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Abstract: Queueing systems (QS) play a critical role in modeling and optimizing various real-world processes by
managing the flow of entities within systems involving queues. To address this, the proposed QS integrates features such
as single arrivals, a retrial mechanism, optional re-service, working vacations, and delay repair scenarios. The system’s
dynamics are comprehensively analyzed using the supplementary variable technique, which provides deeper insights into
its behavior and performance metrics. Furthermore, to enhance operational efficiency, an advanced cost optimization
technique is employed to identify the optimal cost structure for the system. This holistic approach not only sheds light
on the operational intricacies of the QS but also offers practical strategies for cost reduction and validation of analytical
findings, thereby advancing queueing theory and broadening its practical applications across multiple domains.
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1. Introduction
Waiting in queues is a common aspect of daily life, from long checkout lines at stores to traffic jams on highways.

Retrial queues (RQ) are particularly valuable in scenarios where customers may return after leaving due to extended waits
or inadequate service, thus improving system performance and customer retention. In a similar fashion, single-arrival
retrial queues manage scenarios where entities arrive one by one and may attempt to access the service again after an
initial failure, while single-phase service models provide a unified level of service to these customers. Optional re-service
adds another layer of complexity, enabling customers to seek additional assistance, which is applicable in settings such as
Automated Teller Machine (ATMs), banks, supermarkets, and hospitals. Extensive research has also explored RQ systems
with server vacations, including working vacations, which allow servers to work even during vacation but at a slower rate,
thus offering a more adaptive approach to service management. In addition, server failures in RQ systems can significantly
disrupt operations, leading to longer wait times and increased customer retries, further complicating queue dynamics.
Finally, cost optimization plays a critical role in designing efficient systems, focusing on balancing costs and performance.
By carefully evaluating cost factors and constraints, organizations can improve operational efficiency, minimize waste,
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and streamline processes. By integrating all the previously discussed scenarios, we present an innovative retrial queueing
framework designed to predict and resolve potential bottlenecks, thus improving overall system performance and customer
satisfaction.

1.1 Literature survey

To understand the research efforts undertaken and identify existing research gaps, a comprehensive and systematic
review of previous studies is provided below.

In recent years, retrial queues (RQ) have emerged as a significant area of research. In addition, numerous studies
have been published on retrial queueing systems. Rajadurai et al. [1] have analyzed a M/G/1 retrial QS with impatient
customer, discretionary re-service subjected to a working vacation policy, and server interruption. Analysis of M/G/1
retrial queues with a second optional service and customer balking under two types of Bernoulli vacation schedule was
analyzed by Madheshwari and Suganthi [2]. Santhi [3] analyzed an RQ with a second discretionary service and multiple
working vacations. Arivudainambi and Godhandaraman [4] have discussed the retrial queueing system with balking,
discretionary service, and vacation policy. Baskar and Saravanarajan [5] have discussed a feedback M/G/1 double retrial
orbit queue with optional two-phase service and repair under the working vacation policy. Further, Rajam [6] has also
studied more about the concept of re-service as well.

Vacation queues in queueing systems involve servers temporarily leaving for a short duration. Similarly, in queueing
systems, servers may take working vacations, during which they continue to provide service at a reduced rate, based on
predefined conditions. Gnanasekar [7] has discussed the analysis of an M/G/1 retrial queue with delayed repair and
feedback under a working vacation policy with impatient customers. Rajadurai et al. [8] investigated the M/G/1 retrial
queue with the priority customer under the multiple working vacation policy. Bharathi Shanmugam and Saravanarajan
[9] studied an unreliable retrial queueing system with a working vacation policy. A steady-state analysis of single-server
QS with multiple working vacations was explored by Seeniraj et al. [10]. Further, sensitivity analysis of a non-Markovian
feedback retrial queue, reneging, delayed repair, with working vacation subject to server breakdown was scrutinized by
Sundarapandiyan and Nandhini [11].

Many authors have investigated the delayed repair behavior. Recently, Revathi [12] addressed a single server RQ
with delayed repair and optional re-service subjected to modified Bernoulli vacation. Gao et al. [13] analyzed a retrial
queue with two types of breakdowns and delayed repairs. Singh et al. [14] studied an unreliable retrial G-queue with
bulk arrival, optional additional service, and delayed repair. Particle swarm optimization and maximum entropy results
for a M[X ]/G/1 retrial G-queue with delayed repair were investigated by Malik and Upadhyaya [15]. Jain and kumar [16]
addressed the dynamical behavior of an unreliable M[X ]/G/1 queue with working vacation and multi-phase repair with
delay in verification.

Limited research has been conducted on retrial queues that focus on cost optimization and the assessment of suitable
control parameters for queueing models using various optimization techniques. Recently, Vaishnawi et al. [17] examined
the accuracy of aGeo[X ]/Geo/1 recurrent model in discrete time, employing various optimization approaches to minimize
system costs. Similarly, Kumar and Jain [18] analyzed a Markovian QS by formulating a cost function to identify optimal
service system solutions. For further insights into cost optimization, readers can refer to the works of Deora et al. [19],
Malik et al. [20], Jain and Jain [21], Jain and Kumar [22], and Vijaya Laxmi and Jyothsna [23]. Recently, Harini [24]
employed distinct optimization techniques to analyze a batch arrival retrial queue with optional re-service and M-optional
vacations.

1.2 Research gap

Section 1.1 provides an overview of the existing literature, highlighting gaps or inconsistencies that require further
exploration. While Rajadurai et al. [1] analyzed a retrial queueing system with impatient customers, discretionary re-
service under a working vacation policy. Revathi [12] studied a single-server retrial queue with delayed repair and optional
re-service under a modified Bernoulli vacation policy. Harini [24] investigated the meta-heuristic optimization of a batch
arrival retrial queue with optional re-service and M-optional vacations. There remains a gap in addressing the complexity
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of delayed repair with optional service transitioning to re-service under working vacation along with the cost optimization
for such systems in light of this, this paper explores the performance of such model under varying operational conditions
with the aid of an optimization technique.

1.3 Research novelty

Although previous studies have investigated discretionary re-service, delayed repair, and working vacation policies
independently, the interplay between delayed repair mechanisms and the transition from optional service to re-service
has not been thoroughly examined. To bridge this research gap, this work focus on a single-arrival retrial queue model
incorporating optional re-service, working vacations, and delayed repair processes.

1.4 Research objective

This study aims to utilize particle swarm optimization to investigate and optimize the performance of a single-server
retrial queue system, incorporating delayed repair, working vacation policies, and the transition from optional service to
re-service, with a focus on minimizing costs and improving system efficiency.

1.5 Research contribution

Although research on retrial queues with optional re-service and working vacation has been conducted, a review of
the literature reveals a significant gap in studies addressing single-arrival retrial queues under these conditions. Motivated
by this observation, the primary contributions of this study are as follows:

• This study presents an innovative framework by developing a retrial queueing system as a single-arrival model
featuring discretionary re-service, implementedwithin aworking vacation setting, and further incorporating delayed repair,
thereby bridging a critical gap in the existing literature.

• The probability-generating functions and steady-state probabilities for different server states were determined using
the supplementary variable technique (SVT).

• The use of cost optimization techniques simplifies the process of identifying the most efficient cost structure,
enhancing resource allocation and management strategies. This comprehensive approach ensures a thorough evaluation
of cost-effectiveness, supporting decision-making processes and improving overall system performance.

2. Overview and analysis of the proposed framework
The M/G/1 queuing system with retrials is a popular model in queuing theory that includes retrial, normal service,

lower rate service, delayed repair, and repair. This system involves a Poisson arrival process, and exponential service
times with a finite capacity. An illustration of the model under consideration and its pictorial depiction (Figure 1) have
been presented below. Let R(t) represent the number of customers in the retrial state, S(t) in normal service, L(t) in lower
rate service, D(t) in delayed repair, and P(t) in the repair state.

The arrival process: Positive customers enter the system following a Poisson process with an arrival rate of λ .
The retrial process: If an arriving customer finds the server available, they immediately begin service. Otherwise,

the customer joins the orbit of blocked customers and continues to request service until the server becomes free. The
retrial times follow a general distribution R(x) with a Laplace-Stieltjes Transform (LST) denoted as R∗(t).

The service process: During the regular busy period, a single server delivers standard service with an option for
re-service. After completing the initial service, a positive customer can either opt for a repeat of the same service with
probability Pr or exit the system with probability 1−Pr. It is assumed that re-service can occur only once. The service
time is represented by a general random variable S with a distribution function S(x) and a LST denoted as S∗(t).

The working vacation process: When the orbit becomes empty, the server automatically begins a working vacation,
characterized by an exponential distribution with rate µ . If customers arrive during this period, the server continues to
operate but at a reduced speed. If an orbiting customer completes service during the vacation, the server interrupts the
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vacation and transitions back to the normal busy period, resulting in a vacation interruption. Otherwise, the vacation
continues. If customers remain in the orbit when the vacation ends, the server resumes normal operations; otherwise, a
new vacation begins. During the working vacation, the service time is modeled by a general random variable L, with a
distribution function L(x) and LST L∗(t).

Breakdown process: The server may malfunction at any point when providing any kind of service or re-service, and
the service channel will briefly stop functioning, meaning the server will be unavailable. Exogenous Poisson processes
with rates bd produce the breakdowns, or server life lifetimes. Governed by a general distribution D(x) with its LST
represented as D∗(t).

Repair process: The server is sent for repair as soon as a breakdown happens, and while it waits for the repair to
begin, it ceases serving incoming customers. This is known as the server’s waiting period. Waiting time is defined as
delay time. The duration of the repair is governed by a probability distribution P(x), with its LST denoted as P∗(t).

Figure 1. Schematic diagram

2.1 Real-world implementation of the model

In a healthcare setting, the concept of a single-server retrial queue with delayed repair under working vacation and
optional re-service can be effectively applied to manage diagnostic facilities, such as patients arrive (arrival) at diagnostic
facilities such as MRI, CT scan, or X-ray services, either scheduled or unscheduled, based on their medical needs or
referrals. Upon arrival, they may join a queue if the facility is busy or retry (orbit) later if the system is inaccessible.
The service process involves conducting diagnostic tests, with patients being attended to immediately or after waiting,
depending on resource availability. The (optional re-service) feature accounts for situations where patients may require
additional tests or re-evaluations after the initial scan, based on medical recommendations, before being discharged. In
case of equipment breakdown, the (delayed repair) mechanism models the time needed to restore functionality, affecting
patient scheduling and service availability. During periods of low patient inflow, the (working vacation) policy ensures
efficient resource utilization by allowing machines or operators to perform at reduced efficiency, focusing on tasks like
preventive maintenance, calibration, or simpler diagnostic services.

Our model finds application in airline ticket reservation processing systems, efficiently managing customer booking
processes. Customers arrive (arrival) to book tickets either online, through mobile apps, or at physical counters. Arrivals
can be scheduled, such as for group bookings, or unscheduled, depending on immediate travel needs or inquiries. Upon
arrival, customers may join a queue if the system is busy or retry (orbit) later if access is unavailable due to high
demand. The (service process) includes booking tickets, selecting seats, and managing travel preferences, with customers
being attended to immediately or after waiting based on system availability. The (optional re-service) feature captures
scenarios where customers may require additional services, such as seat upgrades, flight changes, or meal preferences,
after booking, requiring them to re-enter the system. If the reservation system encounters a technical issue, the (delayed
repair) mechanism models the time required to resolve the issue, temporarily halting new bookings. During periods of
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low customer demand, the (working vacation) policy allows the system to operate at reduced capacity, handling basic
requests like flight inquiries or ticket modifications, while preparing for high-demand periods.

3. Examination of the probability in a steady state
The steady-state equations for the retrial system are initially formulated in this section by incorporating supplementary

variables to represent the elapsed retrial times, normal service times, lower-speed service times, delay periods, and repair
times. Subsequently, generating functions (GFs) for the orbit size corresponding to different server states are derived,
along with the probability generating function (PGF) for the number of consumers present in the system and the orbit.

3.1 The steady state equations

In steady state, we presume that An(0) = 0, An(∞) = 1, S1, n(0) = 0, S1, n(∞) = 1 and S2, n(0) = 0, S2, n(∞) = 1 are
continuous at ap = 0 andW1, n(0) = 0, W1, n(∞) = 1, and R1, n(0) = 0, R1, n(∞) = 1,Vn(0) = 0, Vn(∞) = 1 are continuous
at ap = 0. Therefore, we define the hazard rate functions An(ap), S1, n(ap), S2, n(ap), Vn(ap), W1, n(ap), R1, n(ap) for
retrial, normal service, optional re-service, lower rate service, delayed repair and repair, respectively.

An(ap)dap =
dAn(ap)

1−An(ap)
; S1, n(ap)dap =

dS1, n(ap)

1−S1, n(ap)
;

S2, n(ap)dap =
dS2, n(ap)

1−S2, n(ap)
; Vn(ap)dap =

Vn(ap)

1−Vn(ap)
;

W1, n(ap)dap =
dW1, n(ap)

1−W1, n(ap)
; R1, n(ap)dap =

R1, n(ap)

1−R1, n(ap)
.

Further, let A0
n(t), S0

1, n(t), S0
2, n(t), V 0

n (t), W 0
1, n(t), R0

1, n(t) be the elapsed retrial, elapsed regular service, elapsed
optional re-service, elapsed working vacation, elapsed delay repair and elapsed repair time period at time t. Additionally,
generate the random variable,

P(t) =



0, when the server is idle
1, server is busy (providing service and re-service)
2, server is on vacation
3, server is delayed repair and providing normal service and optional re-service
4, server is repair and providing normal service and optional re-service.

We also note that the states of the system at time t can be described by the bi-variate Markov process {∆(t), P(t); t ≥
0} where P(t) denotes the server state (0, 1, 2, 3, 4) depending on whether the server is idle, busy, optional re-service, on
vacation, on delay repair, or repair. P(t) denotes the number of customers in the orbit. If ∆(t) = 0 and P(t)≥ 0, then A0

n(t)
represents the elapsed retrial time. If ∆(t) = 1 and P(t)≥ 0 then S0

1, n(t)( S0
2, n(t)) corresponds to the elapsed time of the

customer being served(re-served). If ∆(t) = 2 and P(t)≥ 0, then it corresponds to the elapsed vacation time. If ∆(t) = 3
and P(t) ≥ 0, then W 0

1, n(t) is corresponding to the elapsed delay repair time. If ∆(t) = 4 and P(t) ≥ 0, then R0
1, n(t) is

corresponds to the elapsed repair time.
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Theorem 3.1 The embedded Markov Chain {Fn/n ∈ N} is ergodic if and only if ρ < 1 for this system to be
steady, where

ρ =

(
X∗(λ )−λ

[
E(Y1)

[
1+ψ1 (E(Z1))

]
+hE(Y2)

[
1+ψ2 (E(Z2))

]
+ xE(Z)

])

Proof. It is easy to verify the necessary condition of ergodicity by using Foster’s criteria [25], which asserts that the
chain {Fn; n ∈ N} is an irreducible and aperiodic chain. Assuming a non-negative measure e(ε), ε ∈ N and ε > 0, the
MC is ergodic, and mean value δε = E[e(vn+1)− e(vn)/vn = ε]  with the limited exception ε ′s, ε ∈ N and δε ≤− ∈ for
all ε ∈ N. In this case, were considering e(ε) = ε. then we get

δε =

{
ρ −1, if ε = 0

ρ −H∗
1 (η) if ε = 1, 2, ...

However, it is obvious that ergodicity is required by ρ < 1.
As said by Humblett et al. [26], if theMC {Fn; n∈N}matches Kaplan’s status, generally δε <∞ ∀ ε ≥ 0 and ∃ ε0 ∈N

s.t δε ≥ 0 for ε ≥ ε0, the prerequisite is satisfactory. W = (wkε) is the unit-step transition matrix (UTM) of {Fn; n ∈ N} for
ε < k− i and k > 0, whereW = (wkε) is the UTM of {Fn; n ∈ N}. The MC’s non-ergodicity of is provided by ρ ≥ H∗

1 (η).

Let {tn; n = 1, 2, ...} represent the sequence of epochs that either result in the end of the service period or in a shorter
service term. then we have to generate a random vector sequence Fn = {∆(tn+), P(tn+)}. As a result of Theorem 3.1
{Fn; n ∈ N} is ergodic iff τ < H∗

1 (η) which means that for our system to be stable.
For the method {P(t), t ≥ 0}, we specify the probabilities P0(t)=P{∆(t) = 0, P(t) = 0} and the prob. densities are

An(ap, t)dap = P{∆(t) = 0, P(t) = n, ap ≤ An(t)< ap +dap}, for t ≥ 0, ap ≥ 0 and n ≥ 1.

Si, n(ap, t)dap = P{∆(t) = 1, P(t) = n, ap ≤ Si, n(t)< ap +dap}, for t ≥ 0, ap ≥ 0, i = 1, 2 and n ≥ 0.

Vn(ap, t)dap = P{∆(t) = 2, P(t) = n, ap ≤Vn(t)< ap +dap}, for t ≥ 0, ap ≥ 0, and n ≥ 0.

W1, n(ap, t)dap = P{∆(t) = 3, P(t) = n, ap ≤W1, n(t)< ap +dap}, for t ≥ 0, ap ≥ 0, and n ≥ 0.

R1, n(ap, t)dap = P{∆(t) = 4, P(t) = n, ap ≤ R1, n(t)< ap +dap}, for t ≥ 0, ap ≥ 0, and n ≥ 0.

We presume that the stability requirement is satisfied in the sequel, so we may assign P0 = limt→∞P0(t) and limiting
densities are

An(ap) = lim
t→∞

An(ap, t); Si(ap) = lim
t→∞

Si(ap, t)(i = 1, 2); Vn(ap) = lim
t→∞

Vn(ap, t);

W1(ap) = lim
t→∞

W1(ap, t); R1(ap) = lim
t→∞

R1(ap, t).
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4. Probability metrics
The following are various probability metrics for the server (idle, busy, repair, delayed repair and vacation).
pi(0, t) is the probability that the system is idle.
An(ap, t) is the number of customers in the orbit with the elapsed retrial time.
S1, n(ap, t) is the probability number of customer in the orbit and getting services.
S2, n(ap, t) is the probability of number of customer in the orbit and getting additional services.
W1, n(ap, bd , t) is the probability that the waiting time and optional re-service time of the customer when the server

is breakdown (server under repair).
R1, n(ap, bd , t) is the probability of getting chance that n clients in the orbit with the elapsed service time during the

delayed repair time of the server.
Vn(ap, t) is the probability of getting chance that number of customer in the orbit with the working vacation.
In general, the delay is denoted by bd and time is denoted as t. The following stability conditions satisfied the

conditional probabilities of:

P0 = lim
n→∞

P0(t), for t ≥ 0 (1)

S1, n(ap, t) = lim
n→∞

S1, n(ap, t), for t ≥ 0, ap ≥ 0, n ≥ 0 (2)

W1, n(ap, bd , t) = lim
n→∞

W1, n(ap, bd , t), for t ≥ 0, ap ≥ 0, bd ≥ 0 (3)

R1, n (ap, bd , t) = lim
n→∞

R1, n (ap, bd , t) , for t ≥ 0, ap ≥ 0, bd ≥ 0 (4)

Vn(ap, t) = lim
n→∞

Vn(ap, t), for t ≥ 0, ap ≥ 0 exist. (5)

Construct the stability conditions of equations (1) to (5) are

λP0 = (1−Pl)

[
u
∫ ∞

0
S1, n(ap, t) µ1(ap)dap+

∫ ∞

0
S2, n(ap, t) dap

]
+
∫ ∞

0
Vn(ap, t)ap (pl)dap,

0 ≤ l ≤ n, l ≤ θ ≤ n (6)

dPl(ap)

da
+(λ +Pl(ap))Pl(ap) = 0. (7)

Consider the equations (2) to (5) , we have
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d S1, n(ap, t)
dap

+

[
λ +ψ0(1)+µ1(ap)

]
S1, n(ap, t) =

∫ ∞

0
γ1S1, 0(ap, bd)dbd (8)

d S2, n(ap, t)
dap

+

[
λ +ψ1 +µ1(a)

]
S1, n(ap, t) = λ

n

∑
θ=1

(λ +ψ1)S1, n(ap, t)+
∫ ∞

0
γS1, l(1, bd)dbd . (9)

In case of break down we have the following equations

dW 1, n(ap, bd , t)
dbd

+(λ + τns (t))W1, n(ap, bd , t) = 0. (10)

Substitute the arrival rate and characteristic function in equation (10), we get

dW1, n(ap, bd , t)
dbd

+(λ + τns (t))W1, n(ap, bd , t) = λ
n

∑
θ=1

(λ +ψ1)W1, n−1(ap, bd , t) (11)

dW2, n(ap, bd , t)
dbd

+(λ + τds (t))W2, n(ap, bd , t) = 0. (12)

By substituting arrival rate and characteristic function in equation (11), we get

dW2, n(ap, bd , t)
dbd

+(λ + τds (t))W2, n(ap, bd , t) = λ
n

∑
t=1

(λ +ψ1)W2, n(ap, bd , t) (13)

dR1, 0(ap, bd)

dbd
+(λ + τns (t))R1, 0(ap, bd) = 0. (14)

By substituting arrival rate and characteristic function in equation (14), we get

dR1, l(ap, bd)

dbd
+(λ + τns (t))R1, l(ap, bd) = λ

n

∑
θ=1

(λ +ψ1)R1, l−θ (ap, bd), 0 ≤ l ≤ n, l ≤ θ ≤ n. (15)

dR2, 0(ap, bd)

dbd
+(λ + τds (t))R2, 0(ap, bd) = 0. (16)

By substituting arrival rate and characteristic function in equation (16), we get
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dR2, l(ap, bd)

dbd
+(λ + τds (t))R2, l(ap, bd) = λ

n

∑
θ=1

(λ +ψ1)R2, l−θ (ap, bd), l ≤ θ ≤ n. (17)

dR2, 0(ap, bd)

dbd
+(λ + τos (t))R2, 0(ap, bd) = 0. (18)

By substituting arrival rate and characteristic function in equation (18), we get

dR2, l(ap, bd)

dbd
+(λ + τos (t))R2, l(ap, bd) = λ

n

∑
θ=1

(λ +ψ1)R2, l−θ (ap, bd) (19)

dR2, 0(ap, bd)

dbd
+(λ + τors (t))R2, 0(ap, bd) = 0 (20)

dR2, l(ap, bd)

dbd
+(λ + τors (t))R2, 0(ap, bd) = λ

n

∑
θ=1

(λ +ψ1)R2, l−θ (ap, bd) (21)

dVn(ap, t)
dap

+(λ +u(ap))Vn(ap, t) = 0 (22)

dVn(ap, t)
dap

+(λ +ap (pl)dap)Vn(ap, t) = 0 (23)

dVn(ap, t)
dap

+(λ +ap (pl)Vn(ap, t) = λ
n

∑
θ=1

(λ +ψ1)Vn−1(ap, t). (24)

The boundary conditions for the steady state are
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P0(0, t) =
∫ ∞

0
Vn(ap, c)ap (pl)dap +(1− x)

[
u
∫ ∞

0
S1, n(ap, t)µ1(ap)dap (25)

+(1− x)
∫ ∞

0
S2, n(ap, t)µ2(ap)dap −λP0

]
(26)

S1, n (ap, t) =
∫ ∞

0
Pl+1 (ap)x(ap)dap +λDl+1P◦+λ

n

∑
θ=1

Dθ

∫ ∞

0
Pl−(θ−1)(a)dap, T1 ≤ Dθ ≤ T2 (27)

S2, n(ap, t) = u
∫ ∞

0
S1, n(ap, t)µ1(ap)dap (28)

W1, n(ap, bd , t) = ψ1S1, n(ap, t) (29)

W2, n(ap, bd , t) = ψ2S2, n(ap, t) (30)

W1, n(ap, bd , T1) = ψ1S1, n(ap, t) (31)

W2, n(ap, bd , T2) = ψ2S2, n(ap, t) (32)

R1(ap, 0, t) =
∫ ∞

0
S1, n(ap, t)ap (pl)(bd)dbd (33)

Contemporary Mathematics 752 | Saravanarajan MC, et al.



R2(ap, 0, t) =
∫ ∞

0
S2, n(ap, t)ap (pl)(bd)dbd (34)

R1(ap, 0, T1) =
∫ ∞

0
S1, n(ap, t)ap (pl)(bd)dbd (35)

R2(ap, 0, T2) =
∫ ∞

0
S2, n(ap, t)ap (pl)(bd)dbd (36)

Vn(ap, tbd) = u
∫ ∞

0
S1, n(ap, bd)µ1(ap)dap +

∫ ∞

0
S2, n(ap, bd)µ2(ap)dap (37)

Vn(ap, t) = xu
∫ ∞

0
S1, n(ap, t)µ1(ap)dap + x

∫ ∞

0
S2, n(ap, t)µ2(ap)dap (38)

Vn(ap, T1) = u
∫ ∞

0
S1, n(ap, bd)µ1(ap)dap +

∫ ∞

0
S2, n(ap, bd)µ2(ap)dap (39)

Vn(ap, T1) = xu
∫ ∞

0
S1, n(ap, t)µ1(ap)dap + x

∫ ∞

0
S2, n(ap, t)µ2(ap)dap. (40)

Finally the normalizing condition is

Po +
∫ ∞

0
Pl(ap)dap +

∫ ∞

0
S1, n(ap, t)dap +

∫ ∞

0
S2, n(ap, t)dap (41)

+
∫ ∞

0
Vn(ap)dap +

∫ ∞

0

∫ ∞

0
W1, n(ap, bd, t)dapdbd (42)

+
∫ ∞

0

∫ ∞

0
W2, n(ap, bd , t)dapdbd +

∫ ∞

0

∫ ∞

0
R1, l(ap, b)dapdbd +

∫ ∞

0

∫ ∞

0
R2, l(ap, b)dapdbd = 1 (43)

P(ap, T, t) = e−
∫
(1+x(ap))dap , T1 ≤ T ≤ T2. (44)

5. Steady state solutions
Solving the above the differential equations (7) to (24), we get

P(ap, t) = P(0, t)
[

1−X(ap)

]
e−λap (45)

P(bd , t) = P(0, t)
[

1−T (bd)

]
e−λbd (46)
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M1(ap, t) = M1(0, t)
[

1−T1(ap)

]
e−C1(t)ap (47)

M2(ap, t) = M2(0, t)
[

1−T2(ap)

]
e−C2(t)ap (48)

M1(bd , t) = M1(0, t)
[

1−T1(bd)

]
e−C1(t)bd (49)

M2(bd , t) = M2(0, t)
[

1−T2(bd)

]
e−C2(t)bd (50)

W1, n(ap, t) =W1, n(ap, t)
[

1−Wns(bd)

]
e−r(t)ap (51)

W2, n(ap, t) =W2, n(ap, t)
[

1−Wos(ap)

]
e−r(t)ap (52)

W1, n(bd , t) =W1, n(bd , t)
[

1−Wns(bd)

]
e−r(c)bd (53)

W2, n(bd , t) =W2, n(bd , t)
[

1−Wos(bd)

]
e−r(t)bd (54)

R1, n (ap, t) = R1, n (ap, t)
[

1−Srs(ap)

]
e−r(t)ap (55)

R2, n (ap, t) = R1, n (ap, t)
[

1−Sos(ap)

]
e−r(t)ap (56)

R1, n (bd , t) = R1, n (bd , t)
[

1−Srs(bd)

]
e−r(t)bd (57)

R2, n (bd , t) = R1, n (bd , t)
[

1−Sos(bd)

]
e−r(t)bd . (58)

In general,

Z(ap, t) = Z(0, t)
[

1−Z(ap)

]
e−r(t)ap (59)
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Z(bd , t) = Z(0, t)[1−Z(bd)]e−r(t)bd .

The sequence of random values F∗
i (h(Z)) along with Markov chain is ergodic and hence

A1(ap, t) = h(Z)+ψ1

[
1−C∗

1(h(Z))F
∗
1 (h(Z))

]

A2(ap, t) = h(Z)+ψ2

[
1−C∗

2(h(Z))F
∗
2 (h(Z))

]

and

h(Z) = λ (1−X(Z)).

From(27), we have

S1, n(ap, t) =
P(0, t)

t

[
X∗(λ )+(1−X∗(λ ))A(t)

]
+

λA(t)
t

P0. (60)

From (28)

S2, n(ap, t) = uM1(0, t)Y ∗
1 (X1(t)). (61)

Simplifying (29) to (32) and (50) to (53), we get

W1, n(ap, bd , t) = ψ1(M1(0, t))(1−Y1(ap))e−X1(t)ap (62)

W1, n(ap, bd , t) = ψ1M2(0, t)(1−Y2(ap))e−X2(t)ap . (63)

Simplifying (33) to (36) and (54) to (57), we get

R1(ap, 0, t) =W1, n(ap, bd , t) Z∗
1(r(t)) (64)

R2(ap, 0, t) =W1, n(ap, bd , t) Z∗
2(r(t)). (65)

From (37) to (40), we get
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Vn(0, t) = xuM1(0, t)Y ∗
1 (X1(t))+ xM2(0, t)Y ∗

2 (M2(t)). (66)

Hence,

P(0, t) =
π1u(t)
π2u(t)

(67)

π1u(t) = λP0

{
A(t)Y ∗

1 (X1(t))
[(

xhZ∗(λ0(t))+(1− x)h
)

Y ∗
2 (X2(t))+(xuz∗(λ0(t))+(1− x)u)

]
− t
}

and

π2u(t) =
{

t −{A(t)+(1−A(t))X∗(λ )}Y ∗
1 (X1(t))

[
(xhZ∗(λ◦(t))+(1− x)h)Y ∗

2 (X2(t))

+(xuZ∗(λ◦(t))+(1− x)u)
]}

.

From (47) to (50), we have,

M1(0, t) =
λA(t)

t
P0 +

P(0, t)
t

[(A(t)− (1−A(t))X1
∗(λ )] (68)

M2(0, t) = uλP0 +

[
(A(t)− (1−A(t))X1

∗(λ )
Gu(t)

]
y∗1X1(t). (69)

From (62) and (63), we obtain

W1, n(ap, bd , t) = ψ1

[
λP0(A(u)−1)X∗(λ )

π2u(t)

]
(1− y1(a))e−x1(t)ap (70)

W2, n(ap, bd , t) = ψ2uλP0

[
(A(u)−1)X∗(λ )

π2u(t)

]
(1− y2(a))e−x2(t)ap . (71)

From (64) and (65),

R1(ap, 0, t) = λP0ψ1

[
(A(t −1)X∗(λ )

π2u(t)

]
(1− y1(ap))e−x1(c)aw1

∗(r(t)) (72)
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R2(ap, 0, t) = λP0ψ1

[
(A(t −1)X∗(λ )

π2u(t)

]
(1− y2(ap))e−x2(t)aw2

∗(r(t)). (73)

From (66)

Vn(0, t) =
λP0

Gu(t)

(
(A(t)−1)X∗(λ )

)
(xu+ xuY ∗

2 (X2(t))Y ∗
1 (X1(t)).

The limiting probability generating functions of the following

P(ap, t) = λP◦

[
π1u(t)
π2u(t)

]
(1−X(ap))e−λap (74)

π1u(t) = A(t)Y ∗
1 (X1(t))

[
(xuZ∗(r(t))+(1− x)u)Y ∗

2 (X2(t))+(uZ∗(r(t))+(1− x)u)
]
− t

π2h(t) =
{

t −
{

A(t)+(1−A(t))X∗(λ )
}

Y ∗
1 (X1(t))

[
(xuZ∗(r(t))+(1− x)u)Y ∗

2 (X2(t))

+(xuZ∗(r(t))+(1− x)u)
]}

M1(ap, t) = λP0 +

[
(A(t)−1)X1

∗(λ )
π2u(t)

]
(1− y1(ap))e−X1(t)ap (75)

M2(ap, t) = λP0 +

[
(A(t)−1)X1

∗(λ )
π2u(t)

]
y∗1x1(t)(1− y2(a))e−X2(t)ap (76)

W1, n(ap, bd , t) = ψ1

[
λP0(A(u)−1)X∗(λ )

π2u(t)

]
(1− y1(ap))e−x1(t)ap(1−w1(bd))e−r(t)bd (77)

W1, n(ap, bd , t) = ψ2uλP0

[
(A(u)−1)X∗(λ )

π2u(t)

]
y∗1x1(t)(1− y2(ap))e−x2(t)ap(1−w2(bd))e−r(t)bd (78)

R1(ap, bd , t) = λP0ψ1

[
(A(t)−1)X∗(λ )

π2u(t)

]
(1− y1(ap)e−x1(t)apw1

∗(r(t))e−r(t)bd (79)

R2(ap, bd , t) = λP0ψ2

[
(A(t)−1)X∗(λ )

π2u(t)

]
y∗1x1(t)(1− y2(ap))e−x2(t)apw2

∗(r(t)))e−r(t)ap (80)
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Vn(ap, t) =
λP0

π2u(t)
((A(t)−1)X∗(λ ))(xu+ xuY ∗

2 (X2(t))Y ∗
1 (X1(t))(1− z(ap))e−r(t)ap . (81)

The partial probability generating functions are defined as

P(t) =
∫ ∞

0
P(ap, t)dap, M1(t) =

∫ ∞

0
M1(ap, t)dap, M2(t) =

∫ ∞

0
M2(ap, t)da, G1(ap, t)

=
∫ ∞

0
G1(ap, b, t)dap, G1(t) =

∫ ∞

0
G1(ap, t)dap,

W1, n(ap, t) =
∫ ∞

0
W1, n(ap, bd , t), W1, n(t) =

∫ ∞

0
W1, n (ap, t)da, R1(t) =

∫ ∞

0
R1(ap, t)dap,

R2 (ap, t) =
∫ ∞

0
R2 (ap, bd , t)dap, R2 (t) =

∫ ∞

0
R2 (ap, t)dap, V n(t) =

∫ ∞

0
Vn(t)(ap, t)dap.

Note that P(t), M1(t), M2(t), G1(t), G2(t), R1(t), R2(t), V (t) are the probability function of orbit size when the
server is idle, busy, re-service, repair on normal service, repair on re-service, delaying repair on normal service, delaying
repair on re-service, on vacation respectively.

π1u(t) = P0(1−X∗(λ ))
{

A(t)Y ∗
1 (X1(t))

[
(xuZ∗(r(t))+(1− x)u)Y ∗

2 (X2 (t))

+(xuZ∗(r (t))+(1− x)u)
]
− t
}

π2u(t) =
{

t −
{

A(t)+(1−A(t))X∗(λ )
}

Y ∗
1 (X1(t))

[
(xuZ∗h(t))+(1− x)uY ∗

2 (X2(t))

+(xuZ∗(r(t))+(1− x)u)
]}

S1(ap, t) = λP0

[
(A(t)−1)X1

∗(λ )
π2u(t)

][
(1− y∗1(x1(t)))

x1(t)

]
(82)

S2(ap, t) = λP0

[
(A(t)−1)X1

∗(λ )
π2u(t)

]
y∗1x1(t)

[
(1− y∗1(x1(t)))

x1(t)

]
(83)

W1(ap, t) = ψ1

[
P0(w∗

1r(u)−1)
π2u(t)

]
(1− y1(ap))e−x1(t)ap (84)
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W2(ap, t) = ψ2

[
P0(w∗

2r(u)−1)
π2u(t)

]
(1− y2(ap))e−x2(t)ap (85)

R1(t) = P0ψ1

[
(X∗(λ )z∗1µ(t)−1)

π2u(t)

][
1− y∗1x1(t)

x1(t)

]
(86)

R2(t) = P0ψ1u
[
(X∗(λ )z∗2µ(t)−1)

π2u(t)

][
1− y∗2x1(t)

y1(t)

]
(87)

Vn(c) =
P0x∗(λ )(y∗1x1(t)−1)

{
(xu+ xuY ∗

2 (X2(t)))
}
(z∗µ1(t)−1)

π2u(t)
. (88)

Since P0 is the probability that the server is idle when the server is idle and no customer in orbit, it is determined by
the following normalizing condition P0 +P(1)+π1(1)+π2(1)+M1(1)+M2(1)+R1(1)+R2(1)+Z(1) = 1.

Hence the probability generating functions of the number of customers in the system is

H(t) = P0 +P(t)+Vn(t)+ t
[

M1(t)+M2(t)+G1(t)+G2(t)+R1(t)+R2(t)
]

H(t) =
P0X∗(λ )Y ∗

1 (X1(t))(t −1)(u+Y ∗
2 (X2(t))

t − (A(t)+(1−A(t))X∗(λ ))
(
Y ∗

1 (X1(t))(xZ∗(r(t))+1− x)(u+hY ∗
2 (X2(t)

) .
Probability generating functions of the number of customers in the orbit is

H(0) = P0 +P(t)+V (t)+M1(t)+M2(t)+G1(t)+G2(t)+R1(t)+R2(t)

H(0) =
P0X∗(λ ){1− t}

t − (t +(1− t)∗(λ ))(Y ∗
1 (X1(t))(xZ∗(λ0(t))+(1− x))(u+hY ∗

2 (X2(t))
.

The average number of customers in the system Ls under steady state condition is
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Ls = lim
t→1

H
′
(t)

Ls =

(λE(A))2

[
E(Y 2

1 )(1+ψ1(E(Z1))
2 +hE(Y 2

2 )(1+ψ2(E(Y2))
2 + xE(Z2)+

2hE(Y1)(1+ψ1(E(Z1))+2xE(Y1)(1+ψ1(E(Z1)+E(Z))+2xhE(Y2)(1+ψ2E (Z2))

]

+2λE(A)


[E(Y1)(1+ψ1E(Z1))+hE(Y2)(1+ψ2E(Z2))+ xE(Z)][

λE(Y1)(1+ψ1(E(Z1))

+hE(Y2)(1+ψ2(E(Z2))

]
+X∗(λ )


2X∗(λ )−E(A){hE(Y2)(1+ψ2E(Z2)+ xE(Z)}λ

(
E(Y1)(1+ψ1(E(Z1))

+hE(Y2)(1+ψ2E(Z2))+ xE(Z)

) .

Average number of customers in the orbit Lq under steady state condition is obtained by

Lq = lim
t→1

H
′
(0)

Lq =

(1−X∗(λ ))E(A){[E(Y1)(1+ψ1(E(Z1)+hE(Y2)(1+ψ2(E(Z2)+ xE(Z)]}−

(λE(A))2

 E(Y 2
1 )(1+ψ1(E(Z1))

2 + tE(Y 2
2 )(1+ψ2(E(Z2))

2 + xE(Z2)+

2hE(Y1)(1+ψ1(E(Z1))E(Y2)(1+ψ2E(Z2)))+

2xE(Y1)(1+ψ(E(Z1))E(Z)+2xhE(Y2)(1+ψ2E(Z2))E(Z)−1


2{λE(A)(E(Y1)(1+ψ1(E(Z1)))+hE(Y2)(1+ψ(E (Z2))+ xE(Z))−X∗(λ )}

and probability that the server is idle during vacation and system as follows,

Vn(t) =
P◦X∗(λ )λE(A) [E(Y1) [1+ψ1(E(Z1)]+hE(Y2) [1+ψ2(E(Z2)]]

X∗(λ )−λE(A) [E(Y1) [1+ψ1(E(Z1))]+hE(Y2) [1+ψ2(E(Z2)]+ xE(Z)]

P0 (t) = P0 (1) =
E(A)

(
X∗(λ )−λ

[
E(Y1)

[
1+ψ1 (E(Z1))

]
+hE(Y2)

[
1+ψ2 (E(Z2))

]
+ xE(Z)

])
X∗(λ )

. (89)

6. System state probabilities and system performance metrics
In this section, various system states like server busy, when the server is idle, server under repair, delayed repair and

working vacation is analyzed.
By substituting t = 1 in (82) to (88) and applying L-Hospital’s rule whenever necessary
(i) Let Sn be the steady-state probability when the server is busy

Contemporary Mathematics 760 | Saravanarajan MC, et al.



Sn =λP0

[
(A(x)−1)X1

∗ (λ )
π2u(t)

][
(1− x∗1(E(Y1))E(A)

x1 (t)

]
(90)

+λP0

[
(A(y)−1)X1

∗(λ )
π2u(t)

]
y∗1x1(t)

[
(1− y∗1(E(X1))E(A))

x1(t)

]
. (91)

(ii) LetWn be the steady-state probability of the server is in working vacation

Wn =ψ1 (1− y1 (ap))e−x1(t)ap +ψ2(1− y2(ap))e−x2(t)ap . (92)

(iii) Let Rn be the steady-state probability that the server is under delaying repair

Rn (1) =P0ψ1

[
X∗(λ )z∗1E(X1)E(A)−1)

π2

][
1− y∗1E(X1)E(A)

π1

]
(93)

+P0ψ1

[
X∗(λ )z∗1E(Y1))E(A)−1)

π2

][
1− y∗1E(X1)E(A)

π1

]
. (94)

(iv) Let Vn be the steady-state probability that the server is under repair,

Vn =

P0x∗(λ )(y∗1E(X1)E(A)−1)
{
(xu+ xuY ∗

2 (X2(t))
}
(z∗E(X1)E(A)−1)

π2
. (95)

7. Special cases
This section deals with a few special cases of our approach which leads to some concrete applications.
Case (i): No Repair, No working vacation, and No retrial then this model can be reduced to a non-Markovian queue

with optional service whose results coincide with Sundari and Maragatha [27].
Case (ii): No Repair, No optional re-service, then this model can be reduced to the unreliable retrial queueing system

with working vacation whose results coincide with Bharathi shanmugam [5].

8. Numerical results
In this section, we show the various settings on system behavior measurements using MATLAB. We investigate

exponentially distributed retrial, service, and optional re-service times. The stability criteria are satisfied by selecting the
numerical measurements at random.

As the arrival rate λ , S1(1), V (1) and Wq escalates, P0 and Lq diminish for the value of ψ1 = 0.6, ap = 5, τns =

3, τds = 4, τos = 0.2, and pr = 0.8 which is depicted in Table 1.
As the lower service rate ψ1(1) increases Lq, Wq also increases and P0, W (1) and R(1) diminish for the values of

λ = 2, ap = 5, τns = 3, τds = 4, τos = 0.2, and pr = 0.8 which is presented in Table 2.
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Table 3 displays that as repair rate (ap) rises P0, Lq, S1(1) andWq also escalates yet, R(1) diminish for the values of
ψ1 = 0.8, λ = 2, τns = 3, τds = 4, τos = 0.2, and pr = 0.8.

Table 1. The effect of arrival rate (λ ) on S1(1), V (1),Wq, P0, Lq

Arrival rate (λ ) P0 Lq S1(1) V (1) Wq

2.1 0.0075 0.5186 0.0208 0.0198 0.2468
2.2 0.0067 0.5713 0.0234 0.0213 0.2596
2.3 0.0061 0.6341 0.0264 0.0229 0.2748
2.4 0.0055 0.7105 0.0301 0.0251 0.2960
2.5 0.0052 0.8051 0.0346 0.0277 0.3224

Table 2. The effect of lower service rate (ψ1) on Lq,Wq, P0,W (1), R(1)

Lower service rate (ψ1) P0 Lq W (1) R(1) Wq

0.6 0.0354 5.4383 0.1365 0.0090 5.4382
0.7 0.0344 6.2446 0.1162 0.0084 6.2446
0.8 0.0334 6.7839 0.1004 0.0079 6.7840
0.9 0.0325 7.1439 0.0867 0.0075 7.1439
1.0 0.0315 7.3796 0.0773 0.0070 7.3796

Table 3. The effect of repaie rate (ap) on P0, Lq, S1(1),Wq, R(1)

Breakdown rate (ap) P0 Lq S1(1) R(1) Wq

3.1 0.0118 1.1824 0.0165 0.0127 11.8241
3.2 0.0119 1.1966 0.0167 0.0125 11.9662
3.3 0.0121 1.2107 0.0169 0.0124 12.1074
3.4 0.0122 1.2248 0.0170 0.0123 12.2480
3.5 0.0124 1.2388 0.0172 0.0121 12.3883

In Figure 2, for the values of ψ1 = 0.8, λ = 2, τns = 3, τds = 4, τos = 0.2, and pr = 0.8, the influence of the distinct
system parameters are displayed via 2-D graph. Figure 2 (a), displays that as arrival rate λ rises S1(1), V (1) and Wq

also escalates, yet P0 and Lq diminish. In Figure 2 (b), we found that as the lower service rate ψ1(1) rises Lq, Wq also
increases, however P0,W (1) and R(1) diminish. In Figure 2 (c), we found that as the breakdown rate (ap) elevates P0, Lq,

S1(1), Wq escalates, yet R(1) diminish.
Figure 3 shows the three-dimensional graph that depicts the system performance measures. In Figure 3 (a), the

surface displays that as the arrival rate λ escalates, Lq, Wq also increase. In Figure 3 (b), we found that as the lower
service rate ψ1, escalates, Lq, andWq also increase. In Figure 3 (c), we found that as the breakdown rate ap increases, then
P0, Lq, also increases.

The aforementioned numerical findings allow us to determine the impact of features on the system’s assessment
criteria, and we can be sure that the results are appropriate for real-world situations.

Contemporary Mathematics 762 | Saravanarajan MC, et al.



Figure 2. Two dimensional graph
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Figure 3. Three dimensional graph

9. Cost optimization
Optimization is the process of choosing the set of inputs to an objective function that yields the highest or lowest

result. Cost optimization is the process of continuously concentrating on a business’s operations to reduce expenditures
and costs while also raising the firm’s worth. It necessitates getting the best terms and prices on all business transactions
in addition to standardizing, streamlining, and rationalizing platforms, apps, processes, and services. The link between
the system’s profit and operating costs is rather close in a scenario that more closely reflects real life. This means that
in order to maximize the profitability of the system, the main duty of system developers or administrators is to reduce
the amount of money spent on operations for each unit of time. Here, our main goal is to identify the characteristics that
enable us to calculate the optimal average cost per unit of time (CPUT). We want to accomplish this aim by including cost
functionality in this section of our established model to make it more cost-effective.

To find the optimal values for the parameters, which include the service and vacation rate (ξb, ξw) by employing a
cost optimization technique. In the projected cost function, it is assumed that the various system activities and the various
cost components related to those activities have a linear connection.

The following is a definition of each of the cost element variables that are included in finding the expected The
following defines each cost element variable included in determining the expected total cost function (TC) (ξb, ξw) per
unit of time.

Gh =⇒ Holding costs in the system for a predetermined amount of time

Gb =⇒ CPUT during regular service operation

Gw =⇒ CPUT unit for normal re-service operation

Gd =⇒ CPUT while the server is in lower service operation

Gr =⇒ Cost of acquiring customers while performing server repair
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G1 =⇒ Cost per customer during busy hours

G2 =⇒ Cost per customer while on vacation.

The cost function’s predictions are stated as

TC(ξb, ξw) = GhLq +GbSn +GwWn +GdRn +GrVn +C1ξb +G2ξw. (96)

Due to its substantial non-linearity, the cost function shown in 96 is difficult to optimize analytically. Thus, we use
a heuristic technique to minimize the overall cost, which is dependent on the service and vacation rates ξb and ξw.

Our main objective is to minimize the total cost function while determining the best service rate (ξ ∗
b ) during busy

mode and the optimal service rate (ξ ∗
w) during vacation mode.

In mathematical terms, the problem of minimizing costs is stated as follows:

TC(ξ ∗
b , ξ ∗

w) = min
ξ ∗

b , ξ ∗
w

TC(ξb, ξw).

Further, the cost components mentioned in Table 4 are employed to provide a graphical representation of the cost
function’s sensitivity analysis.

Table 4. Cost sets for the purpose of cost analysis

Cost set Gh Gb Gw Gd Gr C1 C2

Set 1 80 78 92 100 89 90 75
Set 2 50 69 90 86 75 85 80
Set 3 60 80 85 90 75 90 105

9.1 Particle swarm optimization (PSO)

Particle Swarm optimization (PSO) is a computational algorithm inspired by the social behavior of birds flocking
or fish schooling. It was introduced in 1995 by Kennedy [28]. The objective of its development was to optimize a
function that is fundamentally non-linear. It is widely used for optimization tasks due to its simplicity and effectiveness in
finding optimal solutions in complex, multi-dimensional spaces. It is easy to implement and requires minimal parameter
tuning. PSO quickly converges to optimal or near-optimal solutions. It works well in both constrained and unconstrained
optimization problems across diverse fields.

In the context of cost optimization, PSO operates by initializing a swarm of particles, each representing a potential
solution within the defined search space. Each particle adjusts its position based on its own best-known position and
the best-known position of the entire swarm, iteratively moving toward regions of the search space that offer lower cost
values. This process continues until a predefined stopping criterion is met, such as a maximum number of iterations or
a satisfactory cost threshold. PSO’s ability to efficiently navigate complex, non-linear, and multi-modal cost landscapes
makes it a powerful tool for cost optimization across various applications.
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Upadhyaya [29] extended this strategy to optimize costs in a discrete-time retrial queue (RQ) with Bernoulli feedback
and initial failure. Zhang et al. [30] proposed computational and cost-effective solutions for a single-server recurrent
system with state-dependent service using a PSO-based algorithm. For further insights into the functioning of PSO, the
study by Malik et al. [31] has been referenced. Harini [32] addressed the dynamical behavior and meta-heuristic
optimization of a hospital management software system in her research.

9.2 PSO implementation

PSO is applied to queueing models by representing system parameters (e.g., arrival rates, service rates) as particles.
The fitness function evaluates performance metrics like cost or waiting time. Particles update their positions based on
individual and group best solutions, iterating until the optimal configuration is found.

9.2.1Steps involved

• Problem representation: Encode queue parameters as particles.
• Cost function: Combine metrics like operating costs and customer dissatisfaction.
• Initialization: Randomly initialize particle positions and velocities.
• Fitness evaluation: Compute the cost for each particle using the queue model.
• Update particles: Adjust velocities/positions using inertia, personal best, and global best.
• Stopping criteria: End when iterations reach a limit or improvement stagnates.
• Optimal solution: Extract the best particle (minimum cost).
Thus, by establishing the following settings for the default parameters, ψ1 = 0.6, τns = 3, τds = 4 and τos = 0.2 we

were able to optimize the cost. It is assumed that the lower bound is 1 and the upper bound is 7. The equivalent values of
50, 100, 2, and 5 have been specified for the number of repetitions, population size, inertial weight, and both acceleration
factors respectively. The impact of λ , pr, ap including Gh, Gb, Gw, Gd , Gr, G1, and G2, on the ideal service rates and
optimal total cost for each of the three cost sets is shown in Table 5.

Further, the pseudo-code for the PSO algorithm is provided in Alg-1. In addition, the PSO method is mathematically
described by the iterative adjustment of particles (potential solutions) in a search space to minimize a given cost function
is given as follows:

Mathematical Model
1. Initialization
• A swarm of n particles is initialized randomly, with each particle representing a potential solution to the optimization

problem.
• Each particle i has a position vector Xi(t) and velocity vector Vi(t).
2. Update Rules
• The velocity Vi(t +1) is updated using

Vi(t +1) = wVi(t)+ c1r1(Pi −Xi(t)+ c2r2(G−Xi(t)

where
w = the inertia weight;
c1 and c2 = cognitive and social coefficients;
r1 and r2 = random numbers between 0 and 1;
Pi = the personal best position of particle i;
G = the global best position among all particles.
• The position Xi(t +1) is updated as
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Xi(t +1) = Xi(t)+Vi(t +1).

3. Objective Function and Termination:
• The cost function is given in eqn. 99 is further minimized.
• The algorithm continues iterating until a stopping criterion is met, such as the maximum number of iterations or

convergence of the cost function.
4. Output:
The optimal service rates ξ ∗

b and ξ ∗
w and the total cost TC(ξ ∗

b , ξ ∗
w) are finally obtained.

Algorithm 1 Pseudo Code of PSO Algorithm
INPUT: Objective function = TC(ξb, ξw), acceleration factors, inertia weight and Maximum number of iterations.
OUTPUT: The cost function’s value TC(ξ ∗

b , ξ ∗
w).

Step 1: Finding initial locations Xi for the n particles in a population.
Step 2: Determine G(g-best) using best(min) as the TC {P1, ..., Pn}.
Step 3: While (t < Maximum Generation),

for loop over all n particles and all d dimensions.
Step 4: Obtain the new velocity for ith particle Vi(t +1).
Step 5: Obtain the new locations for ith particle Xi(t +1) = Xi(t)+Vi(t +1).
Step 6: Check the objective function at new locations Xi(t +1).
Step 7: Discover the current best (p-best) for each particle Pi.
end for
Step 8: Upgrade global best G.
end while.
Step 9: Deliver the optimal value of the objective function TC.

Table 5. Effect of λ , pr, ap on (TC∗, ξ ∗
b , ξ ∗

w) using PSO

Parameters (TC∗, ξ ∗
b , ξ ∗

w)

Cost set 1 Cost set 2 Cost set 3

2.1 (118.5891, 2.9482, 1.2210) (82.9358, 2.2012, 1.2019) (65.2104, 2.1022, 1.3391)
λ 2.2 (112.3049, 2.1039, 1.2039) (84.3049, 2.2039, 1.1029) (67.2093, 2.2034, 1.5559)

2.3 (115.2031, 2.4530, 1.0214) (86.0981, 2.2092, 1.0291) (68.2029, 2.2094, 1.3029)

0.7 (110.0937, 2.0388, 1.1021) (82.0921, 2.2919, 1.9292) (66.9482, 2.2029, 1.1021)
pr 0.8 (110.0932, 2.4852, 1.0847) (82.4821, 2.9409, 1.2091) (66.4974, 2.0298, 1.0928)

0.9 (111.2659, 2.9485, 1.0912) (83.9021, 2.8868, 1.2837) (66.0821, 2.0019, 1.2837)

3.1 (110.1093, 2.1029, 1.3891) (82.3873, 2.8491, 1.3078) (66.9830, 2.3810, 1.2074)
ap 3.2 (110.8748, 2.9739, 1.3012) (82.0741, 2.8379, 1.9286) (66.0181, 2.0381, 1.3901)

3.3 (110.0491, 2.3901, 1.1093) (82.9041, 2.2938, 1.9085) (66.9301, 2.2883, 1.0984)

The analysis of PSO optimization results in Table 5 demonstrates that parameters such as re-service probability
(pr) and breakdown rate (ap) is highly sensitive, causing significant cost variations, while the arrival rate (λ ) shows
moderate sensitivity. To enhance long-term operational efficiency, managing (pr) through improved first-service quality
and reducing (ap) via preventive maintenance and rapid repairs is crucial. The optimization highlights the need for
dynamic resource allocation to balance service and vacation rates under changing conditions. Managers should prioritize
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monitoring (pr) and (ap), invest in infrastructure reliability, and adopt flexible strategies to mitigate cost impacts, ensuring
sustainable and efficient system operations.

9.3 Advantages of PSO

PSO offers several advantages over traditional optimization methods, making it particularly effective for cost
optimization. Its simplicity and ease of implementation allow for quick deployment and adaptation to various problems.
PSO’s robustness and flexibility enable it to handle a wide range of optimization problems, including those with non-
linear, non-differentiable, and multi-modal cost functions. The algorithm’s global search capability effectively balances
exploration and exploitation, enabling it to search the entire solution space and avoid local optima. Additionally, PSO’s
computational efficiency allows for faster convergence to optimal solutions, which is beneficial in time-sensitive cost
optimization applications. These advantages make PSO a powerful and effective tool for cost optimization and are often
superior to traditional optimization methods.

Moreover, PSO stands out by not requiring gradient information, making it ideal for discontinuous or non-
differentiable objective functions. Unlike genetic algorithms that rely on evolution-based operations like crossover
and mutation, PSO uses collaborative interactions between particles, leveraging personal and global best solutions.
Additionally, PSO retains the memory of past solutions, enabling informed updates, unlike techniques like simulated
annealing that reset search strategies. These features make PSO a versatile and efficient tool for solving complex
optimization challenges.

9.4 Convergence in PSO

In cost optimization within queueing models, convergence refers to the process where an optimization algorithm
iteratively adjusts system parameters to minimize a defined cost function. This function typically encompasses various
factors, including operational expenses, customer waiting times, and service quality metrics. The goal is to achieve a stable
state where further adjustments do not yield significant improvements, indicating that the optimal or near-optimal cost
configuration has been reached. Achieving convergence is crucial for effective decision-making in managing queueing
systems, as it ensures that the implemented strategies lead to sustainable and efficient operations.

The convergence plots for the cost function across the three parameters displayed in Figure 5 show a rapid decrease
in the best cost within the first few iterations, indicating the efficiency of the PSO algorithm in quickly finding near-
optimal solutions. After some pre-defined iterations, the cost stabilizes, suggesting convergence to a global or near-global
minimum. The smoothness of the curves beyond this point reflects the algorithm’s ability to refine solutions without
significant fluctuations, demonstrating its reliability and robustness in optimization. Furthermore, Figure 4 illustrates the
cost function’s convexity and optimality with regard to the three cost sets taken into account in the optimization research.
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Figure 4. Optimality of the cost function using PSO

Figure 5. Convergence of the cost function using PSO
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10. Conclusion
In this study, we present a comprehensive queueing model that integrates several advanced features, including

single arrivals, a retrial mechanism, optional re-service, working vacations, and delayed repair scenarios. To analyze the
dynamics of the system, we employ the supplementary variable technique, providing deeper insights into its behavior
and performance metrics. Additionally, we incorporate Particle swarm optimization (PSO) to optimize the system’s
cost structure, identifying the optimal balance between operational costs and efficiency. The results from the PSO
optimization highlight key cost-reduction strategies and demonstrate how the model can be fine-tuned to improve
operational performance. Finally, these findings contribute to advancing queueing theory and offer practical implications
for optimizing real-world systems. Future research could further refine the model by exploring multi-server scenarios or
investigating alternative optimization techniques for broader applications.
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