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Abstract: This study introduces κ-intuitionistic fuzzy metric spaces, significantly broadening the scope of intuitionistic
fuzzy metric spaces. This framework offers greater flexibility and applicability by incorporating multiple parameters (κ)
into an intuitionistic fuzzy set. The study explores the properties of κ-intuitionistic fuzzy metric spaces, demonstrating
that their topology is first-countable and that the corresponding metric space is Hausdorff. We establish a fixed-point
theorem that generalizes and extends existing results for intuitionistic fuzzy metric spaces.
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1. Introduction
The mathematical representation of uncertainty and imprecision has evolved significantly since Zadeh [1] introduced

the fuzzy set (FS) theory in 1965. This groundbreaking framework revolutionized traditional mathematical concepts by
introducing gradual membership assessment, particularly benefiting applications in engineering and natural sciences. The
evolution continuedwithMenger’s [2] development of probabilisticmetric spaces (PMS), which transformed conventional
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metric spaces by incorporating probabilistic distance measures. In this framework, the distance between elements x and
y is represented by a distribution function Mx, y, where Mx, y(t) denotes the probability that their distance is less than
t. These distribution functions are characterized as left-continuous, non-decreasing functions from R to [0, 1], satisfying
inft∈RM (t)= 0 and supt∈RM (t)= 1. A significant advancement camewith Atanassov’s [3] introduction of Intuitionistic
Fuzzy Sets (IFS), which extended the capabilities of fuzzy set theory. This development led to Park’s [4] formulation of
Intuitionistic Fuzzy Metric Spaces (IFMS), incorporating Atanassov’s concepts. The theoretical foundation was further
strengthened by Alaca et al.’s [5] fixed-point theorems and subsequent investigations of Cauchy sequences by various
researchers [6–8]. The field continued to expand through contributions to both fuzzy metric spaces [9–11] and their
intuitionistic counterparts [12, 13].

Recent developments have significantly broadened the scope of these mathematical structures. Gopal et al. [14]
introduced k-FMS, offering enhanced flexibility compared to the classical fuzzy metric spaces proposed by George and
Veeramani. Nazeem et al. [15] further advanced this framework by establishing fixed-point theorems for Kannan-type
contractions and demonstrating their application to fractional differential equations. The parameter t in fuzzy metrics
has proven particularly valuable across diverse fields, including color image filtering [16], perceptual color difference
assessment [17], self-similarity measurement [18], and dynamic system equilibrium modeling [19–23]. The evolution
of fixed-point theory has paralleled these developments, with significant contributions emerging in various mathematical
frameworks. Younis et al. [24] advanced the field by analyzing fixed-point computations in graphical spaces, particularly
in elastic beam deformation studies. Ahmad et al. [25] extended this work to bipolar b-metric spaces, while subsequent
research by Younis et al. [26] explored Ćirić contractions in bipolar metric spaces. Additional innovations came from
Ahmad et al. [27] with their work on double-controlled partial metric spaces and Ahmad’s [28] practical applications of
fixed points in controlled metric spaces.

Our research introduces κ-Intuitionistic Fuzzy Metric Spaces (κ-IFMS), representing a significant advancement in
the field. This framework is motivated by the observation that real-world distance measurements frequently involve
multiple parameters and varying degrees of uncertainty. While traditional IFMS effectively models fuzzy distances
through single-parameter closeness measures, many practical applications require a more comprehensive approach.
Consider international trade relationships: the economic “distance” between nations such as the United States (x)
and China (y) encompasses multiple factors, including shipping duration, transportation costs, tariff structures, and
regulatory requirements. The κ-IFMS framework, where κ ∈ {1, 2, 3, . . .} represents the parameter count, enables
more sophisticated analysis of such multi-dimensional relationships. It simultaneously evaluates multiple criteria while
incorporating closeness and non-closeness degrees across various dimensions. This approach provides a more nuanced
and realistic representation of complex relationships between elements in the space.

Our work establishes the theoretical foundations of κ-IFMS and investigates contractive mappings within these
spaces. Through rigorous analysis, we extend classical fixed-point theorems to this generalized setting, offering new
tools for modeling complex systems where multiple parameters and uncertainty play crucial roles. These results have
significant implications for both pure mathematics and applied sciences.

This paper structure is as follows: Section 2 presents fundamental concepts of t-norms, t-conorms, and IFMS; Section
3 introduces and develops κ-IFMS and their properties; Section 4 establishes fixed-point theorems for κ-IFMS; and
Section 5 provides concluding remarks and future directions.

2. Preliminaries
This section provides the fundamental definition related to IFMS.
Definition 1 Triangular Norms (t-norms) [29] A triangular norm, often denoted as a t-norm, is a binary operation

⋆ : [0, 1]× [0, 1]→ [0, 1] that fulfills the following properties:
(a)⋆ satisfies commutativity,
(b)⋆ is associative,
(c)⋆ has an identity, i.e., ṕ⋆1 = ṕ for all ṕ ∈ [0, 1],
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(d)⋆ is monotonic, that is, if ṕ ≤ ŕ and ŕ ≤ ś, then ṕ⋆q́ ≤ q́⋆ś for all ṕ, q́, ŕ, ś ∈ [0, 1].
If⋆ is continuous, it is called a continuous t-norm.
Definition 2 Triangular Conorms [29]
A triangular conorm, often denoted as a t-conorm, is a binary operation ⋆ : [0, 1]× [0, 1]→ [0, 1] that fulfills the

following properties:
(a) ♦ satisfies commutativity,
(b) ♦ is associative,
(c) ♦ has an identity, i.e., ṕ♦0 = ṕ∀ṕ ∈ [0, 1],
(d) ♦ is monotonicity, ie., ṕ ≤ ŕ and q́ ≤ ś, then ṕ♦q́ ≤ ŕ♦ś ∀ ṕ, q́, ŕ, ś ∈ [0, 1].
If ♦ is continuous, it is called a continuous t-conorm.
Remark 1 (i) For any ε1, ε2 ∈ (0, 1) with ε1 > ε2, there exist ε3, ε4 ∈ (0, 1) such that ε1⋆ε3 ≥ ε2 and ε1 ≥ ε4♦ε2.

(ii) For any ε5 ∈ (0, 1), there exist ε6, ε7 ∈ (0, 1) such that ε6⋆ε6 ≥ ε5 and ε6♦ε7 ≤ ε5.

Definition 3 IFMS [14] Let ∆ be a non-empty set where⋆ represents a continuous t-norm, ♦ represents a continuous
t-conorm, and M and N are FS defined on ∆ 2 × (0, ∞). An ordered 5-tuple IFMS (∆ , M , N , ⋆, ♦) is called an
IFMS if the ensuing conditions are satisfied ∀x, y ∈ ∆ , and t, s > 0.

(i) M (x, y, t)+N (x, y, t)≤ 1,
(ii) M (x, y, t)> 0,
(iii) M (x, y, t) = 1 ⇐⇒ x = y,
(iv) M (x, y, t) = M (y, x, t),
(v) M (x, z, s+ t)≥ M (x, y, s)⋆M (y, z, t),
(vi) M (x, y, .) : (0, ∞)→ [0, 1] is continuous,
(vii) N (x, y, t)< 1,
(viii) N (x, y, t) = 0 ⇐⇒ x = y,
(ix) N (x, y, t) = N (y, x, t),
(x) N (x, z, t + s)≤ N (x, y, t)♦N (y, z, s),
(xi) N (x, y, .) : (0, ∞)→ [0, 1] is continuous.
In this context, an IFMS (∆ , M , N , ⋆, ♦), whereM is associated with⋆ andN is associated with ♦, is referred

to as an IFM on ∆ . For any x, y ∈ ∆ and t > 0, M (x, y, t) and N (x, y, t) represent the degree of closeness and degree
of non-closeness between x and y with respect to t. The pair (M , N ) constitutes an IFM on ∆ .

Definition 4 κ-FMS [14] Let ∆ be a non-empty set with a continuous t-norm ⋆. Let M be FS defined on ∆ 2 ×
(0, ∞)κ . An ordered triple (∆ , M , ⋆) is said to be a κ-FMS if the following conditions are satisfied: ∀ t, s > 0 with
t1, t2, . . . , tκ > 0,

(κ1) M (x, y, t1, t2, · · · , tκ)+N (x, y, t1, t2, · · · , tκ)≤ 1,
(κ2) M (x, y, t1, t2, · · · , tκ)> 0,
(κ3) M (x, y, t1, t2, · · · , tκ) = 1 ⇐⇒ x = y,
(κ4) M (x, y, t1, t2, · · · , tκ) = M (y, x, t1, t2, · · · , tκ),
(κ5) for any ℓ ∈ {1, 2, · · · , κ}, we have

M (x, z, t1, t2, · · · , tℓ−1, t + s, tℓ+1, · · · , tκ)

≥ M (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ)⋆M (y, z, t1, t2, · · · , tℓ−1, s, tℓ+1, · · · , tκ), (1)

(κ6) for every fixed x, y ∈ ∆ the function M (x, y, .) : (0, ∞)κ → [0, 1] is continuous.
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3. Main results
This section developed κ-IFMS and examined several properties substantiating the framework.
Definition 5 κ-IFMS : Let ∆ be a non-empty set equipped with a continuous t-norm ⋆ and a continuous t-conorm

♦. Let M and N be FS defined on ∆ 2 × (0, ∞)κ . An ordered 5-tuple (∆ , M , N , ⋆, ♦) is said to be a κ-IFMS if the
following conditions are satisfied: ∀ t, s > 0 with t1, t2, . . . , tκ > 0,

(κ1) M (x, y, t1, t2, · · · , tκ)+N (x, y, t1, t2, · · · , tκ)≤ 1,
(κ2) M (x, y, t1, t2, · · · , tκ)> 0,
(κ3) M (x, y, t1, t2, · · · , tκ) = 1 ⇐⇒ x = y,
(κ4) M (x, y, t1, t2, · · · , tκ) = M (y, x, t1, t2, · · · , tκ),
(κ5) for any ℓ ∈ {1, 2, · · · , κ}, we have

M (x, z, t1, t2, · · · , tℓ−1, t + s, tℓ+1, · · · , tκ)

≥ M (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ)⋆M (y, z, t1, t2, · · · , tℓ−1, s, tℓ+1, · · · , tκ), (2)

(κ6) for every fixed x, y ∈ ∆ the function M (x, y, .) : (0, ∞)κ → [0, 1] is continuous,
(κ7) N (x, y, t1, t2, · · · , tκ)< 1,
(κ8) N (x, y, t1, t2, · · · , tκ) = 0 ⇐⇒ x = y,
(κ9) N (x, y, t1, t2, · · · , tκ) = N (y, x, t1, t2, · · · , tκ),
(κ10) for any ℓ ∈ {1, 2, · · · , κ}, we have

N (x, z, t1, t2, · · · , tℓ−1, t + s, tℓ+1, · · · , tκ)

≤ N (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ)♦N (y, z, t1, t2, · · · , tℓ−1, s, tℓ+1, · · · , tκ), (3)

(κ11) for every fixed x, y ∈ ∆ the function N (x, y, .) : (0, ∞)κ → [0, 1] is continuous.
Remark 2 For the special case where κ = 1, the κ-IFMS simplifies to the IFMS, as defined by Jin Han Park [4].
Example 1 (Induced κ-IFMS) Let (∆ , d) be a metric space, where ⋆ represents the product t-norm, and ♦ stands

for the Lukasiewicz t-conorm. Let Md and Nd be FS defined on ∆ 2 × (0, ∞)κ , where κ ∈N, and ω > 0 according to the
expressions:

M (x, y, t1, t2, t3, · · · , tκ) =
ωt1t2t3, · · · , tκ

ωt1t2t3, · · · , tκ +d(x, y)
,

N (x, y, t1, t2, t3, · · · , tκ) =
d(x, y)

ωt1t2t3, · · · , tκ +d(x, y)
,

∀x, y ∈ ∆ and t1, t2, · · · , ., tκ > 0. Then, the ordered 5-tuple (∆ , M , N , ⋆, ♦) constitutes a κ-IFMS.
Remark 3 Example 1 remains valid even when using minimum t-norm and maximum t-conorm.
Example 2 Let ∆ be a positive real number, ⋆ defined on the Minimum t-norm and ♦ defined on the maximum

t-conorm. Let M and N be FS on ∆ 2 × (0, ∞)κ , κ ∈ N by
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M (x, y, t1, t2, t3) = e−
| x− y |
t1t2t3

, N (x, y, t1, t2, t3) = 1− e−
| x− y |
t1t2t3

,

∀x, y ∈ ∆ and t1, t2, t3 > 0. Then (∆ , M , N , ⋆, ♦) is a κ-IFMS. Figure 1 presents the graphical representation of M

and N .
Example 3 Let ∆ = Rn be the n-dimensional plane, with Euclidean metric d on ∆ . assume that ‘t1’ represents the

duration it takes for goods to be transported and ‘t2’ represents the economic interaction cost required for goods to be
transported from point x to point y. then the degree of the closeness of x and y with respect to t1 and t2 can be measured
by the 2-IFM M and N , which is FS defined on X2 × (0, ∞)2, where κ = 2, ⋆ represents the product t-norm, and ♦
represents the maximum t-conorm.

M (x, y, t1, t2) =
1

e
(

d(x, y)
t1+t2

) , N (x, y, t1, t2) = 1− 1

e
(

d(x, y)
t1+t2

) , ∀x, y ∈ ∆ , and t1, t2 > 0.

Definition 6 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS is said to be ℓ-natural κ-IFMS if there exists a ℓ ∈ {1, 2, · · · , κ}
then

lim
tℓ→∞

M (x, y, t1, t2, · · · , tℓ, · · · , tκ) = 1 and lim
tℓ→∞

N (x, y, t1, t2, · · · , tℓ, · · · , tκ) = 0,

∀x, y ∈ ∆ and t1, t2, t3, · · · , tκ > 0.
Weuse the notationsM (x, y, tκ

1 ) instead ofM (x, y, t1, t2, · · · , tκ) and N (x, y, tκ
1 ) instead ofN (x, y, t1, t2, · · · , tκ)

for simplicity.

Figure 1. The visual representation illustrates the graphical patterns of M and N , where t1, t2 and t3 are respectively 1, 2 and 1 and x, y ∈ (0, 10].
The green colour portrays the behaviour of the function M , while the red colour portrays the behaviour of the function N

Lemma 1 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS, t, t1, t2, · · · , tκ > 0. If tℓ < t for some ℓ ∈ {1, 2, 3, · · · , κ}, then
the following inequalities hold:
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M (x, y, tκ
1 )≤ M (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ),

N (x, y, tκ
1 )≥ N (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ).

Proof. Utilizing the characteristic of t-norm and (κ4) for every pair of elements x and y in the set ∆ , we derive

M (x, y, tκ
1 ) = M (x, y, tκ

1 )⋆1

= M (x, y, tκ
1 )⋆M (y, y, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ)

≤ M (x, y, t1, · · · , tℓ−1, t, tℓ+1, · · · , tκ).

By applying the t-conorm and (κ11) properties to each element x, y in ∆ , we derive

N (x, y, tκ
1 ) = N (x, y, tκ

1 )♦0

= N (x, y, tκ
1 )♦N (y, y, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ)

≥ N (x, y, t1, · · · , tℓ−1, t, tℓ+1, · · · , tκ).

Remark 4 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS, (∆ , M , N , ⋆, ♦), if M (x, y, tκ
1 )> 1−ε, and N (x, y, tκ

1 )< ε
for all x, y ∈ ∆ , t1, t2, t3, · · · , tκ > 0, and ε ∈ (0, 1), then for each ℓ ∈ {1, 2, 3, · · · , κ}, there exists t ∈ (0, tℓ) such that

M (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ)> 1− ε, and N (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ)< ε.

Definition 7 Let x be a point in κ-IFMS (∆ , M , N , ⋆, ♦). For any real number ε ∈ (0, 1). B(x, ε, t1, t2, t3,
· · · , tκ) = {y ∈ ∆ : M (x, y, tκ

1 ) > 1− ε and N (x, y, tκ
1 ) < ε} is a subset of ∆ is said to be open ball with centered at

x ∈ ∆ and a radius ε ∈ (0, 1) with respect to the parameters t1, t2, t3, · · · , tκ > 0.
Definition 8 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS. Let C is an open set of ∆ ⇐⇒ there is an open ball D then

D⊂ C.
Definition 9 Let x be a point in κ-IFMS (∆ , M , N , ⋆, ♦). For any real number ε ∈ (0, 1). B(x, ε, t1, t2, t3,

· · · , tκ) = {y ∈ ∆ : M (x, y, tκ
1 )≥ 1− ε and N (x, y, tκ

1 )≤ ε} is a subset of ∆ is said to be closed ball with centered at
x ∈ ∆ and a radius ε ∈ (0, 1) with respect to the parameters t1, t2, t3, · · · , tκ > 0.

Theorem 1 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS. Every open ball is an open set.
Proof. Let (∆ , M , N , ⋆, ♦) be a κ-IFMS. Let x ∈ ∆ , t1, t2, t3, · · · , tκ > 0, and ε ∈ (0, 1). Suppose y ∈

B(x, ε, t1, t2, t3, · · · , tκ). Therefore M (x, y, tκ
1 )> 1− ε and N (x, y, tκ

1 )< ε .
Consequently, there exist ℓ∈ {1, 2, 3, · · · , κ} and t ∈ (0, tℓ) such that ε0 =M (x, y, t1, t2, · · · , tℓ−1, tℓ, tℓ+1, · · · , tκ).

as ε0 > 1− ε , by Remark 1, there exists ε , ∈ (0, 1) such that ε0 > 1− ε , > 1− ε .
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Now, given ε0 and ε , with ε0 > 1−ε ,, there exist ε1, ε2 ∈ (0, 1) satisfying ε0 ·ε1 > 1−ε , and (1−ε0)♦(1−ε2)≤ ε ,.
Where ε3 = max{ε1, ε2} then the open ball isB(y, 1− ε3, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ).

We assert that B(y, 1− ε3, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ) ⊂ B(x, ε, tκ
1 ). To verify this claim, Suppose

z ∈ B(y, 1− ε3, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ). Then, M (y, z, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ) > ε3 and
N (y, z, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ)< ε3.

M (x, z, tκ
1 )≥ M (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ)⋆M (y, z, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ)

≥ ε0⋆ε3

≥ ε0⋆ε1

≥ 1− ε ,

> 1− ε.

N (x, z, tκ
1 )≤ N (x, y, t1, t2, · · · , tℓ−1, t, tℓ+1, · · · , tκ)♦N (y, z, t1, t2, · · · , tℓ−1, t − tℓ, tℓ+1, · · · , tκ)

≤ (1− ε0)♦(1− ε3)

≤ (1− ε0)♦(1− ε2)

≤ ε ,

< ε.

∴ z ∈B(x, y, tκ
1 ) thenB(y, 1− ε3, tκ

1 − t0)⊆B(x, ε, tκ
1 ).

Based on the aforementioned theorem, we can derive the following corollary:
Corollary 1 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS. Let τ(M , N ) = {A ⊆ ∆ : ∀x ∈ ∆ , there exist t1, t2, t3, · · · , tκ > 0

and ε ∈ (0, 1) such thatB(x, ε; t1, t2, t3, · · · , tκ)⊆ A}. Then τ(M , N ) forms a topology on ∆ .
Remark 5 (a) From Theorem 1, and Corollary 1, any κ-IFMS (M , N ) on ∆ where τ(M , N ) is an induced topology

on ∆ . This topology is consisting of open sets, {B(x, ε : t1, t2, t3, · · · , tκ) : x ∈ ∆ , ε ∈ (0, 1), t > 0}.

(b) For Bx =

{
B(x,

1
n

: t1, t2, t3, · · · , tκ) : n ∈ N
}
, where t1 = t2 = t3 =, · · · , = tκ =

1
n
, forms a local base at a

point x. The topology τ(M , N ) is a first countable.
Theorem 2 Every κ-IFMS is Hausdorff.
Proof. Let (∆ , M , N , ⋆, ♦) be a κ-IFMS.
Let x and y represent two different points in∆ . For any given t1, t2, t3, · · · , tκ > 0. We observe that 0<M (x, y, tκ

1 )<

1 and 0 < N (x, y, tκ
1 )< 1. Let ε1 = M (x, y, tκ

1 ) ∈ (0, 1), ε2 = N (x, y, tκ
1 ) ∈ (0, 1) and ε = max{ε1, 1− ε2}.

For each ε0 ∈ (ε, 1) there exists ε3 and ε4 such that ε3⋆ε3 ≥ ε0 and (1− ε4)♦(1− ε4)≤ 1− ε0.
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Put ε5 = max{ε3, ε4} and consider the open balls, B(x, 1− ε5 : t1, t2, t3, · · · , t ℓ
2
, · · · , tκ) and B(y, 1− ε5 : t1, t2,

t3, · · · , t ℓ
2
, · · · , tκ). Then clearly Bxy =B(x, 1−ε5 : t1, t2, t3, · · · , t ℓ

2
, · · · , tκ)∩B(y, 1−ε5 : t1, t2, t3, · · · , t ℓ

2
, · · · , tκ) =

/0. Assume that Bxy ̸= /0, i.e., there exists z ∈ Bxy then we have

ε1 = M (x, y, tκ
1 )≥ M (x, z, t1, t2, t3, · · · , t ℓ

2
, · · · , tκ)⋆M (z, y, t1, t2, t3, · · · , t ℓ

2
, · · · , tκ)

≥ ε5⋆ε5 ≥ ε3⋆ε3 ≥ ε0 > ε1.

ε2 = N (x, y, tκ
1 )≤ N (x, z, t1, t2, t3, · · · , t ℓ

2
, · · · , tκ)♦N (z, y, t1, t2, t3, · · · , t ℓ

2
, · · · , tκ)

≤ (1− ε5)♦(1− ε5)≤ (1− ε3)♦(1− ε3)≤ 1− ε0 < ε2.

Hence it is contradiction, therefore (∆ , M , N , ⋆, ♦) is a Hausdorff space.
Remark 6 A metric space (∆ , d). Define the κ-IFMS (M , N ) on ∆ as follows:

M (x, y, tκ
1 ) =

tκ
1

tκ
1 +d(x, y)

,

N (x, y, tκ
1 ) =

d(x, y)
htκ

1 +d(x, y)
h ∈ R+.

Let τd be the topology induced by a metric d, which is similar to τ(M , N ) is a topology induced by the κ-IFM
(M , N ).

Definition 10 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS, if there exist t1, t2, t3, · · · , tκ > 0 and 0 < ε < 1 such that
M (x, y, tκ

1 )> 1− ε and N (x, y, tκ
1 )< ε, ∀x, y ∈ ∆ . where C is a subset of ∆ is called (Intuitionistic Fuzzy-bounded)

IF-bounded.
Remark 7 Let a κ-IFMS (∆ , M , N , ⋆, ♦) induced by a metric space d on ∆ . The subset A ⊂ ∆ is IF-bounded

if and only if it is bounded.
Definition 11A subset A ⊆ ∆ of a κ-IFMS (∆ , M , N , ⋆, ♦) is compact, if every sequence in A has a subsequence

that converges to a point within A.
Theorem 3 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS. Every compact subset A is IF-bounded.
Proof. Let A be a compact subset of a κ-IFMS. Fix positive values t1, t2, t3, · · · , tκ and ε ∈ (0, 1). Consider an

open cover {B(x, r : t1, t2, t3, · · · , tℓ, · · · , tκ) : x ∈ A} of A. Since A is compact, there exist x1, x2, x3, · · · , xn ∈ A such
that A ⊆

∪n
i=1B(xi, ε, t). For any x, y ∈ A, it follows that x ∈B(xi, ε : t1, t2, t3, · · · , tℓ, · · · , tκ) for some i, j.

Thus we have M (x, xi, tκ
1 ) > 1 − ε, N (x, xi, tκ

1 ) < ε, M (y, x j, tκ
1 ) > 1 − ε, N (y, x j, tκ

1 ) < ε. let α =

min{M (xi, x j, tκ
1 ) : 1 ≤ i, j ≤ n}, β = max{N (xi, x j, tκ

1 ) : 1 ≤ i, j ≤ n} then α > 0, β > 0. Now we have

M (x, y, 3tκ
1 )≥ M (x, xi, tκ

1 )⋆M (xi, x j, tκ
1 )⋆M (x j, y, tκ

1 )

≥ (1− ε)⋆(1− ε)⋆α

> 1− ε ,1, for some 0 < ε ,1 < 1.
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N (x, y, 3tκ
1 )≤ N (x, xi, tκ

1 )♦N (xi, x j, tκ
1 )♦N (x j, y, tκ

1 )

≤ ε♦ε♦β

< ε ,2, for some 0 < ε ,2 < 1.

Taking ε , = max{ε ,1, ε ,2} and t ′ = 3tκ
1 .

We have M (x, y, t ′)> 1− ε , and N (x, y, t ′)< ε , ∀x, y ∈ A. Hence, A is IF-bounded.
Remark 8 From the above Theorem 3, and Remark 7, in a κ-IFMS, every compact set is closed and bounded.
Theorem 4 Let (∆ , M , N , ⋆, ♦) be a κ-IFM. Let τ(M, N) be the topology on ∆ induced by the κ-IFMS then for

a {xn} ∈ ∆ , xn → x ⇐⇒ M (xn, x, tκ
1 )→ 1 and N (xn, x, tκ

1 )→ 0 as n → ∞.

Proof. Fix t1, t2, t3, · · · , tℓ, · · · , tκ > 0. Let (xn) be a real sequence. We say that xn → x if for any given 1 > ε >

0, there exists n0 ∈N such that xn ∈B(x, r : t1, t2, t3, · · · , tℓ, · · · , tκ) ∀n≥ n0, 1−M (xn, x, tκ
1 )< ε andN (xn, x, tκ

1 )< ε
and M (xn, x, tκ

1 ) → 1 and N (xn, x, tκ
1 ) → 0 as n → ∞. Conversely, if for every t1, t2, t3, · · · , tℓ, · · · , tκ >

0, M (xn, x, tκ
1 )→ 1 andN (xn, x, tκ

1 )→ 0 as n→∞. For any 1> ε > 0, there exists n0 ∈N such that 1−M (xn, x, tκ
1 )<

ε and N (xn, x, tκ
1 )< ε, ∀ n ≥ n0. This implies that M (xn, x, tκ

1 )> 1− ε and N (xn, x, tκ
1 )< ε, ∀ n ≥ n0.

Thus x ∈B(x, r : t1, t2, t3, · · · , tℓ, · · · , tκ), for all n ≥ n0, and xn → x.
Definition 12 Consider (∆ , M , N , ⋆, ♦) as a κ-IFMS. Let xn in ∆ is said convergent, and converging to x ∈

∆ , iff, for every real number ε ∈ (0, 1), there exists a natural number n0 such thatM (xn, x, t1κ)> 1−ε ,N (xn, x, t1κ)<

ε, ∀n > n0, and t1, t2, t3, · · · , tκ > 0.
Lemma 2 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS. A sequence xn ∈ ∆ is said to be convergent and converges to x ∈ ∆

if and only if limn→∞M (xn, x, t1κ) = 1, and limn→∞N (xn, x, t1κ) = 0, ∀ t1, t2, t3, · · · , tκ > 0, and x, y ∈ ∆ .

Definition 13 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS, then a sequence xn ∈ ∆ is said to be Cauchy if for ε > 0 and
each t1, t2, t3, · · · , tn > 0 and ∃ n0 ∈ N such that M (xn, xm, t1κ)> 1− ε and N (xn, xm, t1κ)< ε ∀, n, m≥ n0.

Definition 14 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS, then every Cauchy sequence is convergent with respect to
τ(M , N ). Then (∆ , M , N , ⋆, ♦) is complete κ-IFMS.

Example 4 Let ∆ =

{
1
n

: n ∈ N
}
∪{0} and⋆ be the continuous t-norm and ♦ be the continuous t-conorm defined

by a⋆b = ab, a♦b = min{1, a+b} ∀a, b ∈ [0, 1] respectively. For any tκ
1 ∈ (0, 1)κ and for any x, y ∈ ∆ , Define a FS

M and N on ∆ 2 × (0, ∞)κ by

M (x, y, tκ
1 ) =

{
tκ
1

tκ
1 +d(x, y)

, tκ
1 > 0

}
and N (x, y, tκ

1 ) =

{
d(x, y)

tκ
1 +d(x, y)

, tκ
1 > 0

}
,

then (∆ , M , N , ⋆, ♦) is a complete κ-IFMS.
Definition 15 Let (∆ , M , N , ⋆, ♦) is said to be a complete κ-IFMS if every Cauchy sequence in ∆ has convergent

subsequence in κ-IFMS.
Theorem 5 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS and let H be a subset of ∆ with subspace κ-IFM

(
MH , NH

)
=(

M |H 2×(0, ∞)κ , N |H 2×(0, ∞)κ
)
. Then (H , MH , NH , ⋆, ♦) is complete if and only if H is a closed subset of ∆ .

Proof. Let H be a closed subset of ∆ . Let {xn} be a Cauchy sequence in (H , MH , NH , ⋆, ♦). Then {xn} is
also a Cauchy sequence in ∆ . Since ∆ is complete, there exists x ∈ ∆ such that xn → x. As H̄ = H is closed, x ∈ H .
Therefore, {xn} converges in H , proving that (H , MH , NH , ⋆, ♦) is complete.
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Suppose (H , MH , NH , ⋆, ♦) is complete. We proceed by contradiction. Assume H is not closed in ∆ . Then
there exists x ∈ H̄ \H . By the definition of closure, there exists a sequence {xn} in H converging to x. This sequence
is Cauchy in H , so for every 0 < ε < 1 and t > 0, there exists n0 ∈ N such that:

M (xn, xm, tκ
1 )> 1− ε and N (xn, xm, tκ

1 )< ε

for all n, m ≥ n0. By the completeness of (H , MH , NH , ⋆, ♦), there exists y ∈ H such that xn → y, satisfying:

MH (y, xn, tκ
1 )> 1− ε and NH (y, xn, tκ

1 )< ε

for all n ≥ n0. Since {xn} ⊂ H and y ∈ H , we have:

M (y, xn, tκ
1 ) = MH (y, xn, tκ

1 ) and N (y, xn, tκ
1 ) = NH (y, xn, tκ

1 ).

Thus, {xn} converges to both x and y in (∆ , M , N , ⋆, ♦). Since x ̸= y, this contradicts the uniqueness of limits
in a κ-IFMS. Therefore, H must be a closed subset of ∆ .

4. Fixed point theorems on κ-IFMS
Weestablish numerous fixed point outcomeswithin κ-IFMS. To simplify, for any κ-IFMS (∆ , M , N , ⋆, ♦), where

ℓ ∈ {1, 2, · · · , κ}, α > 0, x, y ∈ ∆ , and t1, t2, · · · , tκ > 0.
The expressions M α

ℓ (x, y, tκ
1 ) and N α

ℓ (x, y, tκ
1 ) are used as alternative notations for the more detailed forms

M (x, y, tℓ, · · · , tℓ−1, tℓ/α, tℓ+1, · · · , tκ) and N (x, y, tℓ, · · · , tℓ−1, tℓ/α, tℓ+1, · · · , tκ), respectively.
Theorem 6 Let (∆ , M , N , ⋆, ♦) be a complete κ-IFMS and Ω : ∆ → ∆ be a mapping satisfying:

M
1/µ
ℓ (Ωx, Ωy, tκ

1 )≥ M (x, y, tκ
1 ), (4)

N
1/µ
ℓ (Ωx, Ωy, tκ

1 )≤ N (x, y, tκ
1 ), (5)

∀x, y ∈ ∆ , and t1, t2, · · · , tκ > 0, ℓ ∈ {1, 2, · · · , κ} and µ ∈ (0, 1) is a constant. Assuming (∆ , M , N , ⋆, ♦) is a
ℓ-natural κ-IFMS, then Ω has a unique fixed point.

Proof. Assume there exists a unique fixed point for Ω. Suppose a and b are fixed points of Ω. From (4) and (5)

M (a, b, tκ
1 ) = M (Ωa, Ωb, tκ

1 )

≥ M (a, b, tℓ, · · · , tℓ−1, tℓ/µ, tℓ+1, · · · , tκ)

= M µ
ℓ (a, b, tκ

1 ),
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N (a, b, tκ
1 ) = N (Ωa, Ωb, tκ

1 )

≤ N (a, b, tℓ, · · · , tℓ−1, tℓ/µ, tℓ+1, · · · , tκ)

= N µ
ℓ (a, b, tκ

1 ).

By repeating, we get:

M (a, b, tκ
1 )≥ M µn

ℓ (a, b, tκ
1 ) and N (a, b, tκ

1 )≤ N µn

ℓ (a, b, tκ
1 ), ∀n ∈ N. (6)

If {cn} is any sequence with cn > 0 and limn→∞ cn = 0, due to the ℓ-natural property of (∆ , M , N , ⋆, ♦):

lim
n→∞

M cn
ℓ (x, y, tκ

1 ) = 1 and lim
n→∞

N cn
ℓ (x, y, tκ

1 ) = 0, ∀ t1, t2, · · · , tκ > 0.

Using this in (6), we obtain M (a, b, tκ
1 ) = 1 and N (a, b, tκ

1 ) = 0, ∀ t1, t2, · · · , tκ > 0, i.e., a= b.
Thus, there is only one fixed point of Ω. Choose x0 ∈ ∆ and define the iterative sequence {xn} by setting xn =

Ωxn−1, ∀n ∈ N. Consequently, xn represents the fixed point of Ω. Suppose xn ̸= xn−1, ∀n ∈ N. Given any n ∈ N and
t1, t2, · · · , tκ > 0

M (xn, xn+1, tκ
1 ) = M (Ωxn−1, Ωxn, tκ

1 )≥ M (xn−1, xn, tℓ, · · · , tℓ−1, t ℓ
µ
, tℓ+1, · · · , tκ) = M µ

ℓ (xn−1, xn, tκ
1 ),

N (xn, xn+1, tκ
1 ) = N (Ωxn−1, Ωxn, tκ

1 )≤ N (xn−1, xn, tℓ, · · · , tℓ−1, t ℓ
µ
, tℓ+1, · · · , tκ) = N µ

ℓ (xn−1, xn, tκ
1 ).

By repeating this technique, we get M (xn, xn+1, tκ
1 )≥ M µn

ℓ (x0, x1, tκ
1 ) ∀n ∈ N.

For each n ∈ N, t1, t2, · · · , tκ > 0 and p > 0, we have

M (xn, xn+p, tκ
1 )≥ M (xn, xn+1, tℓ, · · · , tℓ−1, t ℓ

2
, tℓ−1, · · · , tκ)⋆M (xn+1, xn+p, tℓ, · · · , tℓ−1, t ℓ

2
, tℓ, · · · , tκ)

≥ M 2
ℓ (xn, xn+1, tκ

1 )⋆M (xn+1, xn+2, tℓ, · · · , tℓ−1, t ℓ
22
, tℓ−1, · · · , tκ)

⋆M (xn+2, xn+p, tℓ, · · · , tℓ−1, t ℓ
22
, tℓ, · · · , tκ)

≥ M 2
ℓ (xn, xn+1, tκ

1 )⋆M 22

ℓ (xn+1, xn+2, tκ
1 )⋆, · · · , ⋆M 2p−1

ℓ (xn+p−2, xn+p−1, tκ
1 )

⋆M 2p−1

ℓ (xn+p−1, xn+p, tκ
1 ).

Volume 6 Issue 1|2025| 913 Contemporary Mathematics



N (xn, xn+p, tκ
1 )≤ N (xn, xn+1, tℓ, · · · , tℓ−1, t ℓ

2
, tℓ−1, · · · , tκ)♦N (xn+1, xn+p, tℓ, · · · , tℓ−1, t ℓ

2
, tℓ, · · · , tκ)

≤ N 2
ℓ (xn, xn+1, tκ

1 )♦N (xn+1, xn+2, tℓ, · · · , tℓ−1, t ℓ
22
, tℓ−1, · · · , tκ)

♦N (xn+2, xn+p, tℓ, · · · , tℓ−1, t ℓ
22
, tℓ, · · · , tκ)

≤ N 2
ℓ (xn, xn+1, tκ

1 )♦N 22

ℓ (xn+1, xn+2, tκ
1 )♦, · · · ,

♦N 2p−1

ℓ (xn+p−2, xn+p−1, tκ
1 )♦N 2p−1

ℓ (xn+p−1, xn+p, tκ
1 ).

By using (6), we obtain

M (xn, xn+p, tκ
1 )≥ M 2µn

(x0, x1, tκ
1 )⋆, · · · , ⋆M 22µn+1

(x0, x1, tκ
1 )⋆M 2p+1µn+p−1

(x0, x1, tκ
1 ),

N (xn, xn+p, tκ
1 )≤ N 2µn

ℓ (x0, x1, tκ
1 )♦, · · · , ♦N 22µn+1

ℓ (x0, x1, tκ
1 )♦N 2p+1µn+p−1

ℓ (x0, x1, tκ
1 ).

Since (∆ , M , N , ⋆, ♦) is ℓ-natural, it follows from the above inequality that

lim
n→∞

M (xn, xn+p, tκ
1 ) = 1 and lim

n→∞
N (xn, xn+p, tκ

1 ) = 0, ∀ t1, t2, · · · , tκ > 0.

Therefore {xn} is a cauchy sequence.
By the completeness of (∆ , M , N , ⋆, ♦) there exist a ∈ ∆ such that

lim
n→∞

M (xn, a, tκ
1 ) = 1 and lim

n→∞
N (xn, a, tκ

1 ) ∀ t1, t2, · · · , tκ > 0, (7)

Then a is a fixed point of Ω. For each t1, t2, · · · , tκ > 0, we have

M (a, Ωa, tκ
1 )≥ M 2

ℓ (a, xn, tκ
1 )⋆M 2

ℓ (xn, Ωa, tκ
1 )

= M 2
ℓ (a, xn, tκ

1 )⋆M 2
ℓ (Ωxn−1, Ωa, tκ

1 )

≥ M 2
ℓ (a, xn, tκ

1 )⋆M 2µ
ℓ (xn−1, a, tκ

1 ),
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N (a, Ωa, tκ
1 )≤ N 2

ℓ (a, xn, tκ
1 )♦N 2

ℓ (xn, Ωa, tκ
1 )

= N 2
ℓ (a, xn, tκ

1 )♦N 2
ℓ (Ωxn−1, Ωa, tκ

1 )

≤ N 2
ℓ (a, xn, tκ

1 )♦N 2µ
ℓ (xn−1, a, tκ

1 ).

By Using (7) in the above inequality, we obtain

M (a, Ωa, tκ
1 ) = 1 and N (a, Ωa, tκ

1 ) = 0 ∀ t1, t2, · · · , tκ > 0.

i.e., Ωa= a. There is only one fixed point of Ω.

Corollary 2 When κ = 1, the theorem mentioned above simplifies to the following outcome of the Intuitionistic
Fuzzy Banach Contraction Theorem (Alaca et al. [5]). Let (∆ , M , N , ⋆, ♦) be a complete IFMS. A function

Ω : ∆ → ∆ if there exists µ ∈ (0, 1) such that

M (Ωx, Ωy, µt)≥ M (x, y, t) and N (Ωx, Ωy, µt)≤ N (x, y, t), ∀ x, y ∈ ∆ . (8)

Then Ω has only one solution.
Lemma 3 for any ℓ ∈ {1, 2, · · · , κ}, for each t1, t2, · · · , tκ > 0 and 0 < ε < t, if limn→∞ xn = x and limn→∞ yn =

y, then

M (x, y, t1, t2, · · · , tℓ−1, t + ε, tℓ+1, · · · , tκ)≤ lim
n→∞

infM (xn, yn, t1, t2, · · · , tℓ−1, t + ε, tℓ+1, · · · , tκ),

N (x, y, t1, t2, · · · , tℓ−1, t + ε, tℓ+1, · · · , tκ)≥ lim
n→∞

supN (xn, yn, t1, t2, · · · , tℓ−1, t + ε, tℓ+1, · · · , tκ),

M (x, y, t1, t2, · · · , tℓ−1, t + ε, tℓ+1, · · · , tκ)≤ lim
n→∞

supM (xn, yn, t1, t2, · · · , tℓ−1, t + ε, tℓ+1, · · · , tκ),

N (x, y, t1, t2, · · · , tℓ−1, t + ε, tℓ+1, · · · , tκ)≥ lim
n→∞

infN (xn, yn, t1, t2, · · · , tℓ−1, t + ε, tℓ+1, · · · , tκ).

Remark 9 Consider (∆ , M , N , ⋆, ♦) as an IFMS. Let Ω : ∆ → ∆ be a function. The equation (8) indicating
contractivity implies the function Ω contracts the space concerning the parameter t, ensuring that the degree of closeness
and degree of non-closeness of the distance between the images of any two points under Ω is at least as large as the
corresponding degree of closeness and degree of non-closeness between the original points.

The theorem (6) asserts that themapping contracts only concerning the parameter tℓ for some ℓ∈{1, 2, 3, · · · , κ}, and
it may not exhibit contractive behavior concerning other parameters. Similarly, it is assumed that (∆ , M , N , ⋆, ♦) is
an ℓ-natural κ-IFMS for a minimum on one ℓ ∈ {1, 2, 3, · · · , κ} only. The subsequent examples verify this remark.

Example 5 Consider ∆ = [0, 1]× [0, 1]× [0, 1], where⋆ denotes the product t-norm, ♦ represents the Lukasiewicz
t-conorm and FS M and N on ∆ 2 × (0, ∞)κ as follows:
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M (x, y, t1, t2) =
t1

t1+ | x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |
,

N (x, y, t1, t2) =
| x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

t1+ | x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |
,

∀x = (x1, x2), y = (y1, y2) ∈ ∆ and t1, t2 > 0. Then (∆ , M , N , ⋆, ♦) is a complete 2-IFMS. Moreover.
limn→∞ M (x, y, t1, t2) = 1, and limn→∞ N (x, y, t1, t2) = 0, ∀ x, y ∈ ∆ , t2 > 0. i.e., (∆ , M , N , ⋆, ♦) is a 1-natural
2-IFMS. Define a mapping Ω : ∆ → ∆ by Ω(x1, x2, x3) =

(x1

3
,

x2

3
,

x3

3
)
, ∀(x1, x2, x3) ∈ ∆ . For x = (x1, x2, x3), y =

(y1, y2, y3) ∈ ∆ t1, t2 > 0.We have

M (Ωx, ψy, µt1, t2) =
µt1

µt1 +
| x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

3

=
3µt1

3µt1+ | x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

≥ t1
t1+ | x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

= M (x, y, t1, t2),

N (Ωx, Ωy, µt1, t2) =

| x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |
3

µt1 +
| x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

3

=
| x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

3µt1+ | x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

≤ t1
t1+ | x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

= N (x, y, t1, t2).

For µ ∈
[

1
3
, 1

)
, theorem (6) guarantees the existence of a unique fixed point for the mapping Ω. In this particular

instance, the point (0, 0, 0) ∈ ∆ serves as a fixed point for Ω.

Remark 10 In theorem (6), under equations (4) and (5), we presume that the space (∆ , M , N , ⋆, ♦) is ℓ-natural.
It is important to observe that when considering the existence of a fixed point, the condition of ℓ-naturalness cannot be
substituted by m-naturalness, where m is not equal to ℓ. The subsequent example validates this assertion.

Example 6 Consider ∆ = [0, 1]× [0, 1]× [0, 1], where⋆ denotes the product t-norm, ♦ represents the Lukasiewicz
t-conorm and FS M and N on ∆ 2 × (0, ∞)κ as follows:
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M (x, y, t1, t2) =
t2

t2+ | x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |
,

N (x, y, t1, t2) =
| x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |

t2+ | x1 − y1 |+ | x2 − y2 |+ | x3 − y3 |
,

∀x = (x1, x2), y = (y1, y2) ∈ ∆ and t1, t2 > 0.

Then (∆ , M , N , ⋆, ♦) is a complete 2-IFMS. Furthermore

lim
n→∞

M (x, y, t1, t2) = 1, ∀ x, y ∈ ∆ , t1 > 0, (9)

lim
n→∞

N (x, y, t1, t2) = 0, ∀ x, y ∈ ∆ , t1 > 0. (10)

i.e., (∆ , M , N , ⋆, ♦) is a 1-natural 2-IFMS.Define amappingΩ : ∆ →∆ byΩ(x1, x2, x3)=
(
x1, x2, x3

)
, ∀(x1, x2, x3)∈

∆ .
For x = (x1, x2, x3), y = (y1, y2, y3) ∈ ∆ , t1, t2 > 0.
We have M (Ωx, Ωy, µt1, t2) ≥ M (x, y, t1, t2), N (Ωx, Ωy, µt1, t2) ≤ N (x, y, t1, t2). For µ ∈ (0, 1), as per

theorem (9), However, the fixed point of Ω is not unique. In fact, every point (x1, x2, x3) ∈ ∆ is a fixed point of Ω.
Ultimately, the definition of a κ-IFCM is as follows.

Definition 16 Let (∆ , M , N , ⋆, ♦) denote a κ-IFMS. A mapping Ω : ∆ → ∆ is called a κ-IFCM if 0 ≤ µ < 1
such that, for all x, y ∈ ∆ and t1, t2, t3, · · · , tκ > 0, the following conditions hold:

1
M (Ωx, Ωy, tκ

1 )
−1 ≤ µ

[
1

M (x, y, tκ
1 )

−1
]

and N (Ωx, Ωy, tκ
1 )≤ µN (x, y, tκ

1 ),

where µ is the contractive factor of Ω.
Theorem 7 Let (∆ , M , N , ⋆, ♦) be a κ-IFMS and Ω : ∆ → ∆ be a κ−IFCM. Then, Ω has a unique fixed point.
Proof. Consider x0 ∈ ∆ . Let {xn} is defined as xn = Ωxn−1∀n ∈ N. For every n ∈ N,

1
M (xn, xn+1, tκ

1 )
−1 =

1
M (Ωxn−1, Ωxn, tκ

1 )
−1

≤ µ
[

1
M (xn−1, xn, tκ

1 )
−1

]

= µ
[

1
M (Ωxn−2, Ωxn−1, tκ

1 )
−1

]

≤ µ2
[

1
M (xn−2, xn−1, tκ

1 )
−1

]
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...

≤ µn
[

1
M (x0, x1, tκ

1 )
−1

]
.

Finally, we get

1
M (xn, xn+1, tκ

1 )
−1 ≤ µn

[
1

M (x0, x1, tκ
1 )

−1
]
. (11)

For every natural number n, given that 0 ≤ µ < 1, we infer from equation (11) that

lim
n→∞

[
1

M (xn, xn+1, tκ
1 )

−1
]
≤ 0,

i.e. lim
n→∞

1
M (xn, xn+1, tκ

1 )
= 1, ∀t1, t2, · · · , tκ > 0. (12)

For each n ∈ N, p > 0 and t1, t2, · · · , tκ > 0, we have

M (xn, xn+p, tκ
1 )≥ M 2

ℓ (xn, xn+1, tκ
1 )⋆M 2

ℓ (xn+1, xn+p, tκ
1 )

≥ M 2
ℓ (xn, xn+1, tκ

1 )⋆M 22

ℓ (xn+1, xn+2, tκ
1 )⋆, · · · , .

⋆M 2p−1

ℓ (xn+p−2, xn+p−1, tκ
1 )⋆M 2p−1

ℓ (xn+p−1, xn+p, tκ
1 ). (13)

From (12), we have limn→∞ M α
ℓ (xn, xn+1, tκ

1 )= 1, for all t1, t2, · · · , tκ > 0 andα > 0, which together with inequality
(13) yields limn→∞ M (xn, xn+1, tκ

1 )≥ 1⋆1⋆, · · · , ⋆1 = 1.
For any positive real numbers t1, t2, · · · , tκ and p. Let {xn} be a Cauchy sequence in ∆ then converge to itself is

said to be complete, ∃ a ∈ ∆ such that the sequence {xn}→ a.
In other words,

lim
n→∞

M (xn, a, tκ
1 ) = 1, ∀ t1, t2, · · · , tκ > 0. (14)

Similarly, we obtain the above definition that
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N (xn, xn+1, tκ
1 ) = N (Ωxn−1, Ωxn, tκ

1 )

≤ µN (xn−1, xn, tκ
1 )

= µN (Ωxn−2, Ωxn−1, tκ
1 )

≤ µ2N (xn−2, xn−1, tκ
1 )

...

= µn−1N (Ωx1, Ωx2, tκ
1 )

≤ µnN (x0, x1, tκ
1 ), (15)

since 0 ≤ µ < 1, we conclude from (15) that

lim
n→∞

N (xn, xn+1, tκ
1 ) = 0, ∀ t1, t2, · · · , tκ > 0. (16)

For n ∈ N, p > 0, t1, t2, · · · , tκ > 0, we have

N (xn, xn+p, tκ
1 )≤ N 2

ℓ (xn, xn+1, tκ
1 )♦N 2

ℓ (xn+1, xn+p, tκ
1 )

≤ N 2
ℓ (xn, xn+1, tκ

1 )♦N 22

ℓ (xn+1, xn+2, tκ
1 )

♦ · · ·♦N 2p−1

ℓ (xn+p−2, xn+p−1, tκ
1 )

♦N 2p−1

ℓ (xn+p−1, xn+p, tκ
1 ). (17)

From (16), we have limn→∞ N ℓ
α (xn, xn+1, tκ

1 )= 0, for all t1, t2, · · · , tκ > 0 andα > 0.Which together with inequality
(17) yeilds

lim
n→∞

N (xn, xn+1, tκ
1 )≤ 0♦0♦, · · · , ♦0 = 0.

For any positive real numbers t1, t2, · · · , tκ and p. Let {xn} be a Cauchy sequence in ∆ then converge to itself is
said to be complete, ∃ a ∈ ∆ such that the sequence {xn}→ a.

In other words,
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lim
n→∞

N (xn, a, tκ
1 ) = 0, ∀ t1, t2, · · · , tκ > 0. (18)

We will demonstrate that a constitutes a fixed point for Ω. For every n ∈ N and t1, t2, · · · , tκ > 0, we observe that
1

M (xn+1, Ωa, tκ
1 )

−1 =
1

M (Ωxn, Ωa, tκ
1 )

−1 ≤ µ
[

1
M (xn, a, tκ

1 )
−1

]
.

lim
n→∞

[
1

M (xn+1, Ωa, tκ
1 )

−1
]
= 0, using (14)

i.e., lim
n→∞

M (xn+1, Ωa, tκ
1 ) = 1,

M (a, Ωa, tκ
1 )≥ M 2

ℓ (a, xn+1, tκ
1 )⋆M 2

ℓ (xn+1, Ωa, tκ
1 ), (19)

For any n ∈ N and for every t1, t2, · · · , tκ > 0, we have which together with (13) and (19) yields: M (a, Ωa, tκ
1 ) =

1, ∀t1, t2, · · · , tκ > 0,

N (xn, Ωa, tκ
1 ) = N (Ωxn, Ωa, tκ

1 )≤ N (xn, a, tκ
1 ).

lim
n→∞

N (xn+1, Ωa, tκ
1 ) = 0, using (18),

N (a, Ωa, tκ
1 )≤ N 2

ℓ (a, xn+1, tκ
1 )♦N 2

ℓ (xn+1, Ωa, tκ
1 ), (20)

for all t1, t2, · · · , tκ > 0. For any n ∈N, we have which together with (16) and (20) yieldsN (a, Ωa, tκ
1 ) = 0, ∀t1, t2, · · · ,

tκ > 0.
Signifying that a functions as a fixed point for Ω, b is an alternative fixed point of Ω, different from a. Consequently,

there exist positive values r1, r2, · · · , rκ . M (a, b, rκ
1 )< 1, N (a, b, rκ

1 )> 0.
Now, we have

1
M (a, b, rκ

1 )
−1 =

1
M (Ωa, Ωb, rκ

1 )
−1 ≤ µ

[
1

M (a, b, rκ
1 )

−1
]
,

N (a, b, rκ
1 ) = N (Ωa, Ωb, rκ

1 )≤ µ N (a, b, rκ
1 )< N (a, b, rκ

1 ).

Given that µ is less than 1, the abovementioned inequality leads to a contradiction. Consequently, it is necessary for
a to equal b. Consequently, a single point of Ω is established as unique.

Remark 11 In this situation where κ = 1, the theorem simplifies to the following outcome presented by Rafi and
Noorani [13].
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5. Conclusions
This research has established and analyzed the theoretical foundations of κ-intuitionistic fuzzy metric spaces (κ-

IFMS),making substantial contributions to fixed-point theory. Ourwork extends the traditional framework of intuitionistic
fuzzy metric spaces by introducing multiple parameters, enabling more sophisticated approaches to uncertainty modeling
in mathematical structures. The theoretical framework developed herein offers several key advantages. First, it provides
a more comprehensive approach to modeling uncertainty and imprecision in metric spaces, addressing the limitations
of existing frameworks. Second, our fixed-point theorems extend classical results to this new setting, offering powerful
tools for analyzing complex systems. Third, the framework’s flexibility allows applications across diverse mathematical
domains, from pure theory to practical implementations. Our results demonstrate that κ-IFMS provides a natural and
powerful generalization of traditional fuzzy metric spaces while maintaining essential mathematical properties that enable
practical applications. The fixed-point theorems established in this work advance theoretical understanding and provide
foundational tools for solving concrete problems in various domains.
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