Research Article

On the Edge Irregularity Strength of Finite Graphs

Asma Almazaydeh^{1*^(D)}, Bilal N. Al-Hasanat^{2^(D)}, Remal S. Al-Gounmeein^{2^(D)}

¹Department of Mathematics, Tafila Technical University, Tafila, Jordan

²Department of Mathematics, Al Hussein Bin Talal University, Ma'an, Jordan

E-mail: aalmazaydeh@ttu.edu.jo

Received: 22 October 2024; Revised: 24 November 2024; Accepted: 27 November 2024

Abstract: In this paper, we state the value of edge irregularity strength for the complete graphs K_n of order $n \ge 3$, wheel graphs W_n where $n \ge 3$ and the union of disjoint graphs. Also we state a lower bound for edge irregularity strength for the complete sun graph of order 2n and size $\frac{n}{2}(n+3)$.

Keywords: simple graph, k-labelling, irregularity strength, wheel graph, disjoint graphs

MSC: 05C78, 05C38

1. Introduction

Our notions are fairly standard, as can be found in many sources, for instance [1-3]. To have a self-contained paper we list the next main concepts and terminologies that used in the current paper.

A graph G(V, E) consists of a non-empty finite set V of elements called *vertices*, and a finite family E of unordered pairs of (not necessarily distinct) elements of V called *edges*. The edge $e = (u, v) \in E$ joining the vertices u and v in V can be written as e = uv = vu. Replacing the set E with a set of ordered pairs of vertices, we obtain a directed graph, or digraph. A graph is usually undirected, unless otherwise stated. The *order* of a graph G(V, E) is |V| and is denoted by O(G), and the *size* is |E| and is denoted by S(G). A *simple* graph is a graph that has no edge of the same ends vertices and it has at most one edge joining any two different vertices. Two graphs are called *disjoint* if there is no common vertex between them.

A path is a fundamental concept on graph theory, which is a graph whose vertices can be ordered as v_1, v_2, \dots, v_n and the edges are v_iv_{i+1} . A path of *n* vertices is denoted by P_n . A graph *G* is *connected* if and only if there is at least one path between any two different vertices.

In this article we consider undirected graphs that are connected and simple. For a graph G(V, E), the *degree* of a vertex $v \in V$ is defined to be the number of edges that have their ends in v. The *maximal* degree of a graph G is defined as $\Delta(G) = \max\{\deg(v) \mid v \in V\}$, and the *minimal degree* of a graph G is defined as $\delta(G) = \min\{\deg(v) \mid v \in V\}$.

Recall that, the sequence 0, 1, 1, 2, 3, 5, ... in which any term is the sum of the previous two terms is called a *sequence of Fibonacci numbers* where each number is referred to as F_n . To find the Fibonacci number F_n one can use the recurrence relation $F_n = F_{n-1} + F_{n-2}$ with n > 2 and $F_1 = 1$, $F_2 = 2$. The ratio of two consecutive Fibonacci numbers is

DOI: https://doi.org/10.37256/cm.6120255957

This is an open-access article distributed under a CC BY license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Copyright ©2025 Asma Almazaydeh, et al.

an irrational number equals to $\frac{1+\sqrt{5}}{2}$. This ratio is called the *golden ratio*. It also can be used to represent Fibonacci numbers such that $F_n = \frac{\varphi^n - (1-\varphi)^n}{\sqrt{5}}$, $\varphi = \frac{1+\sqrt{5}}{2}$. For more about Fibonacci numbers and the golden ratio see [4].

By graph *vertex labelling*, it is meant to assign each vertex to an element from a selective set; for example, a set of letters, numbers or colours. Many researches consider the set to be non-negative integers, as we do in our current research.

Recently, the edge irregular strength of a graph is introduced by Ahmad et al. [5]. As, if *G* is an undirected, simple and connected graph with the vertex set *V*, and the edge set *E*. Consider the vertex *k*-labelling map $\phi : V \rightarrow \{1, 2, \dots, k\}$. Corresponding to this map ϕ , each edge $e = vu \in E$ has the weight $w_{\phi}(e) = w_{\phi}(uv) = \phi(u) + \phi(v)$, if such a function maps the distinct edges to distinct weights, then it is called an *irregular k-labelling* of *G*. The *edge irregularity strength* of a graph *G* is the smallest *k* embedding the irregularity of ϕ , denoted by es(G). Recently, the edge irregularity strength of some graphs has been considered, such as paths P_n , Cartesian product of two paths and the star graph $K_{1, n}$, see [5]. Edge irregularity strength for the sun graph S_n , or equivalently $C_n \odot K_1$, is investigated by Ahmad in [6]. Some classes of Toeplitz graphs have a calculated edge irregularity strength that found by Ahmad et al. [7]. Further results on edge irregularity strength of graphs have been considered in [7–10]. Recently, in [11, 12] the author stated es(G) of some finite graphs *G* as $K_{n, m}$, $P_n \odot P_m$ and $P_n \odot C_m$. Among other investigations, Mushayt in [13] stated the edge irregularity strength of the Cartesian product of some graphs such as stars, cycles and paths.

The main aim of this article is to study es(G) of a given graph G by using a suitable map $\phi : V \to \{1, 2, \dots, k\}$ that associate different edges weights where the value of k is chosen to be the smallest. The next theorems give recommended bounds (lower and upper bounds) of es(G).

Theorem 1 [5] Let *G* be a graph of order *n*. Let the sequence F_m of Fibonacci numbers be defined by the recurrence relation $F_m = F_{m-1} + F_{m-2}$, $m \ge 3$, with seed values $F_1 = 1$ and $F_2 = 2$. Then $es(G) \le F_n$.

Theorem 2 [5] For a simple graph G of size m and maximum degree Δ ,

$$es(G) \ge \max\left\{\left\lceil \frac{m+1}{2} \right\rceil, \Delta\right\}$$

As we move forward, in Section 2, we will present some new results regarding the edge irregularity strength of disjoint graph unions. In Section 3, we will show a complete estimation of es(G) for some known graphs, such as complete graphs K_n , wheel graphs W_n , and complete sun graphs KS_n .

2. Edge irregularity strength of disjoint union of *n* copies of graphs

Recall that, the union of the graphs $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ is the graph G(V, E) where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$. Clearly, the order of $G = G_1 \cup G_2$ is $n \le |V_1| + |V_2|$ and the size of G is $m \le |E_1| + |E_2|$. In particular, if G_1 and G_2 are disjoint graphs, then $n = |V_1| + |V_2|$ and $m = |E_1| + |E_2|$.

Our next step is to determine the edge irregularity strength of the union of disjoint graphs. Noting that, $es(P_n) = \left\lceil \frac{n}{2} \right\rceil$, see [5].

Remark 1 Let P_n and P_m be two disjoint paths for $n, m \ge 2$. Then

$$es(P_n\cup P_m)=\left\lceil \frac{n+m-1}{2}\right\rceil.$$

Proof. Suppose that P_n and P_m be two disjoint paths for $n, m \ge 2$, where $V_1 = \{v_1, v_2, ..., v_n\}$ and $V_2 = \{u_1, u_2, ..., u_m\}$ are the sets of vertices of P_n and P_m , respectively. Let $G = P_n \cup P_m$. Then, $S(G) = S(P_n) + S(P_m) = (n-1) + (m-1) = n + m - 2$ and $\Delta(G) = 2$. Using Theorem 2 we get:

$$es(G) \ge \max\left\{ \left\lceil \frac{S(G)+1}{2} \right\rceil, \Delta(G) \right\}$$
$$\ge \max\left\{ \left\lceil \frac{n+m-2+1}{2} \right\rceil, 2 \right\}$$
$$= \left\lceil \frac{n+m-1}{2} \right\rceil$$

Then,

$$es(G) \ge \left\lceil \frac{n+m-1}{2} \right\rceil \tag{1}$$

Define the vertex labelling map ϕ on G by ϕ : $V_1 \cup V_2 \rightarrow \{1, 2, ..., k\}$ (as $k = \frac{n+m-1}{2}$) where $\phi(V_1)$ and $\phi(V_2)$ are given by:

$$\underbrace{\frac{1, 1, 2, 2, \cdots, \frac{n}{2}, \frac{n}{2}}{\phi(V_1)}}_{\substack{\psi(V_1)}},$$

$$\underbrace{\frac{n}{2}, \frac{n}{2} + 1, \frac{n}{2} + 1, \cdots, \frac{n}{2} + \left\lceil \frac{m-1}{2} \right\rceil}_{\phi(V_2)}, \text{ if } n \text{ is even}$$

and

$$\underbrace{\left[\frac{n}{2}\right], \left[\frac{n}{2}\right], \left[\frac{n}{2}\right] + 1, \left[\frac{n}{2}\right] - 1, \left[\frac{n}{2}\right],}_{\phi(V_1)}}_{\phi(V_2)}, \text{ if } n \text{ is odd}$$

Corresponding to the previous labelling, there are n + m - 2 distinct edge weights which can be listed by $W = \{2, 3, 4, \dots, n+m-1\}$, hence ϕ is an edge irregular labelling of G. Using Equation (1), $k \le es(G) \le k$ and the proof is completed.

Generalizing the previous lemma for the union of n disjoint paths, the following theorem results.

Theorem 3 Let $G = \bigcup_{i=1}^{n} P_{k_i}$ be the union of disjoint *n* paths P_{k_i} , $k_i \ge 2$ for all *i*. Then

Contemporary Mathematics

$$es(G) = \left[\frac{\left(\sum_{i=1}^{n} k_i\right) - (n-1)}{2}\right].$$
(2)

Proof. Let P_{k_i} , i = 1, ..., n be *n* disjoint paths, and $V_{k_1}, ..., V_{k_n}$ be the vertices sets of $P_{k_1}, ..., P_{k_n}$ respectively. Let $G = \bigcup_{i=1}^{n} P_{k_i}$. Then $\Delta(G) = 2$, $|V| = O(G) = \sum_{i=1}^{n} k_i$ and $|E| = S(G) = S(P_{k_1}) + ..., S(P_{k_n}) = (k_1 - 1) + ... + (k_n - 1) = \sum_{i=1}^{n} k_i - n$. By Theorem 2, we have

$$es(G) \ge \max\left\{ \left\lceil \frac{\left(\sum_{i=1}^{n} k_i\right) - n\right) + 1}{2} \right\rceil, 2 \right\} = \left\lceil \frac{\left(\sum_{i=1}^{n} k_i\right) - (n-1)}{2} \right\rceil.$$

Now, define the vertex labelling map ϕ on G by ϕ : $\bigcup_{i=1}^{n} V_{k_i} \to \{1, 2, \dots, k\}$ where $k = \left[\frac{\left(\sum_{i=1}^{n} k_i\right) - (n-1)}{2}\right]$ and

the labelling is as follows

• if k_1 is even then we label the vertices by

$$\underbrace{\underbrace{1, 1, 2, 2, \cdots, \frac{k_1}{2}, \frac{k_1}{2}}_{\phi(V_1)}, \underbrace{\frac{k_1}{2}, \frac{k_1}{2} + 1, \frac{k_1}{2} + 1, \cdots, \left[\frac{\sum\limits_{i=1}^n k_i - (n-1)}{2}\right]}_{\phi(V_{k_2} \cup \cdots \cup V_{k_n})},$$

• if k_1 is odd then we label the vertices by

$$\underbrace{\left[\begin{array}{c}1,\ 1,\ 2,\ 2,\ \cdots,\ \left\lceil\frac{k_{1}}{2}\right\rceil-1,\ \left\lceil\frac{k_{1}}{2}\right\rceil-1,\ \left\lceil\frac{k_{1}}{2}\right\rceil,\\ \phi(V_{k_{1}})\end{array}\right]}_{\phi(V_{k_{1}})},$$

$$\underbrace{\left[\begin{array}{c}k_{1}\\2\end{array}\right],\ \left\lceil\frac{k_{1}}{2}\right\rceil,\ \left\lceil\frac{k_{1}}{2}\right\rceil+1,\ \left\lceil\frac{k_{1}}{2}\right\rceil+1,\ \cdots,\ \left\lceil\frac{\sum\limits_{i=1}^{n}k_{i}-n}{2}\right\rceil}{\phi(V_{k_{2}}\cup\cdots\cup V_{k_{n}})}\right].$$

Certainly, this map is irregular labelling map, where $W = \left\{2, 3, 4, \dots, \sum_{i=1}^{n} k_i - (n-1)\right\}$ is the set of distinct edge weights. Thus $es(G) \le k$, which completes the proof.

Volume 6 Issue 1|2025| 249

Contemporary Mathematics

Remark 2 Consider the disjoint graphs G and H. Then

$$\max\{es(G), es(H)\} \le es(G \cup H) \le es(G) + es(H).$$

Proof. Suppose that G and H be two disjoint graphs for which $\phi_G: V_G \to \{1, 2, \dots, k_1\}$ and $\phi_H: V_H \to \{1, 2, \dots, k_1\}$ $\{1, 2, \dots, k_2\}$ are edge irregular labelings of G and H (respectively) with to $k_1 = es(G)$ and $k_2 = es(H)$. Without loss of generality assume that $k_1 \leq k_2$, then define $\phi : V_G \cup V_H \rightarrow \{1, 2, \dots, k = k_1 + k_2\}$ by

To check the irregularity of ϕ , one needs to find the edge weight corresponding to every edge in $G \cup H$. Since G and H are disjoint, then every edge in the union should be only in G or only in H. Let e_1 , e_2 be two distinct edges in $G \cup H$. To show that $w_{\phi}(e_1) \neq w_{\phi}(e_2)$, we have the following cases:

• If $e_1, e_2 \in G$, then $w_{\phi}(e_1) = w_{\phi_G}(e_1)$ and $w_{\phi}(e_2) = w_{\phi_G}(e_2)$, which are distinct, because ϕ_G is an irregular vertex labelling on G.

• If $e_1, e_2 \in H$, then $w_{\phi}(e_1) = w_{\phi_H}(e_1) + 2k_1$ and $w_{\phi}(e_2) = w_{\phi_H}(e_2) + 2k_1$ and since ϕ_H is irregular vertex labelling map, then $w_{\phi_H}(e_1) \neq w_{\phi_H}(e_2)$. So $w_{\phi_H}(e_1) + 2k_1 \neq w_{\phi_H}(e_2) + 2k_1$. This implies that $w_{\phi}(e_1) \neq w_{\phi}(e_2)$.

• If $e_1 \in G$ and $e_2 \in H$, then $2 \le w_{\phi}(e_1) \le 2k_1 < 2 + 2k_1 \le w_{\phi}(e_2) \le k_1 + 2k_2$ and this shows that the weights of two distinct edges each is in one of the component graphs are distinct.

From the previous list, we see that ϕ produces different weights for the different edges. Thus, the map ϕ is an edge irregular k-labelling of $G \cup H$. This shows that $es(G \cup H) \le k = k_1 + k_2$.

On the other hand, $S(G \cup H) = S(G) + S(H) \ge \max\{S(G), S(H)\}$, implies that $es(G \cup H) \ge \max\{es(G), es(H)\}$. This completes the proof.

3. Edge irregularity strength of certain graphs

The considered graphs in this part are: the complete graph, wheel graph and complete sun graph.

It is worth recalling that, a regular graph is a graph in which all the vertices have the same degree. A complete graph is a simple graph that contains every possible edge between all the vertices. A complete graph with n vertices is denoted by K_n .

Certainly, $G = K_n$ is an (n-1)-regular graph. Therefore, the degrees sequence of G is $\underbrace{n-1, n-1, \dots, n-1}_{n-terms}$.

Indeed, $\delta(G) = \Delta(G) = n - 1$ and $S(G) = \frac{1}{2}n(n-1)$. The next theorem finds the edge irregularity strength of the complete graphs.

Theorem 4 Consider the complete graph $G(V, E) = K_n$ of order $n \ge 3$. Then $es(G) = \left\lfloor \frac{\varphi^{n+1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor$, where $\varphi = \frac{\varphi^{n+1}}{\sqrt{5}} + \frac{1}{2} = \frac{1}{2}$

 $\frac{1+\sqrt{5}}{2}$ is the golden ratio. **Proof.** Let $G = K_n$ be the complete graph of order $n \ge 3$, where the set of vertices is V and the set of edges of G is E. Define on the graph G the vertex labelling map $\phi: V \to \{1, 2, \dots, k\}$ as follows, $\phi(v_1) = 1$, $\phi(v_2) = 2$ and $\phi(v_m) = \phi(v_{m-1}) + \phi(v_{m-2})$ for all $m = 3, 4, \dots, n$. Then, the vertices labelings $\phi(v_1), \phi(v_2), \phi(v_3), \dots, \phi(v_n)$ is the Fibonacci sequence of the terms 1, 2, 3, 5, 8, ..., $k = \left\lfloor \frac{\varphi^{n+1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor$, and the corresponding edge weights are

Contemporary Mathematics

3, 4, 5, ..., $\phi(v_{n-1}) + \phi(v_n)$ which are all distinct. Thus, ϕ is an edge irregular *k*-labelling of *G*, and if $es(G) \le k$ then the used labelling map is not one-to-one, for which it will be not irregular (every vertices are adjacent). Therefore $es(G) \ge k$. Using Theorem , which indicates that $es(G) \le F_n = k$. Hence, the claim follows.

Example 1 Let $G = K_5$ be the complete graph of order 5, where $V = \{v_1, v_2, v_3, v_4, v_5\}$ is the set of vertices of G. Noting that, $\left\lfloor \frac{\varphi^{n+1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = \left\lfloor \frac{\varphi^{5+1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = 8$. To find the edge irregularity strength of G, define $\phi : V \to \{1, 2, 3, 5, 8 = k\}$ (the first 5-terms of the Fibonacci sequence), such that $\phi(v_1) = F_1 = 1$, $\phi(v_2) = F_2 = 2$ and $\phi(v_m) = \phi(v_{m-1}) + \phi(v_{m-2}) = F_{m-1} + F_{m-2}$, m = 3, 4, 5. Then, the Figure 1 shows the edges weights assigned by such map ϕ :

Figure 1. Edges weights assigned by map

Clearly, there are 10 distinct edges weights {3, 4, 5, 6, 7, 8, 9, 10, 11, 13}. That is to say ϕ is an irregular *k*-labelling map, implies that $es(G) \le k = 8$. Moreover ϕ is a bijective map. If not then there are at least two vertices v_i and v_j in *V* for which $\phi(v_i) = \phi(v_j)$ and so $\phi(v) + \phi(v_i) = \phi(v) + \phi(v_j)$ for any $v \in V$, thus the map will not produce different edges weights. Finally, suppose that es(G) < 8, for such an assumption, the only available options are 4, 6 or 7, but 4 + 1 = 2 + 3, 6 + 2 = 5 + 3 and 7 + 1 = 5 + 3 and so neither of these options can produce different edges weights. This implies $es(G) \ge 8$. Hence, $es(G) = 8 = \left\lfloor \frac{\phi^{5+1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor$. Recall that, the wheel graph $G = W_n$ is obtained from a cycle graph C_n and a new vertex *v* called hub connected to all

Recall that, the wheel graph $G = W_n$ is obtained from a cycle graph C_n and a new vertex v called hub connected to all $u \in C_n$. Therefore, the order of the wheel graph $G = W_n$ is n + 1 and the size is n + n = 2n. Furthermore, $\Delta(G) = \deg(v) = n$ and $\delta(G) = 3$. Since each $u \in C_n$ is of degree 3, then $3, 3, \ldots, 3$, n is the degrees sequence of G. So, the following theorem

can be shown.

Theorem 5 Let W_n , $n \ge 3$ be the wheel graph. Then

$$es(W_n) = n + 2 + \left\lfloor \frac{n-3}{5} \right\rfloor$$

Proof. Let $G(V, E) = W_n$, $n \ge 3$ be the wheel graph, and $V = \{v_1, v_2, \dots, v_n\} \cup \{v\}$, where *v* is the hub of *G*. Then |E| = 2n and $\Delta(G) = n$. Using Theorem 2, it follows that

$$es(G) \ge n+1 \tag{3}$$

For n = 3, we have $es(G) \ge 3 + 1 = 4$, and define a vertex labelling map $\phi : \{v_1, v_2, v_3, v\} \rightarrow \{1, 3, 2, 5 = k\}$ by $\phi(v_i) = i$, $\phi(v) = 5$. Then ϕ is irregular vertex labelling, and so $es(G) \le k = 5$. On the other hand, any vertex labelling

 $\alpha: V \to \{1, 2, 3, 4\}$, will be not irregular, which implies that $es(G) \ge 5$. Thus $5 \le es(W_3) \le 5$, then $es(W_3) = 5$. Similarly, for n = 4 and n = 5, one has es(G) = 6 and es(G) = 7 respectively.

For $n \ge 6$ define the map $\phi: V \to \{1, 2, 3, \dots, k\}$, which should be injective to avoid similar edge weights and surjective to get the smallest such k. Without lose of generality set $\phi(v) = 6$ (v is the hub of the wheel) $\phi(v_1) = 1$, $\phi(v_2) = 3$, $\phi(v_3) = 2$, $\phi(v_{n-1}) = 7$ and $\phi(v_n) = 5$. Then, the smallest weight that can be produced by ϕ is 4. Moreover, there is no $v_i \in V$ for which $\phi(v_i) = 4$ using $\phi(v) = 6$, therefore $\phi(v_i) \in \{1, 2, 3, 5, 7, 8, 9, \dots\}$, implies that $k \ge n+2$. In particular, the remaining labels $\{\phi(v_4), \phi(v_5), \dots, \phi(v_{n-2})\}$ of n-5 vertices should be selected from $H = \{8, 9, 10, \dots, k\}$ which has k-8+1=k-7 elements but not all could be used, so $\left\lfloor \frac{n-3}{5} \right\rfloor$ elements of H will be excluded using ϕ . That is H includes only $(k-7) - \left\lfloor \frac{n-3}{5} \right\rfloor$ acceptable labels for n-5 vertices, which implies that $(k-7) - \left\lfloor \frac{n-3}{5} \right\rfloor = n-5$, thus $k = n+2 + \left\lfloor \frac{n-3}{5} \right\rfloor$. Therefore $es(G) \le k$. Suppose on the contrary that $k < n+2 + \left\lfloor \frac{n-3}{5} \right\rfloor$ and let n = 6. Then k = 7 < 8, which implies that there is an irregular vertex labelling $\alpha: V \to \{1, 2, 3, \dots, 7 < k\}$ that produces 12 different weights, using $\phi(v) = 2$ or 6, removing such label (2 or 6) from $\{1, 2, 3, \dots, 7 < k\}$. Then we have 2,520 arrangements (labelling maps) none of these maps produce different edge weights (such calculations have been done using computer software). Hence $es(W_6) > 7$.

Most of our calculations (as for wheel graphs W_n) have been done by building certain algorithms using GAP (Groups, Algorithm, and Programming). This is a programming language and system designed specifically for computational discrete algebra. For more about it consult, for instance, see [14].

Example 2 Let $G = W_6$ be the wheel graph of order 7, for which the set of vertices is $V = \{v_1, v_2, v_3, v_4, v_5, v_6\} \cup \{v\}$ where *v* is the hub. So we have 7 vertices each should be labeled by an injective labelling map ϕ . Otherwise, if there exists v_i and v_j in *V* for which $\phi(v_i) = \phi(v_j)$, then $\phi(v) + \phi(v_i) = \phi(v) + \phi(v_j)$, or if there exists v_i in *V* such that $\phi(v_i) = \phi(v)$, then $\phi(v) + \phi(v_m) = \phi(v_i) + \phi(v_m)$ where v_m is any adjacent vertex of v_i . Therefore, we need to define $\phi : V \to L = \{1, 2, ..., k\}$, for which |L| = |V| as 6 distinct labels for the cycle vertices and one for the hub. That is $k \ge n+1$, since 4 can not be used as a vertex label for which there exists similar edges weights. then $k \ge n+1+1 = 6+1+1 = 8$. Considering that, in the set $L = \{1, 2, 3, ..., n \ge 4\}$ there are $\left\lfloor \frac{n-3}{5} \right\rfloor + 1$ numbers that can not be used as vertex label. So, for n = 6 set $L = \{1, 2, 3, 5, 6, 7, k\}$, where *k* is 6+1 (hub label) +1 (the label 4 should be removed) + 0 (no other removed label for k < 13) = 8 and define ϕ on *V* as shown in the Figure 2:

Figure 2. Define ϕ on *V*

As shown in the previous figure, the set of the edges weights produced by ϕ is $W = \{4, 5, 6, \dots, 15\}$ which consists of 12 distinct sequential values. Implies that ϕ is an irregular *k*-labelling map on *G*. Thus $es(G) \le k = 8$, recalling that $es(G) \ge k$. Hence, es(G) = k.

The complete *n*-sun graph $(n \ge 3)$ is a graph consists of a complete graph K_n as a center of the *n*-sun graph and an outer ring of *n* vertices, where every vertex is joined to the closest edge of the complete graph. In this context, we will denote the complete *n*-sun graph by KS_n and write the set of vertices of KS_n as $V = \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\}$ and the set of edges $E = \{u_i u_j \mid i, j = 1, 2, \dots, n \text{ and } i \ne j\} \cup \{v_1 u_1, v_1 u_2, v_2 u_2, v_2 u_3, \dots, v_n u_n, v_n u_1\}$. So, the degree sequence of KS_n is $2, 2, \dots, 2, n+1, n+1, \dots, n+1$. Observe that, the order of the graph KS_n is 2n

So, the degree sequence of KS_n is $\underbrace{2, 2, \dots, 2}_{n-terms}$, $\underbrace{n+1, n+1, \dots, n+1}_{n-terms}$. Observe that, the order of the graph KS_n is 2n and the size is $\frac{1}{2}(2n+n(n+1)) = \frac{1}{2}n(n+3) = \frac{1}{2}n(n+1) + n$. Using this description one can proof the next results.

Lemma 1 Let $G = KS_n$ be the complete sun graph of order 2n and size $\frac{1}{2}n(n+3)$ and let F_m be the Fibonacci sequence of *m*-terms with seed values $F_1 = 1$ and $F_2 = 2$. Then

$$F_{n+1} \leq es(G)$$

Proof. Given that $H = K_n$ is the central core of $G = KS_n$, then $es(H) \le es(G)$. Furthermore, $|V_G| = |V_H| + n$. Set v_1, v_2, \dots, v_n to be the vertices of G not in H. So, any irregular labelling map on G should not assign any of $1, 2, 3, \dots, F_n$ for any v_i . Therefore, $es(G) \ge F_{n+1}$.

Note that for $G = KS_n$, the maximal degree is $\Delta(G) = n + 1$. Using Theorem 2, one has:

$$es(G) \ge \max\left\{ \left\lceil \frac{|E|+1}{2} \right\rceil, \Delta(G) \right\}$$
$$= \max\left\{ \left\lceil \frac{\frac{1}{2}n(n+3)+1}{2} \right\rceil, n+1 \right\}$$
$$= \max\left\{ \left\lceil \frac{n(n+3)+2}{4} \right\rceil, n+1 \right\}$$
$$= \max\left\{ \left\lceil \frac{1}{4}(n+1)(n+2) \right\rceil, n+1 \right\}$$

and since $n \ge 3$, then n+2 > 4, and so $\frac{1}{4}(n+2) > 1$ implies that $\left\lceil \frac{1}{4}(n+1)(n+2) \right\rceil > n+1$. Thus

$$es(G) \ge \left\lceil \frac{1}{4}(n+1)(n+2) \right\rceil \tag{4}$$

Using the previous facts and some computer calculations, we have the following assumption.

Conjecture 1 Let $G = KS_n$ be the complete *n*-sun graph. Then $es(G) = \frac{1}{2}n(n+1) + 3$.

Example 3 Figures 3-5 show selective irregular labelling maps for the complete sun graphs KS_3 , KS_4 and KS_5 . Such maps produced distinct edge weights. That is to say $es(KS_3) \le 9$, $es(KS_4) \le 13$ and $es(KS_5) \le 18$. All these values agree with our conjecture.

Volume 6 Issue 1|2025| 253

Figure 3. Irregular vertex labeling of KS₃

Figure 4. Irregular vertex labeling of KS₄

Figure 5. Irregular vertex labeling of KS₅

Acknowledgement

The authors are highly grateful to the reviewers for their valuable comments and suggestions to improve the presentation of this paper.

Conflict of interest

The authors declare no competing financial interest.

References

- [1] Naduvath S. Lecture Notes on Graph Theory. India: APJ Abdul Kalam Kerala Technological University; 2017.
- [2] Trudeau RJ. Introduction to Graph Theory. USA: Courier Corporation; 2013.
- [3] Bondy JA. Graph Theory with Applications. Amsterdam, Netherlands: Elsevier Science Ltd/North-Holland; 1982.
- [4] S AMO. On edge irregularity strength of products of certain families of graphs with path P_2 . Ars Combinatoria. 2017; 135(2): 323-334.
- [5] Ahmad A, Al-Mushayt O, Baca M. On edge irregular strength of graphs. *Applied Mathematics and Computation*. 2014; 243: 607-610. Available from: https://doi.org/10.1016/j.amc.2014.06.028.
- [6] Ahmad A. Computing the Edge Irregularity Strength of Certain Unicyclic Graphs. Malaysia: Universiti Malaysia Terengganu; 2021.
- [7] Ahmad A, Baca M, Nadeem MF. On edge irregularity strength of Toeplitz graphs. University Politehnica of Bucharest Scientific Bulletin, Series A. 2016; 78(4): 155-162.
- [8] Imran M, Aslam A, Zafar S, Nazeer W. Further results on edge irregularity strength of graphs. *Indonesian Journal of Combinatorics*. 2017; 1(2): 82-91.
- [9] Tarawneh I, Hasni R, Ahmad A. On the edge irregularity strength of corona product of graphs with paths. *Applied Mathematics E-Notes*. 2016; 16(06): 80-87.
- [10] Ahmad A, Gupta A, Simanjuntak R. Computing the edge irregularity strengths of chain graphs and the join of two graphs. *Electronic Journal of Graph Theory and Applications*. 2018; 6(1): 201-207.
- [11] Al-Hasanat BN. On edge irregularity strength of some graphs. *Advances and Applications in Discrete Mathematics*. 2019; 21(2): 193-202.
- [12] Alrawajfeh A, Al-Hasanat BN, Alhasanat H, Faqih FMA. On the edge irregularity strength of the corona product of some graphs. *International Journal of Mathematics and Computer Science*. 2021; 16(2): 639-645.
- [13] Al-Mushayt O. On the edge irregularity strength of products of certain families with *P*₂. *Ars Combinatoria*. 2017; 135(1): 323-334.
- [14] Piterman KI, Vendramin L. Computer Algebra with GAP. Germany: Mathematisches Forschungsinstitut Oberwolfach; 2023.