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1. Introduction
Fixed-point theory is an essential concept in analysis. It is possible to express many mathematical problems that

come from different scientific fields as fixed-point problems, which require the determination of a function’s fixed-
point. The presence of a solution to the initial problem can be ensured by using fixed-point theorems, which provide
adequate conditions under which a fixed-point for a particular function exists. Algebraic, order theoretic, or topological
characteristics of the mapping or its domain are all involved in a number of necessary or sufficient requirements for
the presence of such points. It extended the research on economics, control theory, differential equations, optimization
problems and so on. By using fixed-point theory [1–3] recently, many authors have studied the qualitative theory
of dynamical properties such as existence, controllability, stability, optimal control, etc., for more details [4–6]. In
mathematics, the Banach fixed-point theorem serves as a crucial technique in the theory of metric spaces; it ensures
both the existence and uniqueness of fixed-points for specific self-maps of metric spaces and offers a constructive method
for finding the fixed-points. In this direction, many authors are interested in developing this area of research, and some
related findings are given in [7–9]. The theorem is named for Stefan Banach, who originally proposed it in 1922. Common
fixed-points on almost generalized contractive mappings [10], rational expressions on cone metric spaces [2], fixed-point
theorems by altering distances between the points [11] have been well established.
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Real-valued spaces can be naturally extended by complex-valued metric spaces, which are very important in many
domains that deal with functional and complex analysis [3]. The presence of solutions in a variety of mathematical
models can be demonstrated with the use of common fixed-point theorems in such spaces, especially when numerous
mappings are involved [3, 12, 13]. Powerful tools for resolving theoretical and applied mathematical problems can be
obtained by modifying classical fixed-point conclusions to the complex context. In many fields, including pure and
applied mathematics, engineering, and science, complex-valued metric spaces are essential [13, 14]. Complex-valued
metric spaces were first proposed by Azam et al. [15] in 2011, who also showed common fixed-point theorems that
satisfy rational contractive mapping. A common fixed-point of rational inequalities has been proposed in [11]. A unified
common fixed-point theorem has been studied in [16] by using implicit relations. On the ordered complex partial metric
space, a contractive condition of rational expression has been established in [13]. Some common fixed-point theorems
on complex-valued metric space for dislocated metric spaces [14], generalized contractive type [17] have been analyzed.
On the complex-valued metric spaces, some common fixed-point theorems satisfying particular rational expressions have
been proved in [18].

Based on the above discussion, there is no new work reported on generalized common fixed-point theorems in
complex-valued metric spaces. Motivated by these analyses and their applications to the integral equations, in this paper,
the authors study some common fixed-point theorem and their applications in complex-valued metric spaces. Also, the
proposed results are new and generalize the existing results from the literature.

Key Contributions of the Article:
1. A new generalized rational contraction mapping is proposed to demonstrate a common fixed-point in complex-

valued metric spaces.
2. We additionally established the fixed-point in the corollary using rational contraction mapping.
3. We use the new rational contraction to validate the statement that the system of Urysohn integral equations has

just a unique simple solution.

2. Preliminaries
The basic definitions and notions are as follows:
Consider the C, complex number set and Ξ1, Ξ2 ∈ C. Let the partial order ⪯ on C are defined as Ξ1 ⪯ Ξ2 iff

R(Ξ1)⪯ R(Ξ2), I(Ξ1)⪯ I(Ξ2). If Ξ1 ⪯ Ξ2, then the following conditions are satisfied:
(i) R(Ξ1) = R(Ξ2), I(Ξ1)≺ I(Ξ2),
(ii) R(Ξ1)≺ R(Ξ2), I(Ξ1) = I(Ξ2),
(iii) R(Ξ1)≺ R(Ξ2), I(Ξ1)≺ I(Ξ2),
(iv) R(Ξ1) = R(Ξ2), I(Ξ1) = I(Ξ2).

In particular, Ξ1 ⋨ Ξ2 if Ξ1 ̸= Ξ2 and (i), (ii), and (iii) are all satisfied. We may write as Ξ1 ≺ Ξ2 if only (iii) is
satisfied. We notice the following conditions also:

(a) If 0 ⪯ Ξ1 ⋨ Ξ2, then |Ξ1| ≺ |Ξ2|,
(b) If Ξ1 ⪯ Ξ2 and Ξ2 ≺ Ξ3 then Ξ1 ≺ Ξ3,
(c) If a, b ∈ R and a ⪯ b then aΞ ⪯ bΞ for each Ξ ∈C.

Definition 1 [16] Let Y be a non void set and the function A : Y ×Y →C satisfying the following conditions:
(i) θ ⪯ A(w, p) for each w, p ∈ Y and A(w, p) = θ iff w= p,
(ii) A(w, p) = A(p, w) for each w, p ∈ Y ,
(iii) A(w, p)⪯ A(w, r)+A(r, p) for each w, p, r ∈ Y.
Then, the function A is called complex-valued metric space and the pair (Y, A) is known as complex-valued metric

space.
Example 2 [15] Let Y =C be a collection of complex numbers and the function is A : Y ×Y →C by A(Ξ1, Ξ2) =

eip|Ξ1 −Ξ2| where each p ∈ R. Then, (Y, A) is a complex-valued metric space.
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Example 3 [13] Let Y = C be a collection of complex numbers and the function is defined as A : Y ×Y → C by
A(Ξ1, Ξ2) = 3i|Ξ1 −Ξ2| for each Ξ1, Ξ2 ∈ Y . Then, (Y, A) is a complex-valued metric space.

Definition 4 [19] Let (Y, A) be a complex-valued metric space. Then, the following conditions are satisfied:
(i) Let the elementw∈Y be an interior point of the set O ⊆Y if ∃ θ ≺w∈C, B(w, a) = {p ∈Y : A(w, p)≺ a}⊆ O,
(ii) Let the element w ∈ Y be a limit point of O if for every θ ≺ a ∈C, B(w, a)∩ (O−Y ) ̸= ϕ ,
(iii) Let O ⊆ Y be an open if each element of w is an interior point of O,
(iv) Let O ⊆ Y is closed if each limit point of w belongs to O,
(v) Let the Hausdorff topology τ on Y be a sub-basis in a family of F = {B(w, a) : w ∈ Y, θ ≺ a}.
Definition 5 [13] Let (Y, A) be a complex-valued metric space. Then, {wn} a sequence in Y for w ∈ Y , we have
(i) For each a ∈C with θ ≺ a find an N ∃ for every n ≻ N , A(wn, w)≺ a then {wn} is convergent, {wn} converges

to w and w is the limit point of {wn},
(ii) If each a ∈ C, θ ≺ a find N there exists for all n ≻ N , A(wn, wn+m) ≺ c, where m ∈ N then {wn} called as a

Cauchy sequence,
(iii) There is convergence for each Cauchy sequence in Y , then (Y, A) is complex-valued metric spaces which is

complete.
Lemma 6 [13] Let (Y, A) be a complex-valued metric space and {wn} be sequence in Y . Then, {wn} convergent to

w if and only if |A(wn, w)| → θ as n →+∞.
Lemma 7 [16] Let (Y, A) be a complex-valued metric space. Let {wn} be a sequence in Y , then {wn} is a Cauchy

sequence if and only if |A(wn, wn+m)| → θ as n, m →+∞.
Definition 8 [16] The self mappings V and K of a non void set Y . Then, we have
(i) Let w ∈ Y be an element which is a fixed-point of K if Kw=w,
(ii) Let w ∈ Y be an element which is a coincidence point of V and K if Vw= Kw and w =Vw= Kw which is the

point where V and K coincide,
(iii) Let w ∈ Y be a point which is the point where V and K coincide if w=Vw= Kw.

3. Main results
We establish a rational contractive condition in the complex-valued metric spaces and implement those condition to

apply the Urysohn integral equations.
Theorem 9Let (Y, A) be a complete complex-valuedmetric space. LetV, K : Y →Y if there is a function χ, ξ : Y →

[0, 1) ∋ for each w, p ∈ Y and the following conditions hold:
(i) χ(Vw)≤ χ(w) and ξ (Vw)≤ ξ (w),
(ii) χ(Kw)≤ χ(w) and ξ (Kw)≤ ξ (w),
(iii) (χ +ξ )(w)≤ 1,

(iv) A(Vw, K p)≤ χ(w)A(w, p)+ξ (w)

[
A(K p, p)A(p, Vw)+A(w, Vw)A(w, K p)

1+A(w, p)

]
.

Then, V and K has an unique common fixed-point.
Proof. Assume that w0 a arbitrary point in Y. Since, V (Y ) ⊆ Y and K(Y ) ⊆ Y , now the sequence {wx} in Y ∋

w2x+1 =Vw2x and w2x+2 = Kw2x+1 for each x≥ 0.
Therefore, the hypothesis becomes
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A(w2x+1, w2x+2) = A(Vw2x, Kw2x+1)

⪯ χ(w2x)A(w2x, w2x+1)+ξ (w2x)

×
[
A(Kw2x+1, w2x+1)A(w2x+1, Vw2x)+A(w2x, Vw2x)A(w2x, Kw2x+1)

1+A(w2x, w2x+1)

]

= χ(w2x)A(w2x, w2x+1)+ξ (w2x)

×
[
A(w2x+2, w2x+1)A(w2x+1, w2x+1)+A(w2x, w2x+1)A(w2x, w2x+2)

1+A(w2x, w2x+1)

]

= χ(w2x)A(w2x, w2x+1)+ξ (w2x)

[
A(w2x, w2x+1)A(w2x, w2x+2)

1+A(w2x, w2x+1)

]

⪯ χ(w2x)A(w2x, w2x+1)

+ξ (w2x)

[
A(w2x, w2x+1)[A(w2x, w2x+1)+A(w2x+1, w2x+2)]

1+A(w2x, w2x+1)

]

⪯ χ(w2x)A(w2x, w2x+1)+ξ (w2x)[A(w2x, w2x+1)+A(w2x+1, w2x+2)]

= [χ(w2x)+ξ (w2x)]A(w2x, w2x+1)+ξ (w2x)A(w2x+1, w2x+2)]

= [χ(Kw2x−1)+ξ (Kw2x−1)]A(w2x, w2x+1)+ξ (Kw2x−1)A(w2x+1, w2x+2)]

⪯ [χ(w2x−1)+ξ (w2x−1)]A(w2x, w2x+1)+ξ (w2x−1)A(w2x+1, w2x+2)]

= [χ(Kw2x−2)+ξ (Kw2x−2)]A(w2x, w2x+1)+ξ (Kw2x−2)A(w2x+1, w2x+2)]

⪯ [χ(w2x−2)+ξ (w2x−2)]A(w2x, w2x+1)+ξ (w2x−2)A(w2x+1, w2x+2)]

⪯ [χ(w0)+ξ (w0)]A(w2x, w2x+1)+ξ (w0)A(w2x+1, w2x+2)]

which implies that

A(w2x+1, w2x+2)⪯
(

χ(w0)+ξ (w0)

1−ξ (w0)

)
A(w2x, w2x+1).
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Similarly, we proceed like that

A(w2x+2, w2x+3) = A(w2x+3, w2x+2)

= A(Vw2x+2, Kw2x+1)

⪯ χ(w2x+2)A(w2x+2, w2x+1)

+ξ (w2x+2)

[
A(Kw2x+1, w2x+1)A(w2x+1, Vw2x+2)+A(w2x+2, Vw2x+2)A(w2x+2, Kw2x+1)

1+A(w2x+2, w2x+1)

]

⪯ χ(w2x+2)A(w2x+2, w2x+1)

+ξ (w2x+2)

[
A(w2x+2, w2x+1)A(w2x+1, w2x+3)+A(w2x+2, w2x+3)A(w2x+2, w2x+2)

1+A(w2x+2, w2x+1)

]

= χ(w2x+2)A(w2x+2, w2x+1)+ξ (w2x+2)

[
A(w2x+2, w2x+1)A(w2x+1, w2x+3)

1+A(w2x+2, w2x+1)

]

⪯ χ(w2x+2)A(w2x+2, w2x+1)+ξ (w2x+2)A(w2x+1, w2x+3)

⪯ χ(w2x+2)A(w2x+2, w2x+1)+ξ (w2x+2)[A(w2x+1, w2x+2)+A(w2x+2, w2x+3)]

⪯ [χ(w2x+2)+ξ (w2x+2)]A(w2x+1, w2x+2)+ξ (w2x+2)[A(w2x+2, w2x+3)]

= [χ(Kw2x+1)+ξ (Kw2x+1)]A(w2x+1, w2x+2)+ξ (Kw2x+1)[A(w2x+2, w2x+3)]

⪯ [χ(w2x)+ξ (w2x)]A(w2x+1, w2x+2)+ξ (w2x)[A(w2x+2, w2x+3)]

...

⪯ [χ(w0)+ξ (w0)]A(w2x+1, w2x+2)+ξ (w0)[A(w2x+2, w2x+3)].

Therefore, we get

A(w2x+2, w2x+3)⪯
χ(w0)+ξ (w0)

1−ξ (w0)
A(w2x+1, w2x+2).
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Let us choose λ =
χ(w0)+ξ (w0)

1−ξ (w0)

A(wn, wn+1)⪯ λA(wn−1, wn)

⪯ λ 2A(wn−2, wn−1)

...

⪯ λ nA(w0, w1).

Consider a natural number m and n with m ≻ n, for each n ∈ N, we have

A(wn, wm)⪯ A(wn, wn+1)+A(wn+1, wn+2)+ · · ·+A(wm−1, wm)

⪯ λ nA(w0, w1)+λ n+1A(w0, w1)+ · · ·+λ m−1A(w0, w1)

= (λ n +λ n+1 + ....+λ m−1)A(w0, w1)

⪯
(

λ n

1−λ

)
A(w0, w1).

Therefore, we have

|A(wn, wm)| ⪯
(

λ n

1−λ

)
|A(w0, w1)|.

Since λ ∈ [0, 1), letting the m, n → 0 limit shows that the {wn} is a Cauchy sequence. Hence, Y is complete, there
is a point a ∈ Y ∋ wn → a as n →+∞.

To show that Va = a. Now,

A(a, Va)⪯ A(a, w2x+2)+A(w2x+2, Va)

= A(a, w2x+2)+A(Kw2x+1, Va)

= A(a, w2x+2)+A(Va, Kw2x+1)

⪯ A(a, w2x+2)+ χ(a)A(a, w2x+1)
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+ξ (a)
[
A(Kw2x+1, w2x+1)A(w2x+1, Va)+A(a, Va)A(a, Kw2x+1)

1+A(a, w2x+1)

]

= A(a, w2x+2)+ χ(a)A(a, w2x+1)

+ξ (a)
[
A(w2x+2, w2x+1)A(w2x+1, Va)+A(a, Va)A(a, w2x+2)

1+A(a, w2x+1)

]

which implies that

|A(a, Va)| ⪯ |A(a, w2x+2)|+χ(a)|A(a, w2x+1)|

+ξ (a)
[
|A(w2x+2, w2x+1)||A(w2x+1, Va)|+ |A(a, Va)||A(a, w2x+2)|

|1+A(a, w2x+1)|

]
.

As x → ∞ we have |A(a, Va)| = 0 which shows that A(a, Va) = 0, Hence, we get Va = a. Similarly, we get that
Ka = a. Therefore, a is the common fixed-point of V and K.

Next claim that a is a unique common fixed-point of functions V and K.

Let us choose another common fixed-point a1 that is a1 =Va1 = Ka1. It follows from

A(a, a1) = A(Va, Ka1)

⪯ χ(a)A(a, a1)+ξ (a)
[
A(Ka1, a1)A(a1, Va)+A(a, Va)A(a, Ka1)

1+A(a, a1)

]

= χ(a)A(a, a1)

⪯ χ(a)|A(a, a1)|.

Since χ(a) ∈ [0, 1), we have |A(a, a1)|= 0. Thus, a = a1 and hence a is only unique common fixed-point of V and
K.

Theorem 10 Let (Y, A) be a complete complex-valued metric space. Let V, K : Y → Y if there is a function
χ, ξ : Y → [0, 1) ∋ for each w, p ∈ Y and the following conditions hold:

(i) χ(Vw)≤ χ(w) and ξ (Vw)≤ ξ (w),
(ii) χ(Kw)≤ χ(w) and ξ (Kw)≤ ξ (w),
(iii) (χ +ξ )(w)≤ 1,

(iv)A(Vw, K p)≤ χ(w)[A(w, p)+A(w, K p)+A(p, Vw)]+ξ (w)

[
A(K p, p)A(p, Vw)+A(w, Vw)A(w, K p)

1+A(w, p)

]
.

Then, V and K has an unique common fixed-point.
Proof. Assume w0 an arbitrary point in Y . Since V (Y )⊆ Y and K(Y )⊆ Y , now the sequence {wk} in Y ∋ w2x+1 =

Vw2x and w2x+2 = Kw2x+1 for each k ≥ 0. Therefore, the hypothesis becomes
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A(w2x+1, w2x+2) = A(Vw2x, Kw2x+1)

⪯ χ(w2x)[A(w2x, w2x+1)+A(w2x, Kw2x+1)+A(w2x+1, Vw2x)]

+ξ (w2x)

[
A(Kw2x+1, w2x+1)A(w2x+1, Vw2x)+A(w2x, Vw2x)A(w2x, Kw2x+1)

1+A(w2x, w2x+1)

]

= χ(w2x)[A(w2x, w2x+1)+A(w2x, w2x+2)+A(w2x+1, w2x+1)]

+ξ (w2x)

[
A(w2x+2, w2x+1)A(w2x+1, w2x+1)+A(w2x, w2x+1)A(w2x, w2x+2)

1+A(w2x, w2x+1)

]

= χ(w2x)[A(w2x, w2x+1)+A(w2x, w2x+2)]+ξ (w2x)

[
A(w2x, w2x+1)A(w2x, w2x+2)

1+A(w2x, w2x+1)

]

⪯ χ(w2x)[2A(w2x, w2x+1)+A(w2x+1, w2x+2)]

+ξ (w2x)

[
A(w2x, w2x+1)[A(w2x, w2x+1)+A(w2x+1, w2x+2)]

1+A(w2x, w2x+1)

]

⪯ χ(w2x)[2A(w2x, w2x+1)+A(w2x+1, w2x+2)]+ξ (w2x)[A(w2x, w2x+1)+A(w2x+1, w2x+2)]

= [2χ(w2x)+ξ (w2x)]A(w2x, w2x+1)+ [ξ (w2x)+ χ(w2x)]A(w2x+1, w2x+2)]

= [2χ(Kw2x−1)+ξ (Kw2x−1)]A(w2x, w2x+1)+ [ξ (Kw2x−1)+ χ(Kw2x−1)]A(w2x+1, w2x+2)]

⪯ [2χ(w2x−1)+ξ (w2x−1)]A(w2x, w2x+1)+ [ξ (w2x−1)+ χ(w2x−1)]A(w2x+1, w2x+2)]

= [2χ(Kw2x−2)+ξ (Kw2x−2)]A(w2x, w2x+1)+ [ξ (Kw2x−2)+ χ(Kw2x−2)]A(w2x+1, w2x+2)

⪯ [2χ(w2x−2)+ξ (w2x−2)]A(w2x, w2x+1)+ [ξ (w2x−2)+ χ(w2x−2)]A(w2x+1, w2x+2)

...

⪯ [2χ(w0)+ξ (w0)]A(w2x, w2x+1)+ [ξ (w0)+ χ(w0)]A(w2x+1, w2x+2)]

which implies that
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A(w2x+1, w2x+2)⪯
(

2χ(w0)+ξ (w0)

1− [ξ (w0)+ χ(w0)]

)
A(w2x, w2x+1).

Similarly, we proceed like that

A(w2x+2, w2x+3) = A(w2x+3, w2x+2)

= A(Vw2x+2, Kw2x+1)

⪯ χ(w2x+2)[A(w2x+2, w2x+1)+A(w2x+2, Kw2x+1)+A(w2x+1, Vw2x+2)]+ξ (w2x+2)

×
[
A(Kw2x+1, w2x+1)A(w2x+1, Vw2x+2)+A(w2x+2, Vw2x+2)A(w2x+2, Kw2x+1)

1+A(w2x+2, w2x+1)

]

= χ(w2x+2)[A(w2x+2, w2x+1)+A(w2x+2, w2x+2)+A(w2x+1, w2x+3)]

+ξ (w2x+2)

[
A(w2x+2, w2x+1)A(w2x+1, w2x+3)+A(w2x+2, w2x+3)A(w2x+2, w2x+2)

1+A(w2x+2, w2x+1)

]

= χ(w2x+2)[A(w2x+2, w2x+1)+A(w2x+1, w2x+3)]+ξ (w2x+2)

×
[
A(w2x+2, w2x+1)A(w2x+1, w2x+3)

1+A(w2x+2, w2x+1)

]

⪯ χ(w2x+2)[A(w2x+2, w2x+1)+A(w2x+1, w2x+3)]+ξ (w2x+2)A(w2x+1, w2x+3)

⪯ χ(w2x+2)[2A(w2x+2, w2x+1)+A(w2x+2, w2x+3)]

+ξ (w2x+2)[A(w2x+1, w2x+2)+A(w2x+2, w2x+3)]

= [2χ(w2x+2)+ξ (w2x+2)]A(w2x+2, w2x+1)+ [ξ (w2x+2)+ χ(w2x+2)]A(w2x+2, w2x+3)

= [2χ(Kw2x+1)+ξ (Kw2x+1)]A(w2x+2, w2x+1)+ [ξ (Kw2x+1)+ χ(Kw2x+1)]A(w2x+2, w2x+3)

⪯ [2χ(w2x+1)+ξ (w2x+1)]A(w2x+2, w2x+1)+ [ξ (w2x+1)+ χ(w2x+1)]A(w2x+2, w2x+3)

= [2χ(Kw2x)+ξ (Kw2x)]A(w2x+2, w2x+1)+ [ξ (Kw2x)+ χ(Kw2x)]A(w2x+2, w2x+3)
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⪯ [2χ (w2x)+ξ (w2x)]A(w2x+2,w2x+1)+ [ξ (w2x)+ χ (w2x)]A(w2x+2,w2x+3)

...

⪯ [2χ (w0)+ξ (w0)]A(w2x+2,w2x+1)+ [ξ (w0)+ χ (w0)]A(w2x+2,w2x+3)]

which implies that

A(w2x+2, w2x+3)⪯
[

2χ(w0)+ξ (w0)

1− [ξ (w0)+ χ(w0)]

]
A(w2x+1, w2x+2).

Let us choose

λ =
2χ(w0)+ξ (w0)

1− [ξ (w0)+ χ(w0)]

A(wn, wn+1)⪯ λA(wn−1, wn)

⪯ λ 2A(wn−2, wn−1)

...

⪯ λ nA(w0, w1).

Consider a natural number m and n with m ≻ n, for each n ∈ N, we have

A(wn, wm)⪯ A(wn, wn+1)+A(wn+1, wn+2)+ .....+A(wm−1, wm)

⪯ λ nA(w0, w1)+λ n+1A(w0, w1)+ ....+λ m−1A(w0, w1)

= (λ n +λ n+1 + ....+λ m−1)A(w0, w1)

⪯
(

λ n

1−λ

)
A(w0, w1).

Therefore, we get
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|A(wn, wm)| ⪯
(

λ n

1−λ

)
|A(w0, w1)|.

Since λ ∈ [0, 1), letting the limit as m, n → 0 which gives that the {wn} is a Cauchy sequence. Therefore, Y is
complete, there is a point a ∈ Y ∋ wn → a as n →+∞.

To show that Va = a. Now,

A(a, Va)⪯ A(a, w2x+2)+A(w2x+2, Va)

= A(a, w2x+2)+A(Kw2x+1, Va)

= A(a, w2x+2)+A(Va, Kw2x+1)

⪯ A(a, w2x+2)+ χ(a)[A(a, w2x+1)+A(a, Kw2x+1)+A(w2x+1, Va)]

+ξ (a)
[
A(Kw2x+1, w2x+1)A(w2x+1, Va)+A(a, Va)A(a, Kw2x+1)

1+A(a, w2x+1)

]

= A(a, w2x+2)+ χ(a)[A(a, w2x+1)+A(a, w2x+2)+A(w2x+1, Va)]

+ξ (a)
[
A(w2x+2, w2x+1)A(w2x+1, Va)+A(a, Va)A(a, w2x+2)

1+A(a, w2x+1)

]

which implies that

|A(a, Va)| ⪯ |A(a, w2x+2)|+χ(a)[|A(a, w2x+1)|+ |A(a, w2x+2)|+ |A(w2x+1, Va)]|

+ξ (a)
[
|A(w2x+2, w2x+1)||A(w2x+1, Va)|+ |A(a, Va)||A(a, w2x+2)|

|1+A(a, w2x+1)|

]
.

As x→ ∞ we have |A(a, Va)|= 0 which shows thatA(a, Va) = 0.Hence, we getVa = a. Similarly, we have Ka = a.
It follows that a is the common fixed-point of V and K.

Next, to claim that a is a unique common fixed-point of the functions V and K. Let us choose another common
fixed-point a1 that is a1 =Va1 = Ka1. It follows from
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A(a, a1) = A(Va, Ka1)

⪯ χ(a)[A(a, a1)+A(a, Ka1)+A(a1, Va)]+ξ (a)
[
A(Ka1, a1)A(a1, Va)+A(a, Va)A(a, Ka1)

1+A(a, a1)

]

= χ(a)A(a, a1)

⪯ χ(a)|A(a, a1)|.

Since χ(a) ∈ [0, 1), we have |A(a, a1)|= 0. Thus, a = a1 and hence a is only unique common fixed-point of V and
K.

Example 11LetY = [0, 1]. Assume that (Y, A) a complete complex-valuedmetric space. The functionsV, K : Y →Y
and χ, ξ : Y → [0, 1) ∋ defined as A(w, p) = [(w− p)+ i(w− p)] for every w, p ∈ Y , then it can be easily verify that
(Y, A) is a complex-valued metric space. By assuming Vw=

w

3
, K p =

p
3
for every w, p ∈ Y , one can easily verify that

the maps V, K satisfying Theorem 3.1. Hence, unique common fixed-point is 0 in V and K.

Corollary 12 Assume that (Y, A) a complete complex-valued metric space. Let V, K : Y → Y and if the following
inequality hold:

A(Vw, K p)⪯ αA(w, p)+β
[
A(K p, p)A(p, Vw)+A(w, Vw)A(w, K p)

1+A(w, p)

]

for each w, p ∈ Y where α, β are positive reals with α +β ≺ 1. Then, V and K has an unique common fixed-point.
Proof. Using Theorem 3.1, one can prove the above result by taking χ(w) = α and ξ (w) = β .
Corollary 13 Let (Y, A) be a complete complex-valued metric spaces. The two functionsV : Y →Y and χ, ξ : Y →

[0, 1) ∋ for each w, p ∈ Y satisfying the following:
(i) χ(Vw)⪯ χ(w) and ξ (Vw)⪯ ξ (w),
(ii) (χ +ξ )(w)⪯ 1,

(iii) A(Vw, V p)⪯ χ(s)A(w, p)+ξ (w)

[
A(V p, p)A(p, Vw)+A(w, Vw)A(w, V p)

1+A(w, p)

]
.

Then, V has unique fixed-point.
Proof. By utilizing Theorem 3.1, one can prove the result with assuming V = K.

Corollary 14 Assume that (Y, A) a complete complex-valued metric space and the function V : Y → Y if the
condition hold:

A(Vw, V p)⪯ αA(w, p)+β
[
A(V p, p)A(p, Vw)+A(w, Vw)A(w, V p)

1+A(w, p)

]

for each w, p ∈ Y where α, β are positive reals with α +β ≺ 1. Then, V has a unique fixed-point.
Proof. By using Corollary 3.3, one can prove this result with χ(w) = α and ξ (w) = β .
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4. Applications
The system of Urysohn integral equations has only a uinque common solution. By using Theorem 3.1, we solve the

following Urysohn integral equations:
Theorem 15 Let Y =C([x, y], Rn) where [x, y]⊂ R+ and A : Y ×Y →C is define by

A(s, p) = maxt∈[x, y]||s(⋏)− p(⋏)||∞
√

1+ x2eitan−1x.

Consider the Urysohn integral equations

s(⋏) =
∫ y

x
K1(⋏, v, s(v))dv+g(⋏) (1)

s(⋏) =
∫ y

x
K2(⋏, v, s(v))dv+h(⋏) (2)

where ⋏ ∈ [x, y]⊂ R+ and s, g, h ∈ Y.
Consider K1, K2 : [x, y]× [x, y]×Rn → Rn are ∋ Fo, Go ∈ Y for each s ∈ Y , where

Fo(⋏) =
∫ y

x
K1(⋏, v, s(v))dv

and

Go(⋏) =
∫ p

o
K2(⋏, v, s(v))dv

for each ⋏ ∈ [x, y].
If there are two mappings χ, ξ : Y → [0, 1) ∋ for each s, p ∈ Y
(i) χ(Fo +g)⪯ χ(s) and ξ (Fo +g)⪯ ξ (s),
(ii) χ(Go +h)⪯ χ(s) and ξ (Go +h)⪯ ξ (s),
(iii) (χ +ξ )(s)⪯ 1,
(iv) ||Fo(⋏)−Gp(⋏)+g(⋏)−h(⋏)||

√
1+ x2eitan−1x ⪯ χ(s)A(s, p)(⋏)+ξ (s)B(s, p)(⋏), where

A(s, p)(⋏) = ||s(⋏)− p(⋏)||∞
√

1+o2ei tan−1 o,

B(s, p) =
||Fo(⋏)+g(⋏)− s(⋏)||∞||Gp(⋏)+h(⋏)− p(⋏)||∞

1+A(s, p)

√
1+ x2ei tan−1 x;

then the system of integral equations (1) and (2) have unique common solution.
Proof. Easy to verify that (Y, A) is a complex-valued metric space. The two mappings (which are defined already

in Theorem 3.1) V, K : Y → Y by V s(Fo +g) and Ks(Go +h). Then,
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A(V s, K p) = maxt∈[x, y]||Fo(⋏)−Gp(⋏)+g(⋏)−h(⋏)||
√

1+ x2ei tan−1 x

A(s, V s) = maxt∈[x, y]||Fo(⋏)+g(⋏)− s(⋏)||
√

1+ x2ei tan−1 x

and

A(p, K p) = maxt∈[x, y]||Gp(⋏)+g(⋏)− s(⋏)||
√

1+ x2ei tan−1 x.

To seen easily that for each s, p ∈ Y , we have
(i) χ(V s)⪯ χ(s) and ξ (V s)⪯ ξ (s),
(ii) χ(Ks)⪯ χ(s) and ξ (Ks)⪯ ξ (s),

(iii) A(V s, K p)⪯ χ(s)A(s, p)+ξ (s)
[
A(K p, p)A(p, V s)+A(s, V s)A(s, K p)

1+A(s, p)

]
.

By Theorem 3.1, we get thatV and K has a common fixed-point. So, there exists a unique point s ∈Y ∋ s =V s = Ko.
Now, we have s =V s = Fo +g and s = Ks = Go +h, that is

s(⋏) =
∫ y

x
K1(⋏, v, s(v))dv+g(⋏)

and

s(⋏) =
∫ y

x
K2(⋏, v, s(v))dv+h(⋏).

Thus, from (1) and (2) the Urysohn integral have a unique common fixed-point.

5. Conclusion and future scope
In this paper, a generalization about the rational contraction mapping has been proved for common fixed-point results.

By using the Urysohn integral equation, we have verified the existence of a unique common fixed-point. By utilizing these
contraction mappings analysis, one can analyze qualitative theory and provide applications of fractional-order dynamical
systems in the near future. Also, Rao et al. [1] introduced the complex-valued b-metric spaces and proved the common
fixed-point theorems which are interesting to study as an open question for our rational contraction mapping under this
complex-valued b-metric spaces and also to prove application in Urysohn integral equations.
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