7279
11. SOinc(Tn) = 16.1555× (an−1 −1)+21.2132×bn−1 +26.5984
12. SOmod(Tn) = 0.7276× (an−1 −1)+0.5303×bn−1 +0.7729
13. KGSO(Tn) = 24.4868× (an−1 −1)+43.2666×bn−1 +51.4289
14. ESO(Tn) = 61.8466× (an−1 −1)+135.7645×bn−1 +156.3800.
Theorem 4 For the fractal ternary tree Tn, where n > 1, a2 = 10, b2 = 3 the entropies are
1. ENTM1(Tn) = log(M1(Tn))−

1
M1(Tn)

(5log(5)(3(an−1 −1)+1)+8log(8)(3bn−1 +3))

2. ENTM2(Tn) = log(M2(Tn))−
1

M2(Tn)
(4log(4)(3(an−1 −1)+1)+16log(16)(3bn−1 +3))

3. ENTmM2(Tn) = log(mM2(Tn))−
1

mM2(Tn)
(

1
4

log(
1
4
)(3(an−1 −1)+1)+

1
16

log(
1

16
)(3bn−1 +3))

4. ENTHM(Tn) = log(HM(Tn))−
1

HM(Tn)
(25log(25)(3(an−1 −1)+1)+64log(64)(3bn−1 +3))
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5. ENTH(Tn) = log(H(Tn))−
1

H(Tn)
(

2
5

log(
2
5
)(3(an−1 −1)+1)+

1
4

log(
1
4
)(3bn−1 +3))

6. ENTF(Tn) = log(F(Tn))−
1

F(Tn)
(17log(17)(3(an−1 −1)+1)+32log(32)(3bn−1 +3))

7. ENTI(Tn) = log(I(Tn))−
1

I(Tn)
(

4
5

log(
4
5
)(3(an−1 −1)+1)+2log(2)(3bn−1 +3))

8. For α =
1
2
,
−1
2
; ENTRα (Tn) = log(Rα(Tn))−

1
Rα(Tn)

(4α log(4α)(3(an−1 −1)+1)+16α log(16α)(3bn−1 +3))

9. ENTSO(Tn) = log(SO(Tn))−
1

SO(Tn)
(
√

17log(
√

17)(3(an−1 −1)+1)+4
√

2log(4
√

2)(3bn−1 +3))

10. ENTSOred (Tn) = log(SOred(Tn))−
1

SOred(Tn)
(3log(3)(3(an−1 −1)+1)+3

√
2log(3

√
2)(3bn−1 +3))

11. ENTSOinc(Tn) = log(SOinc(Tn))−
1

SOinc(Tn)
(
√

29log(
√

29)(3(an−1 −1)+1)+5
√

2log(5
√

2)(3bn−1 +3))

12. ENTSOmod (Tn) = log(SOmod(Tn))−
1

SOmod(Tn)
(

1√
17

log(
1√
17

)(3(an−1 −1)+1)+
1

4
√

2
log(

1
4
√

2
)(3bn−1 +3))

13. ENTKGSO(Tn) = log(KGSO(Tn))−
1

KGSO(Tn)
((5+

√
10)log(5+

√
10)(3(an−1 −1)+1)+4

√
13log(4

√
13)

(3bn−1 +3))

14. ENTESO(Tn) = log(ESO(Tn))−
1

ESO(Tn)
(5
√

17log(5
√

17)(3(an−1 −1)+1)+32
√

2log(32
√

2)(3bn−1 +3)).

8. Comparison of topological descriptors of Tn

The two comparison graphs for the fractal ternary tree Tn for a specific n succession are displayed in Figure 10 and
Figure 11 using the topological descriptors. The horizontal axis displays the iteration number n, while the vertical axis
displays the projected topological descriptors for Tn. Each topological descriptor is displayed independently in the graphs.
The graphs show how the descriptor values increase simultaneously with the iteration number, n. There are three replicas
for every n for all topological descriptors when analyzing the number of replicas in the fractal dimension.

Figure 10. Graphical representation of topological descriptors of Tn
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Figure 11. Graphical representation of sombor indices of Tn

The topological entropies and sombor entropies for the fractal ternary tree are graphically compared in Figures 12
and 13. These results show that the entropy value increases in relation to the iteration value n of Tn. Furthermore, when
the structure evolves, ENTM1 evolves rapidly compared to other topological entropies, while ENTESO develops gradually
compared to other entropies of Tn.

Figure 12. Graphical representation of topological entropies of Tn
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Figure 13. Graphical representation of sombor entropies of Tn

9. Application
The computation of topological indices and graph entropies for the fractal binary and ternary trees has applications

in numerous fields. Especially in material science, fractal trees are isomorphic to dendritic crystals and nanomaterials.
Topological indices of fractal trees are used in the introduction of nanoparticles since they determine the rate of diffusion
and thermal resistance. Also, they are associated with the structural integrity of fractal architectures. Graph entropy, which
measures the degree of disorder or uniformity in material composition, aids in the formation of amorphous and composite
materials. In biology, fractal trees are used to model neuronal sprouting and vascular networks. It can also represent
genetic branching in species phylogenies. The indicators help analyze the efficiency of signal or nutrient transfer and
evaluate the robustness and resilience of networks. It also makes it easier to understand the biological interconnections
and the structural complexity of genetic trees. In the field of drug delivery, fractal trees behave as models for dendrimers,
which helps to correlate their physicochemical properties using topological indices of fractal trees. Entropy measures
the structural complexity and quantifies the drug delivery patterns. Also, topological indices of fractal trees are utilized
in the field of network architecture, like peer-to-peer networks and distributed systems. Fractal trees are recursive data
structures, which makes them useful in decision trees and search algorithms. Figure 14 summarizes the critical role of
topological indices and entropy in predicting, analyzing, and optimizing properties across diverse disciplines.

Figure 14. Application of topological indices and entropy measures of fractal trees in various disciplines
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10. Conclusion
The present research explores a variety of topological descriptors and entropy measures for the fractal graphs,

including the Zagreb indices, Forgotten index, Inverse sum indeg index, general Randić index, Sombor indices, and their
respective entropies. The article also includes graphs comparing all the topological descriptors and entropy measures for
each fractal graph. It is important to note that every topological descriptor offers three copies for fractal ternary trees and
two copies for fractal binary trees. The empirical data fitting method will demonstrate the effectiveness of the proposed
work by comparing computed indices and entropy values with experimental data from materials, biological systems, or
networks to validate models. In our future work, we intend to look into the topological characteristics of different fractal
networks having complex structures as the iteration increases. This work contributes to chemical graph theory and related
disciplines by offering analytical expressions and highlighting potential applications in molecular modeling, network
theory, and information science.
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