Research Article

Some Common Fixed-Point Theorem on Complex-Valued Metric Spaces and Its Application to Solve Urysohn Integral Equations

P. Vishnukumar¹⁰, A. Anbarasan²⁰, T. Sathiyaraj³⁰, Mohammad Sajid^{4*0}

¹Department of Mathematics, St. Joseph's College (Autonomous), (Affiliated to Bharathidasan University) Trichy, Tamil Nadu, India ²Department of Mathematics, K.Ramakrishnan College of Engineering, Trichy, Tamil Nadu, India

³Institute of Actuarial Science and Data Analytics, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia

⁴Department of Mechanical Engineering, College of Engineering, Qassim University, Saudi Arabia

E-mail: msajd@qu.edu.sa

Received: 28 October 2024; Revised: 2 January 2025; Accepted: 10 January 2025

Abstract: In this paper, a new and generalized contraction principles are proved on complex-valued metric space. By adopting a suitable hypothesis on sequence converging in complex-valued metric space new contractions are established for proving the common fixed-point theorem. Moreover, a rational contractive condition is improved in the complex-valued metric spaces. The obtained results through theoretical study are verified by solving the solution of the nonlinear system of Urysohn integral equations.

Keywords: fixed-point theory, complex-valued metric spaces, common fixed-point, nonlinear system, theoretical study

MSC: 47H09, 47H10

1. Introduction

Fixed-point theory is an essential concept in analysis. It is possible to express many mathematical problems that come from different scientific fields as fixed-point problems, which require the determination of a function's fixed-point. The presence of a solution to the initial problem can be ensured by using fixed-point theorems, which provide adequate conditions under which a fixed-point for a particular function exists. Algebraic, order theoretic, or topological characteristics of the mapping or its domain are all involved in a number of necessary or sufficient requirements for the presence of such points. It extended the research on economics, control theory, differential equations, optimization problems and so on. By using fixed-point theory [1-3] recently, many authors have studied the qualitative theory of dynamical properties such as existence, controllability, stability, optimal control, etc., for more details [4–6]. In mathematics, the Banach fixed-point theorem serves as a crucial technique in the theory of metric spaces; it ensures both the existence and uniqueness of fixed-points for specific self-maps of metric spaces and offers a constructive method for finding the fixed-points. In this direction, many authors are interested in developing this area of research, and some related findings are given in [7–9]. The theorem is named for Stefan Banach, who originally proposed it in 1922. Common fixed-points on almost generalized contractive mappings [10], rational expressions on cone metric spaces [2], fixed-point theorems by altering distances between the points [11] have been well established.

DOI: https://doi.org/10.37256/cm.6120255985 This is an open-access article distributed under a CC BY license

(Creative Commons Attribution 4.0 International License)

Copyright ©2025 Mohammad Sajid, et al.

https://creativecommons.org/licenses/by/4.0/

Real-valued spaces can be naturally extended by complex-valued metric spaces, which are very important in many domains that deal with functional and complex analysis [3]. The presence of solutions in a variety of mathematical models can be demonstrated with the use of common fixed-point theorems in such spaces, especially when numerous mappings are involved [3, 12, 13]. Powerful tools for resolving theoretical and applied mathematical problems can be obtained by modifying classical fixed-point conclusions to the complex context. In many fields, including pure and applied mathematics, engineering, and science, complex-valued metric spaces are essential [13, 14]. Complex-valued metric spaces were first proposed by Azam et al. [15] in 2011, who also showed common fixed-point theorems that satisfy rational contractive mapping. A common fixed-point of rational inequalities has been proposed in [11]. A unified common fixed-point theorem has been studied in [16] by using implicit relations. On the ordered complex partial metric space, a contractive condition of rational expression has been established in [13]. Some common fixed-point theorems on complex-valued metric spaces, some common fixed-point theorems satisfying particular rational expressions have been proved in [18].

Based on the above discussion, there is no new work reported on generalized common fixed-point theorems in complex-valued metric spaces. Motivated by these analyses and their applications to the integral equations, in this paper, the authors study some common fixed-point theorem and their applications in complex-valued metric spaces. Also, the proposed results are new and generalize the existing results from the literature.

Key Contributions of the Article:

1. A new generalized rational contraction mapping is proposed to demonstrate a common fixed-point in complexvalued metric spaces.

2. We additionally established the fixed-point in the corollary using rational contraction mapping.

3. We use the new rational contraction to validate the statement that the system of Urysohn integral equations has just a unique simple solution.

2. Preliminaries

The basic definitions and notions are as follows:

Consider the C, complex number set and Ξ_1 , $\Xi_2 \in C$. Let the partial order \preceq on C are defined as $\Xi_1 \preceq \Xi_2$ iff $\mathscr{R}(\Xi_1) \preceq \mathscr{R}(\Xi_2)$, $I(\Xi_1) \preceq I(\Xi_2)$. If $\Xi_1 \preceq \Xi_2$, then the following conditions are satisfied:

(i) $\mathscr{R}(\Xi_1) = \mathscr{R}(\Xi_2), I(\Xi_1) \prec I(\Xi_2),$

(ii) $\mathscr{R}(\Xi_1) \prec \mathscr{R}(\Xi_2), I(\Xi_1) = I(\Xi_2),$

(iii) $\mathscr{R}(\Xi_1) \prec \mathscr{R}(\Xi_2), I(\Xi_1) \prec I(\Xi_2),$

(iv) $\mathscr{R}(\Xi_1) = \mathscr{R}(\Xi_2), I(\Xi_1) = I(\Xi_2).$

In particular, $\Xi_1 \preccurlyeq \Xi_2$ if $\Xi_1 \neq \Xi_2$ and (i), (ii), and (iii) are all satisfied. We may write as $\Xi_1 \prec \Xi_2$ if only (iii) is satisfied. We notice the following conditions also:

(a) If $0 \leq \Xi_1 \gtrsim \Xi_2$, then $|\Xi_1| < |\Xi_2|$,

(b) If $\Xi_1 \preceq \Xi_2$ and $\Xi_2 \prec \Xi_3$ then $\Xi_1 \prec \Xi_3$,

(c) If $a, b \in \mathscr{R}$ and $a \leq b$ then $a\Xi \leq b\Xi$ for each $\Xi \in C$.

Definition 1 [16] Let *Y* be a non void set and the function \mathfrak{A} : *Y* × *Y* → *C* satisfying the following conditions:

(i) $\theta \preceq \mathfrak{A}(\mathfrak{w}, p)$ for each $\mathfrak{w}, p \in Y$ and $\mathfrak{A}(\mathfrak{w}, p) = \theta$ iff $\mathfrak{w} = p$,

(ii) $\mathfrak{A}(\mathfrak{w}, p) = \mathfrak{A}(p, \mathfrak{w})$ for each $\mathfrak{w}, p \in Y$,

(iii) $\mathfrak{A}(\mathfrak{w}, p) \preceq \mathfrak{A}(\mathfrak{w}, r) + \mathfrak{A}(r, p)$ for each $\mathfrak{w}, p, r \in Y$.

Then, the function \mathfrak{A} is called complex-valued metric space and the pair (Y, \mathfrak{A}) is known as complex-valued metric space.

Example 2 [15] Let Y = C be a collection of complex numbers and the function is $\mathfrak{A} : Y \times Y \to C$ by $\mathfrak{A}(\Xi_1, \Xi_2) = e^{ip}|\Xi_1 - \Xi_2|$ where each $p \in R$. Then, (Y, \mathfrak{A}) is a complex-valued metric space.

Example 3 [13] Let Y = C be a collection of complex numbers and the function is defined as \mathfrak{A} : $Y \times Y \to C$ by $\mathfrak{A}(\Xi_1, \Xi_2) = 3i|\Xi_1 - \Xi_2|$ for each $\Xi_1, \Xi_2 \in Y$. Then, (Y, \mathfrak{A}) is a complex-valued metric space.

Definition 4 [19] Let (Y, \mathfrak{A}) be a complex-valued metric space. Then, the following conditions are satisfied:

(i) Let the element $\mathfrak{w} \in Y$ be an interior point of the set $O \subseteq Y$ if $\exists \theta \prec \mathfrak{w} \in C$, $B(\mathfrak{w}, a) = \{p \in Y : \mathfrak{A}(\mathfrak{w}, p) \prec a\} \subseteq O$, (ii) Let the element $\mathfrak{w} \in Y$ be a limit point of O if for every $\theta \prec a \in C$, $B(\mathfrak{w}, a) \cap (O - Y) \neq \phi$,

(iii) Let $O \subseteq Y$ be an open if each element of \mathfrak{w} is an interior point of O,

(iv) Let $O \subseteq Y$ is closed if each limit point of \mathfrak{w} belongs to O,

(v) Let the Hausdorff topology τ on Y be a sub-basis in a family of $F = \{B(\mathfrak{w}, a) : \mathfrak{w} \in Y, \theta \prec a\}$.

Definition 5 [13] Let (Y, \mathfrak{A}) be a complex-valued metric space. Then, $\{\mathfrak{w}_n\}$ a sequence in Y for $\mathfrak{w} \in Y$, we have

(i) For each $a \in C$ with $\theta \prec a$ find an $N \exists$ for every $n \succ N$, $\mathfrak{A}(\mathfrak{w}_n, \mathfrak{w}) \prec a$ then $\{\mathfrak{w}_n\}$ is convergent, $\{\mathfrak{w}_n\}$ converges to \mathfrak{w} and \mathfrak{w} is the limit point of $\{\mathfrak{w}_n\}$,

(ii) If each $a \in C$, $\theta \prec a$ find N there exists for all $n \succ N$, $\mathfrak{A}(\mathfrak{w}_n, \mathfrak{w}_{n+m}) \prec c$, where $m \in N$ then $\{\mathfrak{w}_n\}$ called as a Cauchy sequence,

(iii) There is convergence for each Cauchy sequence in Y, then (Y, \mathfrak{A}) is complex-valued metric spaces which is complete.

Lemma 6 [13] Let (Y, \mathfrak{A}) be a complex-valued metric space and $\{\mathfrak{w}_n\}$ be sequence in Y. Then, $\{\mathfrak{w}_n\}$ convergent to \mathfrak{w} if and only if $|\mathfrak{A}(\mathfrak{w}_n, \mathfrak{w})| \to \theta$ as $n \to +\infty$.

Lemma 7 [16] Let (Y, \mathfrak{A}) be a complex-valued metric space. Let $\{\mathfrak{w}_n\}$ be a sequence in Y, then $\{\mathfrak{w}_n\}$ is a Cauchy sequence if and only if $|\mathfrak{A}(\mathfrak{w}_n, \mathfrak{w}_{n+m})| \to \theta$ as $n, m \to +\infty$.

Definition 8 [16] The self mappings V and K of a non void set Y. Then, we have

(i) Let $\mathfrak{w} \in Y$ be an element which is a fixed-point of *K* if $K\mathfrak{w} = \mathfrak{w}$,

(ii) Let $\mathfrak{w} \in Y$ be an element which is a coincidence point of V and K if $V\mathfrak{w} = K\mathfrak{w}$ and $w = V\mathfrak{w} = K\mathfrak{w}$ which is the point where V and K coincide,

(iii) Let $\mathfrak{w} \in Y$ be a point which is the point where *V* and *K* coincide if $\mathfrak{w} = V\mathfrak{w} = K\mathfrak{w}$.

3. Main results

We establish a rational contractive condition in the complex-valued metric spaces and implement those condition to apply the Urysohn integral equations.

Theorem 9 Let (Y, \mathfrak{A}) be a complete complex-valued metric space. Let $V, K : Y \to Y$ if there is a function $\chi, \xi : Y \to [0, 1) \ni$ for each $\mathfrak{w}, p \in Y$ and the following conditions hold:

(i) $\chi(V\mathfrak{w}) \leq \chi(\mathfrak{w})$ and $\xi(V\mathfrak{w}) \leq \xi(\mathfrak{w})$,

(ii) $\chi(K\mathfrak{w}) \leq \chi(\mathfrak{w})$ and $\xi(K\mathfrak{w}) \leq \xi(\mathfrak{w})$,

(iii)
$$(\boldsymbol{\chi} + \boldsymbol{\xi})(\boldsymbol{\mathfrak{w}}) \leq 1$$
,

(iv)
$$\mathfrak{A}(V\mathfrak{w}, Kp) \leq \chi(\mathfrak{w})\mathfrak{A}(\mathfrak{w}, p) + \xi(\mathfrak{w}) \left[\frac{\mathfrak{A}(Kp, p)\mathfrak{A}(p, V\mathfrak{w}) + \mathfrak{A}(\mathfrak{w}, V\mathfrak{w})\mathfrak{A}(\mathfrak{w}, Kp)}{1 + \mathfrak{A}(\mathfrak{w}, p)} \right].$$

Then, V and K has an unique common fixed-point.

Proof. Assume that \mathfrak{w}_0 a arbitrary point in Y. Since, $V(Y) \subseteq Y$ and $K(Y) \subseteq Y$, now the sequence $\{\mathfrak{w}_{\mathfrak{x}}\}$ in $Y \ni \mathfrak{w}_{2\mathfrak{x}+1} = V\mathfrak{w}_{2\mathfrak{x}}$ and $\mathfrak{w}_{2\mathfrak{x}+2} = K\mathfrak{w}_{2\mathfrak{x}+1}$ for each $\mathfrak{x} \ge 0$.

Therefore, the hypothesis becomes

 $\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2}) = \mathfrak{A}(V\mathfrak{w}_{2\mathfrak{x}}, K\mathfrak{w}_{2\mathfrak{x}+1})$

which implies that

$$\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2}) \preceq \left(\frac{\boldsymbol{\chi}(\mathfrak{w}_0) + \boldsymbol{\xi}(\mathfrak{w}_0)}{1 - \boldsymbol{\xi}(\mathfrak{w}_0)}\right) \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}).$$

Volume 6 Issue 1|2025| 815

Similarly, we proceed like that

 $\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+3}) = \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+3}, \mathfrak{w}_{2\mathfrak{x}+2})$

$$\begin{split} &= \mathfrak{A}(V\mathfrak{w}_{2\mathfrak{f}+2}, K\mathfrak{w}_{2\mathfrak{f}+1}) \\ &\leq \chi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1}) \\ &+ \xi(\mathfrak{w}_{2\mathfrak{f}+2}) \left[\frac{\mathfrak{A}(K\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, V\mathfrak{w}_{2\mathfrak{f}+2}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, V\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, K\mathfrak{w}_{2\mathfrak{f}+1})}{1 + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1})} \right] \\ &\leq \chi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1}) \\ &+ \xi(\mathfrak{w}_{2\mathfrak{f}+2}) \left[\frac{\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+2})}{1 + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})} \right] \\ &= \chi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1}) + \xi(\mathfrak{w}_{2\mathfrak{f}+2}) \left[\frac{\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})}{1 + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})} \right] \\ &\leq \chi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1}) + \xi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+3})}{1 + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})} \right] \\ &\leq \chi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1}) + \xi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+2}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3}) \\ &\leq \chi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1}) + \xi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+2}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3}) \\ &\leq \chi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+1}) + \xi(\mathfrak{w}_{2\mathfrak{f}+2})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+2}) + \mathfrak{K}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3}) \\ &\leq [\chi(\mathfrak{w}_{2\mathfrak{f}+1}) + \xi(\mathfrak{K}\mathfrak{w}_{2\mathfrak{f}+1})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+2}) + \xi(\mathfrak{W}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})] \\ &\leq [\chi(\mathfrak{w}_{2\mathfrak{f}}) + \xi(\mathfrak{w}_{2\mathfrak{f})}]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+2}) + \xi(\mathfrak{W}_{2\mathfrak{f})}]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})] \\ &\leq [\chi(\mathfrak{w}_{2\mathfrak{f})} + \xi(\mathfrak{w}_{2\mathfrak{f})}]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+2}) + \xi(\mathfrak{w}_{2\mathfrak{f})})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})] \\ &\leq [\chi(\mathfrak{w}_{2\mathfrak{f})} + \xi(\mathfrak{w}_{2\mathfrak{f})})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+1}, \mathfrak{w}_{2\mathfrak{f}+2}) + \xi(\mathfrak{w}_{2\mathfrak{f})})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{f}+2}, \mathfrak{w}_{2\mathfrak{f}+3})] \\ &\leq \mathfrak{W}(\mathfrak{w}_{2\mathfrak{f})} + \xi(\mathfrak{W}_{2\mathfrak{f})})\mathfrak{W}(\mathfrak{W}$$

 $\leq [\boldsymbol{\chi}(\boldsymbol{\mathfrak{w}}_0) + \boldsymbol{\xi}(\boldsymbol{\mathfrak{w}}_0)] \mathfrak{A}(\boldsymbol{\mathfrak{w}}_{2\mathfrak{p}+1}, \, \boldsymbol{\mathfrak{w}}_{2\mathfrak{p}+2}) + \boldsymbol{\xi}(\boldsymbol{\mathfrak{w}}_0)[\mathfrak{A}(\boldsymbol{\mathfrak{w}}_{2\mathfrak{p}+2}, \, \boldsymbol{\mathfrak{w}}_{2\mathfrak{p}+3})].$

Therefore, we get

$$\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+3}) \preceq \frac{\boldsymbol{\chi}(\mathfrak{w}_0) + \boldsymbol{\xi}(\mathfrak{w}_0)}{1 - \boldsymbol{\xi}(\mathfrak{w}_0)} \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2}).$$

Let us choose $\lambda = \frac{\chi(\mathfrak{w}_0) + \xi(\mathfrak{w}_0)}{1 - \xi(\mathfrak{w}_0)}$

$$\mathfrak{A}(\mathfrak{w}_n, \mathfrak{w}_{n+1}) \preceq \lambda \mathfrak{A}(\mathfrak{w}_{n-1}, \mathfrak{w}_n)$$

 $\preceq \lambda^2 \mathfrak{A}(\mathfrak{w}_{n-2}, \mathfrak{w}_{n-1})$
 \vdots
 $\preceq \lambda^n \mathfrak{A}(\mathfrak{w}_0, \mathfrak{w}_1).$

Consider a natural number *m* and *n* with $m \succ n$, for each $n \in N$, we have

$$\begin{split} \mathfrak{A}(\mathfrak{w}_n,\,\mathfrak{w}_m) &\leq \mathfrak{A}(\mathfrak{w}_n,\,\mathfrak{w}_{n+1}) + \mathfrak{A}(\mathfrak{w}_{n+1},\,\mathfrak{w}_{n+2}) + \dots + \mathfrak{A}(\mathfrak{w}_{m-1},\,\mathfrak{w}_m) \\ &\leq \lambda^n \mathfrak{A}(\mathfrak{w}_0,\,\mathfrak{w}_1) + \lambda^{n+1} \mathfrak{A}(\mathfrak{w}_0,\,\mathfrak{w}_1) + \dots + \lambda^{m-1} \mathfrak{A}(\mathfrak{w}_0,\,\mathfrak{w}_1) \\ &= (\lambda^n + \lambda^{n+1} + \dots + \lambda^{m-1}) \mathfrak{A}(\mathfrak{w}_0,\,\mathfrak{w}_1) \\ &\leq \left(\frac{\lambda^n}{1-\lambda}\right) \mathfrak{A}(\mathfrak{w}_0,\,\mathfrak{w}_1). \end{split}$$

Therefore, we have

$$|\mathfrak{A}(\mathfrak{w}_n, \mathfrak{w}_m)| \leq \left(\frac{\lambda^n}{1-\lambda}\right)|\mathfrak{A}(\mathfrak{w}_0, \mathfrak{w}_1)|.$$

Since $\lambda \in [0, 1)$, letting the $m, n \to 0$ limit shows that the $\{\mathfrak{w}_n\}$ is a Cauchy sequence. Hence, Y is complete, there is a point $a \in Y \ni \mathfrak{w}_n \to a$ as $n \to +\infty$.

To show that Va = a. Now,

$$\begin{aligned} \mathfrak{A}(a, \, Va) &\preceq \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \, Va) \\ &= \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \mathfrak{A}(K\mathfrak{w}_{2\mathfrak{x}+1}, \, Va) \\ &= \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \mathfrak{A}(Va, \, K\mathfrak{w}_{2\mathfrak{x}+1}) \\ &\preceq \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \chi(a)\mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+1}) \end{aligned}$$

Volume 6 Issue 1|2025| 817

$$\begin{split} &+ \xi(a) \bigg[\frac{\mathfrak{A}(K\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, Va) + \mathfrak{A}(a, Va)\mathfrak{A}(a, K\mathfrak{w}_{2\mathfrak{x}+1})}{1 + \mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+1})} \bigg] \\ &= \mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+2}) + \chi(a)\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+1}) \\ &+ \xi(a) \bigg[\frac{\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, Va) + \mathfrak{A}(a, Va)\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+2})}{1 + \mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+1})} \bigg] \end{split}$$

which implies that

$$\begin{split} |\mathfrak{A}(a, Va)| &\preceq |\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+2})| + \chi(a)|\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+1})| \\ &+ \xi(a) \bigg[\frac{|\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+1})||\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, Va)| + |\mathfrak{A}(a, Va)||\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+2})|}{|1 + \mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+1})|} \bigg]. \end{split}$$

As $\mathfrak{x} \to \infty$ we have $|\mathfrak{A}(a, Va)| = 0$ which shows that $\mathfrak{A}(a, Va) = 0$, Hence, we get Va = a. Similarly, we get that Ka = a. Therefore, *a* is the common fixed-point of *V* and *K*.

Next claim that a is a unique common fixed-point of functions V and K.

Let us choose another common fixed-point a_1 that is $a_1 = Va_1 = Ka_1$. It follows from

$$\begin{aligned} \mathfrak{A}(a, a_1) &= \mathfrak{A}(Va, Ka_1) \\ &\preceq \chi(a) \mathfrak{A}(a, a_1) + \xi(a) \left[\frac{\mathfrak{A}(Ka_1, a_1) \mathfrak{A}(a_1, Va) + \mathfrak{A}(a, Va) \mathfrak{A}(a, Ka_1)}{1 + \mathfrak{A}(a, a_1)} \right] \\ &= \chi(a) \mathfrak{A}(a, a_1) \\ &\preceq \chi(a) |\mathfrak{A}(a, a_1)|. \end{aligned}$$

Since $\chi(a) \in [0, 1)$, we have $|\mathfrak{A}(a, a_1)| = 0$. Thus, $a = a_1$ and hence *a* is only unique common fixed-point of *V* and *K*.

Theorem 10 Let (Y, \mathfrak{A}) be a complete complex-valued metric space. Let $V, K : Y \to Y$ if there is a function $\chi, \xi : Y \to [0, 1) \ni$ for each $\mathfrak{w}, p \in Y$ and the following conditions hold:

(i)
$$\chi(V\mathfrak{w}) \leq \chi(\mathfrak{w})$$
 and $\xi(V\mathfrak{w}) \leq \xi(\mathfrak{w})$,
(ii) $\chi(K\mathfrak{w}) \leq \chi(\mathfrak{w})$ and $\xi(K\mathfrak{w}) \leq \xi(\mathfrak{w})$,
(iii) $(\chi + \xi)(\mathfrak{w}) \leq 1$,
(iv) $\mathfrak{A}(V\mathfrak{w}, Kp) \leq \chi(\mathfrak{w})[\mathfrak{A}(\mathfrak{w}, p) + \mathfrak{A}(\mathfrak{w}, Kp) + \mathfrak{A}(p, V\mathfrak{w})] + \xi(\mathfrak{w}) \left[\frac{\mathfrak{A}(Kp, p)\mathfrak{A}(p, V\mathfrak{w}) + \mathfrak{A}(\mathfrak{w}, V\mathfrak{w})\mathfrak{A}(\mathfrak{w}, Kp)}{1 + \mathfrak{A}(\mathfrak{w}, p)} \right]$
Then, V and K has an unique common fixed-point.

Proof. Assume \mathfrak{w}_0 an arbitrary point in *Y*. Since $V(Y) \subseteq Y$ and $K(Y) \subseteq Y$, now the sequence $\{\mathfrak{w}_k\}$ in $Y \ni \mathfrak{w}_{2\mathfrak{x}+1} = V\mathfrak{w}_{2\mathfrak{x}+2} = K\mathfrak{w}_{2\mathfrak{x}+1}$ for each $k \ge 0$. Therefore, the hypothesis becomes

Contemporary Mathematics

818 | Mohammad Sajid, et al.

 $\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2}) = \mathfrak{A}(V\mathfrak{w}_{2\mathfrak{x}}, K\mathfrak{w}_{2\mathfrak{x}+1})$

$$\leq \chi(\mathfrak{w}_{2\mathfrak{x}})[\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, K\mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, V\mathfrak{w}_{2\mathfrak{x}})] + \xi(\mathfrak{w}_{2\mathfrak{x}}) \left[\frac{\mathfrak{A}(K\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, V\mathfrak{w}_{2\mathfrak{x}}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, V\mathfrak{w}_{2\mathfrak{x}})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, K\mathfrak{w}_{2\mathfrak{x}+1})}{1 + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1})} \right] = \chi(\mathfrak{w}_{2\mathfrak{x}})[\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+2}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+1})] + \xi(\mathfrak{w}_{2\mathfrak{x}}) \left[\frac{\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+2})}{1 + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1})} \right]$$

$$= \chi(\mathfrak{w}_{2\mathfrak{x}})[\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+2})] + \xi(\mathfrak{w}_{2\mathfrak{x}}) \left[\frac{\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+2})}{1 + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1})}\right]$$

$$\leq \chi(\mathfrak{w}_{2\mathfrak{x}})[2\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})]$$

$$+\xi(\mathfrak{w}_{2\mathfrak{x}})\left[\frac{\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}},\,\mathfrak{w}_{2\mathfrak{x}+1})[\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}},\,\mathfrak{w}_{2\mathfrak{x}+1})+\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1},\,\mathfrak{w}_{2\mathfrak{x}+2})]}{1+\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}},\,\mathfrak{w}_{2\mathfrak{x}+1})}\right]$$

$$\leq \chi(\mathfrak{w}_{2\mathfrak{x}})[2\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})] + \xi(\mathfrak{w}_{2\mathfrak{x}})[\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})]$$

$$= [2\chi(\mathfrak{w}_{2\mathfrak{x}}) + \xi(\mathfrak{w}_{2\mathfrak{x}})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + [\xi(\mathfrak{w}_{2\mathfrak{x}}) + \chi(\mathfrak{w}_{2\mathfrak{x}})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})]$$

$$= [2\chi(K\mathfrak{w}_{2\mathfrak{x}-1}) + \xi(K\mathfrak{w}_{2\mathfrak{x}-1})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + [\xi(K\mathfrak{w}_{2\mathfrak{x}-1}) + \chi(K\mathfrak{w}_{2\mathfrak{x}-1})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})]$$

$$\leq [2\chi(\mathfrak{w}_{2\mathfrak{x}-1}) + \xi(\mathfrak{w}_{2\mathfrak{x}-1})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + [\xi(\mathfrak{w}_{2\mathfrak{x}-1}) + \chi(\mathfrak{w}_{2\mathfrak{x}-1})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})]$$

$$= [2\chi(K\mathfrak{w}_{2\mathfrak{x}-2}) + \xi(K\mathfrak{w}_{2\mathfrak{x}-2})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + [\xi(K\mathfrak{w}_{2\mathfrak{x}-2}) + \chi(K\mathfrak{w}_{2\mathfrak{x}-2})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})$$

$$\leq [2\chi(\mathfrak{w}_{2\mathfrak{x}-2}) + \xi(\mathfrak{w}_{2\mathfrak{x}-2})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + [\xi(\mathfrak{w}_{2\mathfrak{x}-2}) + \chi(\mathfrak{w}_{2\mathfrak{x}-2})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})$$

÷

$$\leq [2\chi(\mathfrak{w}_0) + \xi(\mathfrak{w}_0)]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}) + [\xi(\mathfrak{w}_0) + \chi(\mathfrak{w}_0)]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2})]$$

which implies that

Volume 6 Issue 1|2025| 819

$$\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2}) \preceq \left(\frac{2\chi(\mathfrak{w}_0) + \xi(\mathfrak{w}_0)}{1 - [\xi(\mathfrak{w}_0) + \chi(\mathfrak{w}_0)]}\right) \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}}, \mathfrak{w}_{2\mathfrak{x}+1}).$$

Similarly, we proceed like that

$$\begin{split} \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) &= \mathfrak{A}(\mathfrak{w}_{2p+3}, \mathfrak{w}_{2p+2}) \\ &= \mathfrak{A}(V\mathfrak{w}_{2p+2}, K\mathfrak{w}_{2p+1}) \\ &\leq \chi(\mathfrak{w}_{2p+2})[\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, K\mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+1}, V\mathfrak{w}_{2p+2})] + \xi(\mathfrak{w}_{2p+2}) \\ &\times \left[\frac{\mathfrak{A}(K\mathfrak{w}_{2p+1}, \mathfrak{w}_{2p+1})\mathfrak{A}(\mathfrak{w}_{2p+1}, V\mathfrak{w}_{2p+2}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, V\mathfrak{w}_{2p+2})\mathfrak{A}(\mathfrak{w}_{2p+2}, K\mathfrak{w}_{2p+1})}{1 + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1})} \right] \\ &= \chi(\mathfrak{w}_{2p+2})[\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+2}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3})] \\ &+ \xi(\mathfrak{w}_{2p+2})\left[\frac{\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+2}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3})}{1 + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3})} \right] \\ &= \chi(\mathfrak{w}_{2p+2})[\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+1}, \mathfrak{w}_{2p+3})] + \xi(\mathfrak{w}_{2p+2}) \\ \times \left[\frac{\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) \mathfrak{A}(\mathfrak{w}_{2p+1}, \mathfrak{w}_{2p+3})}{1 + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3})} \right] \\ &\leq \chi(\mathfrak{w}_{2p+2})[\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+1}, \mathfrak{w}_{2p+3})] + \xi(\mathfrak{w}_{2p+2})\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) \\ &\leq \chi(\mathfrak{w}_{2p+2})[\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3})] \\ &\leq \chi(\mathfrak{w}_{2p+2})[\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3})] \\ &= [2\chi(\mathfrak{w}_{2p+2})[\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3})] \\ &= [2\chi(\mathfrak{w}_{2p+2})[\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + \mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3})] \\ &= [2\chi(\mathfrak{w}_{2p+2}) + \xi(\mathfrak{w}_{2p+2})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) \\ &= [2\chi(\mathfrak{w}_{2p+2}) + \xi(\mathfrak{w}_{2p+2})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) + [\xi(\mathfrak{w}_{2p+2}) + \chi(\mathfrak{w}_{2p+2})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) \\ &\leq [2\chi(\mathfrak{w}_{2p+1}) + \xi(\mathfrak{w}_{2p+1})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+1}) + [\xi(\mathfrak{w}_{2p+1}) + \chi(\mathfrak{w}_{2p+1})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) \\ &= [2\chi(\mathfrak{w}_{2p+1}) + \xi(\mathfrak{w}_{2p})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) \\ &\leq [2\chi(\mathfrak{w}_{2p+1}) + \xi(\mathfrak{w}_{2p+3})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) + [\xi(\mathfrak{w}_{2p+1}) + \chi(\mathfrak{w}_{2p+3})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) \\ &= [2\chi(\mathfrak{w}_{2p+2}) + \xi(\mathfrak{w}_{2p})]\mathfrak{A}(\mathfrak{w}_{2p+2}, \mathfrak{w}_{2p+3}) \\ &\leq [2\chi(\mathfrak{w}_{2p+1}) + \xi(\mathfrak{w}_{2p+3})]\mathfrak{A}($$

Contemporary Mathematics

820 | Mohammad Sajid, et al.

$$\leq [2\chi(\mathfrak{w}_{2\mathfrak{x}}) + \xi(\mathfrak{w}_{2\mathfrak{x}})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+1}) + [\xi(\mathfrak{w}_{2\mathfrak{x}}) + \chi(\mathfrak{w}_{2\mathfrak{x}})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+3})$$

$$\leq [2\chi(\mathfrak{w}_{0}) + \xi(\mathfrak{w}_{0})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+1}) + [\xi(\mathfrak{w}_{0}) + \chi(\mathfrak{w}_{0})]\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+3})]$$

which implies that

$$\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+3}) \preceq \left[\frac{2\chi(\mathfrak{w}_0) + \xi(\mathfrak{w}_0)}{1 - [\xi(\mathfrak{w}_0) + \chi(\mathfrak{w}_0)]}\right] \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \mathfrak{w}_{2\mathfrak{x}+2}).$$

Let us choose

$$\begin{split} \lambda &= \frac{2\chi(\mathfrak{w}_0) + \xi(\mathfrak{w}_0)}{1 - [\xi(\mathfrak{w}_0) + \chi(\mathfrak{w}_0)]} \\ \mathfrak{A}(\mathfrak{w}_n, \, \mathfrak{w}_{n+1}) \preceq \lambda \mathfrak{A}(\mathfrak{w}_{n-1}, \, \mathfrak{w}_n) \\ &\leq \lambda^2 \mathfrak{A}(\mathfrak{w}_{n-2}, \, \mathfrak{w}_{n-1}) \\ &\vdots \\ &\vdots \\ &\leq \lambda^n \mathfrak{A}(\mathfrak{w}_0, \, \mathfrak{w}_1). \end{split}$$

Consider a natural number *m* and *n* with $m \succ n$, for each $n \in N$, we have

$$\begin{split} \mathfrak{A}(\mathfrak{w}_n, \, \mathfrak{w}_m) &\preceq \mathfrak{A}(\mathfrak{w}_n, \, \mathfrak{w}_{n+1}) + \mathfrak{A}(\mathfrak{w}_{n+1}, \, \mathfrak{w}_{n+2}) + \dots + \mathfrak{A}(\mathfrak{w}_{m-1}, \, \mathfrak{w}_m) \\ & \leq \lambda^n \mathfrak{A}(\mathfrak{w}_0, \, \mathfrak{w}_1) + \lambda^{n+1} \mathfrak{A}(\mathfrak{w}_0, \, \mathfrak{w}_1) + \dots + \lambda^{m-1} \mathfrak{A}(\mathfrak{w}_0, \, \mathfrak{w}_1) \\ & = (\lambda^n + \lambda^{n+1} + \dots + \lambda^{m-1}) \mathfrak{A}(\mathfrak{w}_0, \, \mathfrak{w}_1) \\ & \leq \left(\frac{\lambda^n}{1 - \lambda}\right) \mathfrak{A}(\mathfrak{w}_0, \, \mathfrak{w}_1). \end{split}$$

Therefore, we get

Volume 6 Issue 1|2025| 821

$$|\mathfrak{A}(\mathfrak{w}_n, \mathfrak{w}_m)| \preceq \left(\frac{\lambda^n}{1-\lambda}\right)|\mathfrak{A}(\mathfrak{w}_0, \mathfrak{w}_1)|.$$

Since $\lambda \in [0, 1)$, letting the limit as $m, n \to 0$ which gives that the $\{\mathfrak{w}_n\}$ is a Cauchy sequence. Therefore, Y is complete, there is a point $a \in Y \ni \mathfrak{w}_n \to a$ as $n \to +\infty$.

To show that Va = a. Now,

$$\begin{split} \mathfrak{A}(a, \, Va) &\preceq \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \, Va) \\ &= \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \mathfrak{A}(K\mathfrak{w}_{2\mathfrak{x}+1}, \, Va) \\ &= \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \mathfrak{A}(Va, \, K\mathfrak{w}_{2\mathfrak{x}+1}) \\ &\preceq \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \chi(a)[\mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(a, \, K\mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \, Va)] \\ &+ \xi(a) \left[\frac{\mathfrak{A}(K\mathfrak{w}_{2\mathfrak{x}+1}, \, \mathfrak{w}_{2\mathfrak{x}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \, Va) + \mathfrak{A}(a, \, Va)\mathfrak{A}(a, \, K\mathfrak{w}_{2\mathfrak{x}+1})}{1 + \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+1})} \right] \\ &= \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \chi(a)[\mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+1}) + \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2}) + \mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \, Va)] \\ &+ \xi(a) \left[\frac{\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \, \mathfrak{w}_{2\mathfrak{x}+1})\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, \, Va) + \mathfrak{A}(a, \, Va)\mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+2})}{1 + \mathfrak{A}(a, \, \mathfrak{w}_{2\mathfrak{x}+1})} \right] \end{split}$$

which implies that

$$|\mathfrak{A}(a, Va)| \leq |\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+2})| + \chi(a)[|\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+1})| + |\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+2})| + |\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, Va)]|$$

$$+\xi(a)\left[\frac{|\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+2}, \mathfrak{w}_{2\mathfrak{x}+1})||\mathfrak{A}(\mathfrak{w}_{2\mathfrak{x}+1}, Va)|+|\mathfrak{A}(a, Va)||\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+2})|}{|1+\mathfrak{A}(a, \mathfrak{w}_{2\mathfrak{x}+1})|}\right].$$

As $\mathfrak{x} \to \infty$ we have $|\mathfrak{A}(a, Va)| = 0$ which shows that $\mathfrak{A}(a, Va) = 0$. Hence, we get Va = a. Similarly, we have Ka = a. It follows that *a* is the common fixed-point of *V* and *K*.

Next, to claim that *a* is a unique common fixed-point of the functions *V* and *K*. Let us choose another common fixed-point a_1 that is $a_1 = Va_1 = Ka_1$. It follows from

$$\mathfrak{A}(a, a_1) = \mathfrak{A}(Va, Ka_1)$$

$$\leq \chi(a)[\mathfrak{A}(a, a_1) + \mathfrak{A}(a, Ka_1) + \mathfrak{A}(a_1, Va)] + \xi(a) \left[\frac{\mathfrak{A}(Ka_1, a_1)\mathfrak{A}(a_1, Va) + \mathfrak{A}(a, Va)\mathfrak{A}(a, Ka_1)}{1 + \mathfrak{A}(a, a_1)} \right]$$
$$= \chi(a)\mathfrak{A}(a, a_1)$$
$$\leq \chi(a)[\mathfrak{A}(a, a_1)].$$

Κ.

Since $\chi(a) \in [0, 1)$, we have $|\mathfrak{A}(a, a_1)| = 0$. Thus, $a = a_1$ and hence a is only unique common fixed-point of V and

Example 11 Let Y = [0, 1]. Assume that (Y, \mathfrak{A}) a complete complex-valued metric space. The functions $V, K: Y \to Y$ and χ , ξ : $Y \to [0, 1) \ni$ defined as $\mathfrak{A}(\mathfrak{w}, p) = [(\mathfrak{w} - p) + i(\mathfrak{w} - p)]$ for every $\mathfrak{w}, p \in Y$, then it can be easily verify that (Y, \mathfrak{A}) is a complex-valued metric space. By assuming $V\mathfrak{w} = \frac{\mathfrak{w}}{3}$, $Kp = \frac{p}{3}$ for every $\mathfrak{w}, p \in Y$, one can easily verify that the maps V, K satisfying Theorem 3.1. Hence, unique common fixed-point is 0 in V and K.

Corollary 12 Assume that (Y, \mathfrak{A}) a complete complex-valued metric space. Let $V, K : Y \to Y$ and if the following inequality hold:

$$\mathfrak{A}(V\mathfrak{w}, Kp) \preceq \alpha \mathfrak{A}(\mathfrak{w}, p) + \beta \left[\frac{\mathfrak{A}(Kp, p)\mathfrak{A}(p, V\mathfrak{w}) + \mathfrak{A}(\mathfrak{w}, V\mathfrak{w})\mathfrak{A}(\mathfrak{w}, Kp)}{1 + \mathfrak{A}(\mathfrak{w}, p)} \right]$$

for each \mathfrak{w} , $p \in Y$ where α , β are positive reals with $\alpha + \beta \prec 1$. Then, V and K has an unique common fixed-point.

Proof. Using Theorem 3.1, one can prove the above result by taking $\chi(\mathfrak{w}) = \alpha$ and $\xi(\mathfrak{w}) = \beta$. **Corollary 13** Let (Y, \mathfrak{A}) be a complete complex-valued metric spaces. The two functions $V: Y \to Y$ and $\chi, \xi: Y \to Y$

 $[0, 1) \ni$ for each $\mathfrak{w}, p \in Y$ satisfying the following:

(i) $\chi(V\mathfrak{w}) \preceq \chi(\mathfrak{w})$ and $\xi(V\mathfrak{w}) \preceq \xi(\mathfrak{w})$,

(ii) $(\chi + \xi)(\mathfrak{w}) \leq 1$,

(iii)
$$\mathfrak{A}(V\mathfrak{w}, Vp) \leq \chi(s)\mathfrak{A}(\mathfrak{w}, p) + \xi(\mathfrak{w}) \left[\frac{\mathfrak{A}(Vp, p)\mathfrak{A}(p, V\mathfrak{w}) + \mathfrak{A}(\mathfrak{w}, V\mathfrak{w})\mathfrak{A}(\mathfrak{w}, Vp)}{1 + \mathfrak{A}(\mathfrak{w}, p)} \right].$$

Then V has unique fixed-point

Then, V has unique fixed-point.

Proof. By utilizing Theorem 3.1, one can prove the result with assuming V = K.

Corollary 14 Assume that (Y, \mathfrak{A}) a complete complex-valued metric space and the function $V: Y \to Y$ if the condition hold:

$$\mathfrak{A}(V\mathfrak{w}, Vp) \preceq \alpha \mathfrak{A}(\mathfrak{w}, p) + \beta \left[\frac{\mathfrak{A}(Vp, p)\mathfrak{A}(p, V\mathfrak{w}) + \mathfrak{A}(\mathfrak{w}, V\mathfrak{w})\mathfrak{A}(\mathfrak{w}, Vp)}{1 + \mathfrak{A}(\mathfrak{w}, p)} \right]$$

for each w, $p \in Y$ where α , β are positive reals with $\alpha + \beta \prec 1$. Then, V has a unique fixed-point.

Proof. By using Corollary 3.3, one can prove this result with $\chi(\mathfrak{w}) = \alpha$ and $\xi(\mathfrak{w}) = \beta$.

Volume 6 Issue 1|2025| 823

4. Applications

The system of Urysohn integral equations has only a uinque common solution. By using Theorem 3.1, we solve the following Urysohn integral equations:

Theorem 15 Let $Y = C([x, y], \mathbb{R}^n)$ where $[x, y] \subset \mathbb{R}^+$ and $\mathfrak{A} : Y \times Y \to C$ is define by

$$\mathfrak{A}(s, p) = \max_{t \in [x, y]} ||s(\lambda) - p(\lambda)||_{\infty} \sqrt{1 + x^2} e^{itan^{-1}x}.$$

Consider the Urysohn integral equations

$$s(\lambda) = \int_{x}^{y} K_{1}(\lambda, v, s(v)) dv + g(\lambda)$$
(1)

$$s(\lambda) = \int_{x}^{y} K_{2}(\lambda, v, s(v)) dv + h(\lambda)$$
⁽²⁾

where $\lambda \in [x, y] \subset \mathbb{R}^+$ and $s, g, h \in Y$.

Consider K_1 , K_2 : $[x, y] \times [x, y] \times \mathbb{R}^n \to \mathbb{R}^n$ are $\ni F_o$, $G_o \in Y$ for each $s \in Y$, where

$$F_o(\lambda) = \int_x^y K_1(\lambda, v, s(v)) dv$$

and

$$G_o(\bot) = \int_o^p K_2(\bot, v, s(v)) dv$$

for each $\lambda \in [x, y]$.

If there are two mappings χ , $\xi : Y \to [0, 1) \ni$ for each $s, p \in Y$ (i) $\chi(F_o + g) \preceq \chi(s)$ and $\xi(F_o + g) \preceq \xi(s)$, (ii) $\chi(G_o + h) \preceq \chi(s)$ and $\xi(G_o + h) \preceq \xi(s)$, (iii) $(\chi + \xi)(s) \preceq 1$, (iv) $||F_o(\lambda) - G_p(\lambda) + g(\lambda) - h(\lambda)| \sqrt{1 + x^2} e^{itan^{-1}x} \preceq \chi(s)A(s, p)(\lambda) + \xi(s)B(s, p)(\lambda)$, where

$$A(s, p)(\lambda) = ||s(\lambda) - p(\lambda)||_{\infty} \sqrt{1 + o^2} e^{i \tan^{-1} o},$$

$$B(s, p) = \frac{||F_o(\lambda) + g(\lambda) - s(\lambda)||_{\infty}||G_p(\lambda) + h(\lambda) - p(\lambda)||_{\infty}}{1 + \mathfrak{A}(s, p)} \sqrt{1 + x^2} e^{i \tan^{-1} x};$$

then the system of integral equations (1) and (2) have unique common solution.

Proof. Easy to verify that (Y, \mathfrak{A}) is a complex-valued metric space. The two mappings (which are defined already in Theorem 3.1) $V, K: Y \to Y$ by $Vs(F_o + g)$ and $Ks(G_o + h)$. Then,

$$\mathfrak{A}(Vs, Kp) = max_{t \in [x, y]} ||F_o(\Lambda) - G_p(\Lambda) + g(\Lambda) - h(\Lambda)| \sqrt{1 + x^2} e^{i\tan^{-1}x}$$
$$\mathfrak{A}(s, Vs) = max_{t \in [x, y]} ||F_o(\Lambda) + g(\Lambda) - s(\Lambda)| \sqrt{1 + x^2} e^{i\tan^{-1}x}$$

and

$$\mathfrak{A}(p, Kp) = \max_{t \in [x, y]} ||G_p(\lambda) + g(\lambda) - s(\lambda)||\sqrt{1 + x^2} e^{i \tan^{-1} x}.$$

To seen easily that for each $s, p \in Y$, we have

(i) $\chi(Vs) \leq \chi(s)$ and $\xi(Vs) \leq \xi(s)$, (ii) $\chi(Ks) \leq \chi(s)$ and $\xi(Ks) \leq \xi(s)$, (iii) $\mathfrak{A}(Vs, Kp) \leq \chi(s)\mathfrak{A}(s, p) + \xi(s) \left[\frac{\mathfrak{A}(Kp, p)\mathfrak{A}(p, Vs) + \mathfrak{A}(s, Vs)\mathfrak{A}(s, Kp)}{1 + \mathfrak{A}(s, p)} \right]$. By Theorem 3.1, we get that V and K has a common fixed-point. So, there exists a unique point $s \in Y \ni s = Vs = Ko$.

By Theorem 3.1, we get that V and K has a common fixed-point. So, there exists a unique point $s \in Y \ni s = Vs = Ko$ Now, we have $s = Vs = F_o + g$ and $s = Ks = G_o + h$, that is

$$s(\lambda) = \int_x^y K_1(\lambda, v, s(v)) dv + g(\lambda)$$

and

$$s(\lambda) = \int_x^y K_2(\lambda, v, s(v)) dv + h(\lambda).$$

Thus, from (1) and (2) the Urysohn integral have a unique common fixed-point.

5. Conclusion and future scope

In this paper, a generalization about the rational contraction mapping has been proved for common fixed-point results. By using the Urysohn integral equation, we have verified the existence of a unique common fixed-point. By utilizing these contraction mappings analysis, one can analyze qualitative theory and provide applications of fractional-order dynamical systems in the near future. Also, Rao et al. [1] introduced the complex-valued *b*-metric spaces and proved the common fixed-point theorems which are interesting to study as an open question for our rational contraction mapping under this complex-valued *b*-metric spaces and also to prove application in Urysohn integral equations.

Acknowledgment

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

Conflict of interest

The authors declare no competing financial interest.

References

- [1] Rao K, Swamy P, Prasad J. A common fixed-point theorem in complex-valued *b*-metric spaces. *Bulletin of Mathematics and Statistics Research*. 2013; 1(1): 1-8.
- [2] Oztürk M, Başarır M. On some common fixed-point theorems with rational expressions on cone metric spaces over a Banach algebra. *Hacettepe Journal of Mathematics and Statistics*. 2012; 41(2): 211-222.
- [3] Sitthikul K, Saejung S. Some fixed-point theorems in complex-valued metric spaces. *Fixed Point Theory and Applications*. 2012; 2012(1): 1-11.
- [4] Dhivya P, Marudai M. Common fixed-point theorems for mappings satisfying a contractive condition of rational expression on a ordered complex partial metric space. *Cogent Mathematics*. 2017; 4(1): 1389622.
- [5] Ege O, Karaca I. Complex-valued dislocated metric spaces. Korean Journal of Mathematics. 2018; 26(4): 809-822.
- [6] Gnanaprakasam AJ, Mani G, Ege O, Aloqaily A, Mlaiki N. New fixed-point results in orthogonal *b*-metric spaces with related applications. *Mathematics*. 2003; 11(3): 677.
- [7] Mani G, Gnanaprakasam AJ, Ege O, Aloqaily A, Mlaiki N. Fixed-point results in C*-algebra-valued partial b-metric spaces with related application. *Mathematics*. 2023; 11(5): 1158.
- [8] Mani G, Haque S, Gnanaprakasam AJ, Ege O, Mlaiki N. The study of bicomplex-valued controlled metric spaces with applications to fractional differential equations. *Mathematics*. 2023; 11(12): 2742.
- [9] Nallaselli G, Gnanaprakasam AJ, Mani G, Mitrović ZD, Aloqaily A, Mlaiki N. Integral equation via fixed-point theorems on a new type of convex contraction in *b*-metric and 2-metric spaces. *Mathematics*. 2023; 11(2): 344.
- [10] Cirić L, Abbas M, Saadati R, Hussain N. Common fixed-points of almost generalized contractive mappings in ordered metric spaces. *Applied Mathematics and Computation*. 2011; 217(12): 5784-5789.
- [11] Khan MS, Swaleh M, Sessa S. Fixed-point theorems by altering distances between the points. *Bulletin of the Australian Mathematical Society*. 1984; 30(1): 1-9.
- [12] Abbas M, Cojbašić Rajić V, Nazir T, Radenović S. Common fixed-point of mappings satisfying rational inequalities in ordered complex-valued generalized metric spaces. *Afrika Matematika*. 2013; 26(1-2): 17-30.
- [13] Rouzkard F. Some results on complex-valued metric spaces employing contractive conditions with complex coefficients and its applications. *Boletim da Sociedade Paranaense de Matemática*. 2018; 3(36): 103-113.
- [14] Sintunavarat W, Kumam P. Generalized common fixed-point theorems in complex-valued metric spaces and applications. *Journal of Inequalities and Applications*. 2012; 2012(1): 1-12.
- [15] Azam A, Fisher B, Khan M. Common fixed-point theorems in complex-valued metric spaces. *Numerical Functional Analysis and Optimization*. 2007; 32(3): 243-253.
- [16] Alfaqih WM, Imdad M, Rouzkard F. Unified common fixed-point theorems in complex-valued metric spaces via an implicit relation with applications. *Boletim da Sociedade Paranaense de Matemática*. 2020; 38(4): 9-29.
- [17] Klin-eam C, Suanoom C. Some common fixed-point theorems for generalized contractive type mappings on complex-valued metric spaces. *Abstract and Applied Analysis*. 2013; 2013(1): 604215.
- [18] Rouzkard F, Imdad M. Some common fixed-point theorems on complex-valued metric spaces. Computers and Mathematics with Applications. 2012; 64(6): 1866-1874.
- [19] Imdad M, Khan TI. On common fixed-points of pairwise coincidentally commuting non-continuous mappings satisfying a rational inequality. *Calcutta Mathematical Society*. 2001; 93(4): 263-268.