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1. Introduction
Our notions are fairly standard, as can be found in many sources, for instance [1–3]. To have a self-contained paper

we list the next main concepts and terminologies that used in the current paper.
A graph G(V, E) consists of a non-empty finite set V of elements called vertices, and a finite family E of unordered

pairs of (not necessarily distinct) elements of V called edges. The edge e = (u, v) ∈ E joining the vertices u and v in V
can be written as e = uv = vu. Replacing the set E with a set of ordered pairs of vertices, we obtain a directed graph, or
digraph. A graph is usually undirected, unless otherwise stated. The order of a graph G(V, E) is |V | and is denoted by
O(G), and the size is |E| and is denoted by S(G). A simple graph is a graph that has no edge of the same ends vertices
and it has at most one edge joining any two different vertices. Two graphs are called disjoint if there is no common vertex
between them.

A path is a fundamental concept on graph theory, which is a graph whose vertices can be ordered as v1, v2, · · · , vn

and the edges are vivi+1. A path of n vertices is denoted by Pn. A graph G is connected if and only if there is at least one
path between any two different vertices.

In this article we consider undirected graphs that are connected and simple. For a graph G(V, E), the degree of a
vertex v ∈ V is defined to be the number of edges that have their ends in v. The maximal degree of a graph G is defined
as ∆(G) = max{deg(v) | v ∈V}, and the minimal degree of a graph G is defined as δ (G) = min{deg(v) | v ∈V}.

Recall that, the sequence 0, 1, 1, 2, 3, 5, . . . in which any term is the sum of the previous two terms is called a
sequence of Fibonacci numbers where each number is referred to as Fn. To find the Fibonacci number Fn one can use the
recurrence relation Fn = Fn−1 +Fn−2 with n > 2 and F1 = 1, F2 = 2. The ratio of two consecutive Fibonacci numbers is
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an irrational number equals to
1+

√
5

2
. This ratio is called the golden ratio. It also can be used to represent Fibonacci

numbers such that Fn =
φn − (1−φ)n

√
5

, φ =
1+

√
5

2
. For more about Fibonacci numbers and the golden ratio see [4].

By graph vertex labelling, it is meant to assign each vertex to an element from a selective set; for example, a set of
letters, numbers or colours. Many researches consider the set to be non-negative integers, as we do in our current research.

Recently, the edge irregular strength of a graph is introduced by Ahmad et al. [5]. As, if G is an undirected, simple
and connected graph with the vertex setV , and the edge set E. Consider the vertex k-labelling map ϕ : V →{1, 2, · · · , k}.
Corresponding to this map ϕ , each edge e = vu ∈ E has the weight wϕ (e) = wϕ (uv) = ϕ(u)+ ϕ(v), if such a function
maps the distinct edges to distinct weights, then it is called an irregular k-labelling of G. The edge irregularity strength
of a graph G is the smallest k embedding the irregularity of ϕ , denoted by es(G). Recently, the edge irregularity strength
of some graphs has been considered, such as paths Pn, Cartesian product of two paths and the star graph K1, n, see [5].
Edge irregularity strength for the sun graph Sn, or equivalently Cn ⊙K1, is investigated by Ahmad in [6]. Some classes
of Toeplitz graphs have a calculated edge irregularity strength that found by Ahmad et al. [7]. Further results on edge
irregularity strength of graphs have been considered in [7–10]. Recently, in [11, 12] the author stated es(G) of some finite
graphs G as Kn, m, Pn⊙Pm and Pn⊙Cm. Among other investigations, Mushayt in [13] stated the edge irregularity strength
of the Cartesian product of some graphs such as stars, cycles and paths.

The main aim of this article is to study es(G) of a given graph G by using a suitable map ϕ : V →{1, 2, · · · , k} that
associate different edges weights where the value of k is chosen to be the smallest. The next theorems give recommended
bounds (lower and upper bounds) of es(G).

Theorem 1 [5] Let G be a graph of order n. Let the sequence Fm of Fibonacci numbers be defined by the recurrence
relation Fm = Fm−1 +Fm−2, m ≥ 3, with seed values F1 = 1 and F2 = 2. Then es(G)≤ Fn.

Theorem 2 [5] For a simple graph G of size m and maximum degree ∆,

es(G)≥ max
{⌈

m+1
2

⌉
, ∆

}

Aswemove forward, in Section 2, wewill present some new results regarding the edge irregularity strength of disjoint
graph unions. In Section 3, we will show a complete estimation of es(G) for some known graphs, such as complete graphs
Kn, wheel graphs Wn, and complete sun graphs KSn.

2. Edge irregularity strength of disjoint union of n copies of graphs
Recall that, the union of the graphs G1(V1, E1) and G2(V2, E2) is the graph G(V, E) where V = V1 ∪V2 and E =

E1 ∪E2. Clearly, the order of G = G1 ∪G2 is n ≤ |V1|+ |V2| and the size of G is m ≤ |E1|+ |E2|. In particular, if G1 and
G2 are disjoint graphs, then n = |V1|+ |V2| and m = |E1|+ |E2|.

Our next step is to determine the edge irregularity strength of the union of disjoint graphs. Noting that, es(Pn) =
⌈n

2

⌉
,

see [5].
Remark 1 Let Pn and Pm be two disjoint paths for n, m ≥ 2. Then

es(Pn ∪Pm) =

⌈
n+m−1

2

⌉
.

Proof. Suppose that Pn and Pm be two disjoint paths for n, m ≥ 2, where V1 = {v1, v2, . . . , vn} and V2 =

{u1, u2, . . . , um} are the sets of vertices of Pn and Pm, respectively. Let G = Pn ∪Pm. Then, S(G) = S(Pn)+ S(Pm) =

(n−1)+(m−1) = n+m−2 and ∆(G) = 2. Using Theorem 2 we get:
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es(G)≥ max
{⌈

S(G)+1
2

⌉
, ∆(G)

}

≥ max
{⌈

n+m−2+1
2

⌉
, 2

}

=

⌈
n+m−1

2

⌉

Then,

es(G)≥
⌈

n+m−1
2

⌉
(1)

Define the vertex labelling map ϕ on G by ϕ : V1 ∪V2 →{1, 2, . . . , k} (as k =
n+m−1

2
) where ϕ(V1) and ϕ(V2)

are given by:

1, 1, 2, 2, · · · , n
2
,

n
2︸ ︷︷ ︸

ϕ(V1)

,

n
2
,

n
2
+1,

n
2
+1, · · · , n

2
+

⌈
m−1

2

⌉
︸ ︷︷ ︸

ϕ(V2)

, if n is even

and

1, 1, 2, 2, · · · ,
⌈n

2

⌉
−1,

⌈n
2

⌉
−1,

⌈n
2

⌉
︸ ︷︷ ︸

ϕ(V1)

,

⌈n
2

⌉
,
⌈n

2

⌉
,
⌈n

2

⌉
+1,

⌈n
2

⌉
+1, · · · ,

⌈n
2

⌉
+

⌈
m−1

2

⌉
︸ ︷︷ ︸

ϕ(V2)

, if n is odd

Corresponding to the previous labelling, there are n + m − 2 distinct edge weights which can be listed by W =

{2, 3, 4, · · · , n+m−1}, hence ϕ is an edge irregular labelling of G. Using Equation (1), k ≤ es(G) ≤ k and the proof
is completed.

Generalizing the previous lemma for the union of n disjoint paths, the following theorem results.
Theorem 3 Let G =

n⋃
i=1

Pki be the union of disjoint n paths Pki , ki ≥ 2 for all i. Then
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es(G) =


(

n
∑

i=1
ki

)
− (n−1)

2

 . (2)

Proof. Let Pki , i = 1, . . . , n be n disjoint paths, and Vk1 , . . . , Vkn be the vertices sets of Pk1 , . . . , Pkn respectively.

Let G =
n⋃

i=1
Pki . Then ∆(G) = 2, |V |= O(G) =

n
∑

i=1
ki and |E|= S(G) = S(Pk1)+ . . . , S(Pkn) = (k1 −1)+ · · ·+(kn −1) =

n
∑

i=1
ki −n. By Theorem 2, we have

es(G)≥ max



(
(

n
∑

i=1
ki)−n

)
+1

2

 , 2

=


(

n
∑

i=1
ki

)
− (n−1)

2

 .

Now, define the vertex labelling map ϕ on G by ϕ :
n⋃

i=1
Vki → {1, 2, . . . , k} where k =


(

n
∑

i=1
ki

)
− (n−1)

2

 and

the labelling is as follows
• if k1 is even then we label the vertices by

1, 1, 2, 2, · · · , k1

2
,

k1

2︸ ︷︷ ︸
ϕ(V1)

,
k1

2
,

k1

2
+1,

k1

2
+1, · · · ,


n
∑

i=1
ki − (n−1)

2

︸ ︷︷ ︸
ϕ(Vk2∪···∪Vkn )

,

• if k1 is odd then we label the vertices by

1, 1, 2, 2, · · · ,
⌈

k1

2

⌉
−1,

⌈
k1

2

⌉
−1,

⌈
k1

2

⌉
︸ ︷︷ ︸

ϕ(Vk1 )

,

⌈
k1

2

⌉
,

⌈
k1

2

⌉
,

⌈
k1

2

⌉
+1,

⌈
k1

2

⌉
+1, · · · ,


n
∑

i=1
ki −n

2

︸ ︷︷ ︸
ϕ(Vk2∪···∪Vkn )

.

Certainly, this map is irregular labelling map, where W =

{
2, 3, 4, . . . ,

n
∑

i=1
ki − (n−1)

}
is the set of distinct edge

weights. Thus es(G)≤ k, which completes the proof.
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Remark 2 Consider the disjoint graphs G and H. Then

max{es(G), es(H)} ≤ es(G∪H)≤ es(G)+ es(H).

Proof. Suppose that G and H be two disjoint graphs for which ϕG : VG → {1, 2, · · · , k1} and ϕH : VH →
{1, 2, · · · , k2} are edge irregular labelings of G and H (respectively) with to k1 = es(G) and k2 = es(H). Without
loss of generality assume that k1 ≤ k2, then define ϕ : VG ∪VH →{1, 2, · · · , k = k1 + k2} by

ϕ(v) =


ϕG(v), v ∈ G

ϕH(v)+ k1, v ∈ H

To check the irregularity of ϕ , one needs to find the edge weight corresponding to every edge in G∪H. Since G and
H are disjoint, then every edge in the union should be only in G or only in H. Let e1, e2 be two distinct edges in G∪H.
To show that wϕ (e1) ̸= wϕ (e2), we have the following cases:

• If e1, e2 ∈ G, then wϕ (e1) = wϕG(e1) and wϕ (e2) = wϕG(e2), which are distinct, because ϕG is an irregular vertex
labelling on G.

• If e1, e2 ∈ H, then wϕ (e1) = wϕH (e1)+2k1 and wϕ (e2) = wϕH (e2)+2k1 and since ϕH is irregular vertex labelling
map, then wϕH (e1) ̸= wϕH (e2). So wϕH (e1)+2k1 ̸= wϕH (e2)+2k1. This implies that wϕ (e1) ̸= wϕ (e2).

• If e1 ∈ G and e2 ∈ H, then 2 ≤ wϕ (e1)≤ 2k1 < 2+2k1 ≤ wϕ (e2)≤ k1 +2k2 and this shows that the weights of two
distinct edges each is in one of the component graphs are distinct.

From the previous list, we see that ϕ produces different weights for the different edges. Thus, the map ϕ is an edge
irregular k-labelling of G∪H. This shows that es(G∪H)≤ k = k1 + k2.

On the other hand, S(G∪H) = S(G)+ S(H) ≥ max{S(G), S(H)}, implies that es(G∪H) ≥ max{es(G), es(H)}.
This completes the proof.

3. Edge irregularity strength of certain graphs
The considered graphs in this part are: the complete graph, wheel graph and complete sun graph.
It is worth recalling that, a regular graph is a graph in which all the vertices have the same degree. A complete graph

is a simple graph that contains every possible edge between all the vertices. A complete graph with n vertices is denoted
by Kn.

Certainly, G = Kn is an (n − 1)-regular graph. Therefore, the degrees sequence of G is n−1, n−1, · · · , n−1︸ ︷︷ ︸
n−terms

.

Indeed, δ (G) = ∆(G) = n−1 and S(G) =
1
2

n(n−1). The next theorem finds the edge irregularity strength of the complete
graphs.

Theorem 4 Consider the complete graph G(V, E) = Kn of order n ≥ 3. Then es(G) =

⌊
φn+1
√

5
+

1
2

⌋
, where φ =

1+
√

5
2

is the golden ratio.
Proof. Let G = Kn be the complete graph of order n ≥ 3, where the set of vertices is V and the set of edges of

G is E. Define on the graph G the vertex labelling map ϕ : V → {1, 2, · · · , k} as follows, ϕ(v1) = 1, ϕ(v2) = 2 and
ϕ(vm) = ϕ(vm−1) + ϕ(vm−2) for all m = 3, 4, · · · , n. Then, the vertices labelings ϕ(v1), ϕ(v2), ϕ(v3), · · · , ϕ(vn)

is the Fibonacci sequence of the terms 1, 2, 3, 5, 8, · · · , k =

⌊
φn+1
√

5
+

1
2

⌋
, and the corresponding edge weights are
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3, 4, 5, · · · , ϕ(vn−1) + ϕ(vn) which are all distinct. Thus, ϕ is an edge irregular k-labelling of G, and if es(G) ≤ k
then the used labelling map is not one-to-one, for which it will be not irregular (every vertices are adjacent). Therefore
es(G)≥ k. Using Theorem 1., which indicates that es(G)≤ Fn = k. Hence, the claim follows.

Example 1 Let G = K5 be the complete graph of order 5, where V = {v1, v2, v3, v4, v5} is the set of vertices of G.

Noting that,
⌊

φn+1
√

5
+

1
2

⌋
=

⌊
φ5+1
√

5
+

1
2

⌋
= 8. To find the edge irregularity strength of G, define ϕ : V →{1, 2, 3, 5, 8=

k} (the first 5-terms of the Fibonacci sequence), such that ϕ(v1) = F1 = 1, ϕ(v2) = F2 = 2 and ϕ(vm) = ϕ(vm−1) +

ϕ(vm−2) = Fm−1 +Fm−2, m = 3, 4, 5. Then, the Figure 1 shows the edges weights assigned by such map ϕ :

Figure 1. Edges weights assigned by map

Clearly, there are 10 distinct edges weights {3, 4, 5, 6, 7, 8, 9, 10, 11, 13}. That is to say ϕ is an irregular k-
labelling map, implise that es(G) ≤ k = 8. Moreover ϕ is a bijective map. If not then there are at least two vertices vi

and v j in V for which ϕ(vi) = ϕ(v j) and so ϕ(v)+ ϕ(vi) = ϕ(v)+ ϕ(v j) for any v ∈ V , thus the map will not produce
different edges weights. Finally, suppose that es(G) < 8, for such an assumption, the only available options are 4, 6 or
7, but 4+1 = 2+3, 6+2 = 5+3 and 7+1 = 5+3 and so neither of these options can produce different edges weights.

This implies es(G)≥ 8. Hence, es(G) = 8 =

⌊
φ5+1
√

5
+

1
2

⌋
.

Recall that, the wheel graph G =Wn is obtained from a cycle graphCn and a new vertex v called hub connected to all
u∈Cn. Therefore, the order of the wheel graphG=Wn is n+1 and the size is n+n= 2n. Furthermore, ∆(G) = deg(v) = n
and δ (G)= 3. Since each u∈Cn is of degree 3, then 3, 3, . . . , 3︸ ︷︷ ︸

n

, n is the degrees sequence ofG. So, the following theorem

can be shown.
Theorem 5 Let Wn, n ≥ 3 be the wheel graph. Then

es(Wn) = n+2+
⌊

n−3
5

⌋

Proof. Let G(V, E) =Wn, n ≥ 3 be the wheel graph, andV = {v1, v2, · · · , vn}∪{v}, where v is the hub of G. Then
|E|= 2n and ∆(G) = n. Using Theorem 2, it follows that

es(G)≥ n+1 (3)

For n = 3, we have es(G)≥ 3+1 = 4, and define a vertex labelling map ϕ : {v1, v2, v3, v} → {1, 3, 2, 5 = k} by
ϕ(vi) = i, ϕ(v) = 5. Then ϕ is irregular vertex labelling, and so es(G) ≤ k = 5. On the other hand, any vertex labelling
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α : V →{1, 2, 3, 4}, will be not irregular, which implies that es(G)≥ 5. Thus 5≤ es(W3)≤ 5, then es(W3) = 5. Similarly,
for n = 4 and n = 5, one has es(G) = 6 and es(G) = 7 respectively.

For n ≥ 6 define the map ϕ : V → {1, 2, 3, · · · , k}, which should be injective to avoid similar edge weights and
surjective to get the smallest such k. Without lose of generality set ϕ(v) = 6 (v is the hub of the wheel) ϕ(v1) = 1, ϕ(v2) =

3, ϕ(v3) = 2, ϕ(vn−1) = 7 and ϕ(vn) = 5. Then, the smallest weight that can be produced by ϕ is 4. Moreover, there is no
vi ∈V for which ϕ(vi) = 4 using ϕ(v) = 6, therefore ϕ(vi)∈ {1, 2, 3, 5, 7, 8, 9, · · ·}, implies that k ≥ n+2. In particular,
the remaining labels {ϕ(v4), ϕ(v5), · · · , ϕ(vn−2)} of n−5 vertices should be selected from H = {8, 9, 10, · · · , k}which

has k− 8+ 1 = k− 7 elements but not all could be used, so
⌊

n−3
5

⌋
elements of H will be excluded using ϕ . That is

H includes only (k− 7)−
⌊

n−3
5

⌋
acceptable labels for n− 5 vertices, which implies that (k− 7)−

⌊
n−3

5

⌋
= n− 5,

thus k = n+2+
⌊

n−3
5

⌋
. Therefore es(G) ≤ k. Suppose on the contrary that k < n+2+

⌊
n−3

5

⌋
and let n = 6. Then

k = 7 < 8, which implies that there is an irregular vertex labelling α : V →{1, 2, 3, · · · , 7 < k} that produces 12 different
weights, using ϕ(v) = 2 or 6, removing such label (2 or 6) from {1, 2, 3, · · · , 7 < k}. Then we have 2,520 arrangements
(labelling maps) none of these maps produce different edge weights (such calculations have been done using computer
software). Hence es(W6)> 7.

Most of our calculations (as for wheel graphsWn) have been done by building certain algorithms using GAP (Groups,
Algorithm, and Programming). This is a programming language and system designed specifically for computational
discrete algebra. For more about it consult, for instance, see [14].

Example 2 LetG=W6 be the wheel graph of order 7, for which the set of vertices isV = {v1, v2, v3, v4, v5, v6}∪{v}
where v is the hub. So we have 7 vertices each should be labeled by an injective labelling map ϕ . Otherwise, if there exists
vi and v j in V for which ϕ(vi) = ϕ(v j), then ϕ(v)+ϕ(vi) = ϕ(v)+ϕ(v j), or if there exists vi in V such that ϕ(vi) = ϕ(v),
then ϕ(v)+ ϕ(vm) = ϕ(vi)+ ϕ(vm) where vm is any adjacent vertex of vi. Therefore, we need to define ϕ : V → L =

{1, 2, . . . , k}, for which |L|= |V | as 6 distinct labels for the cycle vertices and one for the hub. That is k ≥ n+1, since
4 can not be used as a vertex label for which there exists similar edges weights. then k ≥ n+ 1+ 1 = 6+ 1+ 1 = 8.

Considering that, in the set L = {1, 2, 3, . . . , n ≥ 4} there are
⌊

n−3
5

⌋
+1 numbers that can not be used as vertex label.

So, for n = 6 set L = {1, 2, 3, 5, 6, 7, k}, where k is 6+1 (hub label) +1 (the label 4 should be removed) + 0 (no other
removed label for k < 13) = 8 and define ϕ on V as shown in the Figure 2:

Figure 2. Define ϕ on V

As shown in the previous figure, the set of the edges weights produced by ϕ isW = {4, 5, 6, . . . , 15} which consists
of 12 distinct sequential values. Implies that ϕ is an irregular k-labelling map on G. Thus es(G) ≤ k = 8, recalling that
es(G)≥ k. Hence, es(G) = k.
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The complete n-sun graph (n ≥ 3) is a graph consists of a complete graph Kn as a center of the n-sun graph and an
outer ring of n vertices, where every vertex is joined to the closest edge of the complete graph. In this context, we will
denote the complete n-sun graph by KSn and write the set of vertices of KSn as V = {u1, u2, · · · , un}∪{v1, v2, · · · , vn}
and the set of edges E = {uiu j | i, j = 1, 2, · · · , n and i ̸= j}∪{v1u1, v1u2, v2u2, v2u3, · · · , vnun, vnu1}.
So, the degree sequence of KSn is 2, 2, · · · , 2︸ ︷︷ ︸

n−terms

, n+1, n+1, · · · , n+1︸ ︷︷ ︸
n−terms

. Observe that, the order of the graph KSn is 2n

and the size is
1
2
(2n+n(n+1)) =

1
2

n(n+3) =
1
2

n(n+1)+n. Using this description one can proof the next results.

Lemma 1 LetG=KSn be the complete sun graph of order 2n and size
1
2

n(n+3) and letFm be the Fibonacci sequence
of m-terms with seed values F1 = 1 and F2 = 2. Then

Fn+1 ≤ es(G)

Proof. Given that H = Kn is the central core of G = KSn, then es(H) ≤ es(G). Furthermore, |VG| = |VH |+ n. Set
v1, v2, · · · , vn to be the vertices ofG not inH. So, any irregular labellingmap onG should not assign any of 1, 2, 3, · · · , Fn

for any vi. Therefore, es(G)≥ Fn+1.
Note that for G = KSn, the maximal degree is ∆(G) = n+1. Using Theorem 2, one has:

es(G)≥ max
{⌈

|E|+1
2

⌉
, ∆(G)

}

= max




1
2

n(n+3)+1

2

 , n+1


= max

{⌈
n(n+3)+2

4

⌉
, n+1

}

= max
{⌈

1
4
(n+1)(n+2)

⌉
, n+1

}

and since n ≥ 3, then n+2 > 4, and so
1
4
(n+2)> 1 implies that

⌈
1
4
(n+1)(n+2)

⌉
> n+1. Thus

es(G)≥
⌈

1
4
(n+1)(n+2)

⌉
(4)

Using the previous facts and some computer calculations, we have the following assumption.
Conjecture 1 Let G = KSn be the complete n-sun graph. Then es(G) =

1
2

n(n+1)+3.
Example 3 Figures 3-5 show selective irregular labelling maps for the complete sun graphs KS3, KS4 and KS5. Such

maps produced distinct edge weights. That is to say es(KS3)≤ 9, es(KS4)≤ 13 and es(KS5)≤ 18. All these values agree
with our conjecture.
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Figure 3. Irregular vertex labeling of KS3

Figure 4. Irregular vertex labeling of KS4

Figure 5. Irregular vertex labeling of KS5
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