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Abstract: The analysis of complex biomedical datasets often involves a mix of numerical and categorical variables, 
posing challenges for traditional statistical techniques. To address this limitation, this study proposes the using of 
Principal Component Analysis for Mixed Data (PCAmix). PCAmix is a powerful technique that can effectively reduce 
the dimensionality of complex datasets while preserving the most important information. By combining the strengths 
of Principal Component Analysis (PCA) and Multiple Correspondence Analysis (MCA), PCAmix can handle both 
numerical and categorical variables simultaneously. This flexibility allows for a more comprehensive analysis of 
complex datasets, particularly in biomedical research. In this study, we applied PCAmix to a real-world biomedical 
dataset to investigate the intricate relationship between brain injury, functional outcomes, and genetic factors. The 
results we obtained illustrate not only the efficacy of PCAmix but also its practical uses in recognizing underlying 
frameworks, streamlining analysis by minimizing the number of variables while retaining essential information, creating 
predictive models to anticipate patient results, including functional recovery and cognitive deficits, and categorizing 
patients according to shared traits to facilitate tailored treatment approaches. Through the applying PCAmix, we gained 
a deeper understanding of the complex interplay between these factors and identified potential biomarkers for predicting 
patient outcomes. These findings have significant implications for the development of more effective diagnostic tools, 
prognostic models, and therapeutic interventions for traumatic brain injury. Ultimately, researchers can contribute to 
advancements in healthcare and medicine by unlocking valuable insights from complex biomedical data via leveraging 
the potential of PCAmix.
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1. Introduction
Multivariate analysis is an essential methodology approach in the field of data science and statistics, particularly 

for the objective of comprehending and interpreting elaborate datasets. As data grows in mass and complexity, the 
capacity to examine several factors concurrently becomes more crucial. This analytical framework enables researchers 
and practitioners to reveal complex interactions among variables, identify patterns, and extract significant insights 
frequently hidden when analyzing individual variables in isolation. Central to multivariate analysis are machine- 
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learning algorithms, which may be generally categorized into two main types: supervised and unsupervised approaches. 
Supervised learning approaches rely on labeled data, meaning the model is trained using a dataset with predetermined 
outcomes or target variables. This configuration allows the algorithm to recognize the fundamental patterns linking 
input data to known outcomes, making it proficient for classification, regression, and forecasting jobs. In a supervised 
learning context, a model may be trained on past data to forecast client behavior using multiple attributes such as age, 
income, and prior purchases [1-4].

Despite supervised learning, unsupervised approaches function without pre-labeled data, concentrating on 
identifying latent patterns and connections within the dataset. Such approaches seek to recognize patterns, clusters, 
and correlations among observations, enabling researchers to investigate the data without prior assumptions about 
the results. This attribute renders unsupervised learning especially beneficial in exploratory data analysis, where the 
objective often involves formulating hypotheses or detecting variations within the data [5-7]. Principal Component 
Analysis (PCA) is one of the most often used approaches for dimensionality reduction in unsupervised learning. PCA 
facilitates the transformation of an extensive array of correlated variables into a reduced number of uncorrelated 
variables named principal components. This modification simplifies the information and improves its interpretability, 
enabling researchers to see intricate connections and determine significant contributing components. PCA seeks to 
preserve maximal variance from the original dataset, reducing information loss during dimensionality reduction [8, 9]. 
Although PCA is extensively used and beneficial for most multivariate issues, it is fundamentally intended for numerical 
data, creating difficulties for researchers dealing with datasets that include categorical variables. The incapacity of PCA 
to adequately manage categorical data has been a subject of critique and discourse in academic literature. As datasets 
increasingly integrate numerical and categorical characteristics, there is a critical demand for approaches capable of 
addressing this complexity [10, 11].

To alleviate the limitations of PCA, Multiple Correspondence Analysis (MCA) has arisen as a significant expansion 
of Correspondence Analysis (CA). MCA has been developed to analyze correlations among many categorical dependent 
variables, proving it especially valuable in disciplines such as social sciences, marketing research, health studies, and 
climate [12-17]. By offering a framework similar to PCA but tailored for categorical data, MCA enables researchers to 
investigate intricate interdependencies and illustrate the relationships among categorical variables [14, 18, 19]. Although 
several conventional data analysis techniques have primarily concentrated on quantitative or qualitative data, most 
data applications handle datasets combining both measurements. This mixed-data situation poses distinct problems 
for analysts since conventional methodologies may inadequately address the intricacies inherent in such datasets. 
Researchers have developed modifications of PCA for mixed data to provide a more thorough analysis that incorporates 
both numerical and categorical factors.

The present study intends to examine the implementation of PCA for mixed and general datasets, focusing on 
adapting the approach to equally address numerical and categorical variables. This technique aims to augment the 
analytical capacities of researchers working with complex datasets, facilitating deeper insights and comprehension of 
the underlying patterns within the data. This study emphasizes the versatility of PCA and the need to establish resilient 
approaches to adeptly address the intricacies of modern data difficulties [20, 21]. It is of tremendous significance 
for researchers in the field of multivariate analysis to focus on implementing the currently used techniques and 
actively pursue opportunities for theoretical development and methodological enhancements in light of the future. 
Pursuing innovation is vital for advancing the profession and ensuring that analytical techniques remain relevant and 
effective in addressing the complexities of modern datasets. By fostering a culture of inquiry and experimentation, 
we may enhance the effectiveness and significance of multivariate methods, thus improving our understanding of the 
intricate nature of data.

2. Materials and methods
Principal Component Analysis (PCA) is a method for dimensionality reduction that seeks to maintain as much 

variation as possible in a dataset while reducing the number of variables by significant amounts. This is achieved by 
converting the original variables into a collection of ordered and uncorrelated variables called principal components 
(PCs). The first principal component account for the bulk of the variance in the original dataset [22]. PCA determines 
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linear combinations of the original variables that optimize variance by orthogonal transformations, converting correlated 
variables into a diminished set of independent linear combinations (the PCs). PCA is used in mobile robots, handprint 
recognition, and face recognition [23-25]. Johnson and Wichern provided a comprehensive Principal Component 
Analysis (PCA) overview. In population PCA, the covariance matrix is decomposed into eigenvalues and eigenvectors, 
representing the principal components. These linear combinations of original variables capture the maximum variance 
in the data. Geometrically, PCA can be visualized as a rotation of the coordinate axes to align with the directions of 
maximum variance. In sample PCA, the population parameters are estimated from the sample data. The key steps 
involve estimating eigenvalues and eigenvectors and interpreting the principal components in the context of the sample 
data. Dimensionality reduction is achieved by selecting a subset of principal components that capture a significant 
portion of the total variance [4, 6].

To execute PCA on a data matrix including p variables and n samples, we start the process by centering the data 
according to the means of each variable. Subsequently, we compute the covariance matrix and decompose it into 
eigenvalues and eigenvectors. The eigenvectors represent the principal components, while the eigenvalues signify 
the amount of variance explained by each component. To determine the optimal number of principal components, 
we typically employ techniques like the elbow method or set a threshold for the cumulative explained variance. By 
selecting a subset of principal components that capture a significant portion of the total variance, we can effectively 
reduce the dimensionality of the data while preserving its essential information.

Let A be n*n matrix and X is a non-zero p vector for which
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where λ is known as the eigenvalue of matrix A and X is the eigenvector of matrix A for the corresponding eigenvalue. 
Eigenvalues represent the amount of variance explained by each principal component. The first PC (PC1) is given by the 
linear combination of the variables X1, X2, ..., XP,

1 11 1 12 2 1 ,p pPC a X a X a X= + + + (3)

The first PC (PC1) is calculated to account for the greatest possible variance in the data set [26]. Weights are 
computed using constraints as follows:

2 2 2
11 12 1 1pa a a+ + + = (4)

Similarly, the second PC is calculated under the condition of being uncorrelated with (i.e., perpendicular to) the 
first PC and accounting for the highest variance below.

2 21 1 22 2 2 ,p pPC a X a X a X= + + + (5)

This process continues until P PCs equal to the number of original variables are computed [27].
Multiple correspondence analysis (MCA) investigates the relationships between two or more categorical variables. 

MCA is similar to PCA but is tailored for categorical data, functioning as an extension of Correspondence Analysis (CA) 
for multiple variables [18]. CA is used in many domains, such as archeology, ecology, medicine, and health sciences [14, 
19, 21]. Given n observations and K categorical variables, with Jk levels for each categorical variable, let X be the n × 
J indicator matrix, where j kJ J= ∑ . MCA is performed by applying CA to the indicator matrix X, which provides row 
and column factor scores. These factor scores are standardized such that their variances are equal to their corresponding 
eigenvalues. We start computing the probability matrix
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(6)1 ,Z N X−=

where N is the grand total of matrix X. Let Dc = diag{c} and Dr = diag{r} be matrices, where c and r denote the vectors 
of the column and row totals of Z. We compute the factor scores by applying the singular value decomposition (SVD), 
as follows:
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where ∆ is the diagonal matrix of the singular values and 2Λ = ∆  is the eigenvalues matrix. Then, we obtain the columns 
factor scores, which are denoted by G, and the rows factor scores, which are denoted by F as follows [18, 14, 19]:
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The PCAmix method is dedicated to analyzing mixed data, in which numerical and categorical variables describe 
the attributes. This was proposed by de Leeuw and Van Rijckevorsel [28] and extended by Kiers [29]. PCAmix is a 
combination of PCA and MCA, where PCA handles the numerical variables and MCA handles the categorical variables. 
We implement the PCA on mixed data following the approach proposed by Chavent [14, 19, 30]. The dataset contains n 
observations which are described by p1 numerical variables and p2 categorical variables. The dataset is represented by an 
n × p1 numerical data matrix X1 and the n × p2 categorical data matrix X2, with d denoting the total number of levels of 
the p2 categorical variables.

Let G be an indicator matrix with n × d dimensions containing binary coding from each level of the 
categorical variables. ( )1 2|Y Y Y=  is a numerical matrix with dimensions n × (p1 + d) where Y1 is the standardized 
matrix constructed by the centered and normalized columns X1, and Y2 denotes the centered indicator 
matrix X2. Now, we build a diagonal matrix N of the weights of the rows of Y; the n rows are weighted 
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   is the diagonal matrix of the weights of the columns 

of Y, and s = 1, ..., n represents the number of observations that belong to the sth level. Then, the eigenvalue of Y is 
obtained using the generalized singular value decomposition (GSVD) as follows:

(10),TY U V= Λ

where ( )1 2,  ,  ,  rdiag λ λ λΛ =   is the r × r diagonal matrix, such that 1 2,  ,  ,  rλ λ λ  are the eigenvalues of Y, 
and r denotes the rank of Y. U is a matrix with n × r dimensions, where the first r eigenvectors of ZDZtN, such that UtNU 
= Ir. V is the p × r matrix of the first r eigenvectors of ZtNZD and VtDV = Ir. Therefore, the PC of the PCA mix can be 
computed as:

(11),mixY YDV=

with the dimensions of n × r. R U= Λ indicates scores for rows that represent the PC scores. The scores of columns 
C DV= Λ and the standard PCA are C V= Λ.
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3. Enhancing the stability and efficacy of MCA and PCA
Regarding the innovations of the PCA, MCA, and PCAmix techniques, some approaches can be employed, such 

as:
Customize PCAmix for specialized fields, for instance healthcare or environmental sciences, where tailored pre-

processing and post-processing may uncover new insights.
Enhance approaches for addressing absent categorical and numerical data inside PCA or MCA frameworks, 

increasing their usefulness. This is done by dividing the data into two and studying the two that reflect the absence of 
some categorical variables.

In this paper, we try to adapt PCAmix to specific domains, such as environmental sciences or healthcare, where 
customized pre- and post-processing might provide novel insights. We employ a dataset of traumatic brain injury (TBI), 
which is a complex disorder that is traditionally stratified based on clinical signs and symptoms. The Transforming 
Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute 
TBI patients and collected diverse common data elements (TBI-CDEs), including imaging, genetics, and clinical 
outcomes, across the study population. The dataset consisted of 25 variables, including seven quantitative and 18 
qualitative variables, as shown in Table 1 and Table 2.

Table 1. Numerical variables descriptions

Name Description Values
BIF1 Marshall CT score 1-6
BIF2 Rotterdam CT score 1-6
FCO1 GOSE score (3 months) 1-8
FCO2 GOSE score (6 months) 18
FCO4 WAIS PSO Composite Score (6 monthes) 50-150
FCO5 CVLT Short Delay Cued Reall Standard Score (6 monthes) -4.0-2.5
FCO6 CVLT Long Delay Cued Reall Standard Score (6 monthes) -3.5-2.5

Table 2. Categorical variables descriptions

Name Description Values
BIF3 CT brain pathology no, yes
BIF4 CT skull fracture no, yes
BIF5 CT Skull base fracture no, yes
BIF6 CT facial fracture no, yes
BIF7 CT epidural hematoma no, yes
BIF8 CT subdural hematoma no, yes
BIF9 CT subarachnoid hemorrhage no, yes
BIF10 CT contusion no, yes
BIF11 CT midline shift no, yes
BIF12 Cisternal compression no, yes
BIF13 MRI brain pathology no, yes, indeterminate
FCO3 PTSD DSM-IV diagnosis (6months) no, yes
GM1 COMT SNP genotype Met/Met, Met/Val, Val/Val
GM2 DRD2 SNP genotype C/C, C/T, T/T
GM3 PARP1 SNP genotype A/A, A/T, T/T
GM4 ANKK1 SNP Gly318Arg A/A, A/G, G/G
GM5 ANKK1 SNP Gly442Arg C/C, C/G, G/G
GM6 ANKK1 SNP Glu713Lys C/C, C/T, T/T
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The following is a brief description of the variables:
Brain imaging findings (BIF):
Marshall CT score: Predictive scoring system for traumatic brain injury outcomes based on computed tomography 

scans (CT scan) abnormalities.
Rotterdam CT score: Alternative scoring system for traumatic brain injury outcomes derived from CT scans. 
CT Brain Pathology: Abnormal findings in brain tissue on CT scans.
CT Skull Fracture: finding of a fracture in the skull bone on a CT scan.
CT Skull Base Fracture: finding of fracture in the bones of the base of the skull on a CT scan.
CT Facial Fracture: finding of a fracture in facial bone on a CT scan.
CT Epidural Hematoma: finding of bleeding above the epidural layer of the meninges on a CT scan.
CT Subdural Hematoma: finding of bleeding below the epidural layer of meninges in computed tomography scan.
CT Subarachnoid Hemorrhage: finding of bleeding below the subarachnoid layer of the meninges on a CT scan.
CT Contusion: finding of scattered bleeding over the brain surface on a CT scan.
CT Midline Shift: finding of the shift of one brain hemisphere to the other side across the midline on a CT scan.
Cisternal Compression: finding of compression over the cisternal part of the brain.
MRI Brain Pathology: abnormal findings in brain tissue on an magnetic resonance imaging (MRI).
Functional and cognitive outcomes (FCO):
The Extended Glasgow Outcome Scale (GOSE): Eight-category functional outcome measure at 3 and 6 months 

post-injury. PTSD DSM-IV Diagnosis: Diagnosis of post-traumatic stress disorder (PTSD), which occurs when a person 
experiences, witnesses, or is confronted with an event that involves actual or threatened death or serious injury, or a 
threat to the physical integrity of the self or others. The diagnosis is based on the fourth edition of the Diagnostic and 
Statistical Manual of Mental Disorders.

WAIS PSO Composite Score: obtained using the The Wechsler Adult Intelligence Scale (WAIS), which is an IQ 
test designed to measure intelligence and cognitive ability. 

CVLT Short Delay Cued Recall Standard Score and CVLT Long Delay Cued Recall Standard Score: obtained 
using the California Verbal Learning Test, which is a common assessment instruments used by clinicians to measure  
a verbal learning and memory. Short refers to short-term memory, and long refers to long-term memory. Free or cued 
recall is measured. In the latter, the patient is provided material to remember and asked to complete the test.

Genetic markers (GM):
COMT SNP Genotype: type of COMT gene important for cognitive function.
DRD2 SNP Genotype: type of DRD2 gene which is important for verbal learning.
PARP1 SNP Genotype: type of PARP1 gene important for response to stress.
ANKK1 SNP Gly318Arg: type of COMT gene important for cognitive function. 
ANKK1 SNP Gly442Arg: type of COMT gene important for cognitive function. 
ANKK1 SNP Glu713Lys: type of COMT gene important for cognitive function.

4. Applying PCA to TBI data: A step-by-step guide
4.1 Understanding the data

Before applying PCA to TBI data, explore these characteristics further to see how they might be used in PCA for a 
better understanding of TBI. Standard variables in TBI research include:

Categorical Variables.
Continuous Variables.

4.2 Steps involved in PCA

PCA can be applied to TBI data variables to:
Determine the latent factors: Minimize the dimensionality of the data by discerning fundamental elements that 

elucidate the variability within the data. Uncover hidden patterns and associations among variables that may not be 
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evident from basic correlation analysis.
Anticipate results: Employ PCA to ascertain the main determinants of long-term outcomes, including cognitive 

impairment and functional disability. Create predictive algorithms to identify patients at elevated risk of adverse 
outcomes.

Comprehend the neurobiological mechanisms behind traumatic brain injury (TBI): Examine the correlation 
between brain morphology and functionality, as assessed by neuroimaging and cognitive and behavioral results.

To understand the PCA results, it is important to consider the clinical and neurological importance of the main 
components. By correctly applying PCA to TBI data, one can learn a lot about how injuries happen and how people 
heal, leading to more effective medications and interventions.

5. Results and discussion
The PCAmix tool is utilized to assess the efficacy of PCA for mixed data types, adhering to the methodology 

outlined by Chavent [30]. This analysis is conducted using traumatic brain injury data, which comprises both numerical 
and categorical variables. The data was divided into two matrices: the first matrix, designated as dataA, contains seven 
columns for numerical data, while the second matrix, referred to as dataB, comprises 18 columns for categorical data. 
The implementation is conducted across three distinct scenarios, as illustrated in the following.

5.1 Case I: Global PCAmix (TBI data)

The global PCAmix is implemented on TBI data by combining all variables, Brain Imaging Findings (BIF), 
Functional and Cognitive Outcomes (FCO), and Genetic Markers (GM), aiming to capture the overall variance structure 
across these domains. The eigenvalues and proportions of each PC are shown in Table 3, which provides an overview 
of the global PCAmix implementation outcomes. The eigenvalue indicates the quantity of variation captured by a 
principal component, with higher values indicating more explained variability. The proportion reflects the percentage of 
total variation elucidated by each principal component, while the cumulative proportion illustrates the overall variance 
accounted for when more principal components are included. The first 11 principal components collectively explain over 
75% of the total variance, the contributions of all variables to each one of those PCs are presented in Table 4. Figure 
1(a) illustrates the primary variances in each fundamental component. The first PC represents 21.48% of the variation. 
The second principal component accounts for 8.76%, whereas the first two components together explain 30.24% of 
the variation. The 11th principal component accounts for 3.15%, whereas the first eleven components together explain 
77.17% of the total variation. Figure 1(b) shows the factor coordinates, absolute contributions, and squared cosines 
of the qualitative variables, along with the correlations between the first two principal components and the levels of 
the qualitative variables. The correlations with the first principal component are represented on the horizontal axis, 
while those with the second principal component are displayed on the vertical axis. In the positive aspect of , the “yes” 
levels of “BIF” variables are predominant, indicating the significance of particular brain imaging results in influencing 
, whereas the “no” levels and certain SNP genotypes (“GM3 = A/A”, “GM5 = C/G”) are inversely associated with . is 
significantly affected by genetic marker levels, with positive influences from “GM4 = G/G”, “GM5 = G/G”, and “GM2 
= C/C”, and negative influences from “GM4 = A/G”, “GM2 = C/T”, and “GM6 = C/T”.

Figure 1(c) presents the results for the quantitative variables. Brain imaging findings, such as “BIF1” and “BIF2,” 
exhibit strong positive coordinates on , indicating their dominance. In contrast, the functional and cognitive outcome 
variables, namely “FCO5”, “FCO6”, “FCO2”, and “FCO1”, exhibit negative correlations, indicating an inverse 
relationship with the “BIF” variables. In the case of , “FCO4” exhibits the highest positive loading, indicating its distinct 
variance relative to the other variables. Figure 1(d) shows the results for all the variables, the squared contribution 
correlation for the quantitative variable and the contribution correlation ratio of qualitative variables. It is apparent that  
is strongly associated with brain imaging findings, particularly “BIF8”, “BIF9”, “BIF10”, “BIF3”, and “BIF1”, while 
functional and cognitive outcomes (“FCO5”, “FCO6”) and genetic markers (“GM5”) have moderate contributions. On 
the other hand, is primarily linked to genetic markers, notably “GM4”, “GM2” , and “GM5”, with minimal contributions 
from functional and cognitive outcomes (“FCO3”, “FCO4”) and some “BIF” variables.

In summary, the first principal component (PC1) primarily reflects brain injury severity, as indicated by 
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neuroimaging findings such as CT scans and MRIs. Higher PC1 scores correspond to more severe brain damage, 
which is associated with poorer cognitive and functional outcomes. In contrast, the second principal component (PC2) 
appears to be influenced by genetic factors, as evidenced by the strong contribution of genetic markers. This suggests 
that genetic variations may play a significant role in modulating the impact of brain injury on cognitive and functional 
outcomes. Moderate contributions from other variables, such as demographic and clinical factors, indicate that a 
combination of genetic and environmental factors may influence the overall outcome.

Table 3. Case I: the contribution of each principle component (PC)

Eigenvalue Proportion Cumulative

comp 1 6.873 21.479 21.479

comp 2 2.804 8.7621 30.241

comp 3 2.696 8.4235 38.665

comp 4 2.518 7.8699 46.535

comp 5 1.928 6.0239 52.559

comp 6 1.662 5.1950 57.754

comp 7 1.475 4.610 62.363

comp 8 1.426 4.457 66.820

comp 9 1.228 3.837 70.657

comp 10 1.077 3.366 74.023

comp 11 1.009 3.152 77.174

comp 12 0.939 2.936 80.110

comp 13 0.821 2.564 82.674

comp 14 0.744 2.324 84.998

comp 15 0.686 2.144 87.142

comp 16 0.653 2.040 89.182

comp 17 0.576 1.800 90.983

comp 18 0.486 1.520 92.503

comp 19 0.452 1.413 93.915

comp 20 0.372 1.162 95.077

comp 21 0.318 0.994 96.071

comp 22 0.294 0.919 96.991

comp 23 0.238 0.744 97.735

comp 24 0.172 0.537 98.273

comp 25 0.151 0.471 98.743

comp 26 0.101 0.315 99.059

comp 27 0.090 0.281 99.339

comp 28 0.084 0.261 99.600

comp 29 0.048 0.151 99.752

comp 30 0.038 0.120 99.871

comp 31 0.027 0.085 99.957

comp 32 0.014 0.043 100.00
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Table 4. Case I: The contribution levels for all variables to each PC

BIF1 BIF2 FCO1 FCO2 FCO4 FCO5 FCO6 BIF3 BIF4

dim 1 0.6174 0.4916 0.3566 0.1602 0.0528 0.2437 0.2960 0.7162 0.3929

dim 2 0.0166 0.0771 0.0044 0.0067 0.1463 0.0124 0.0173 0.0064 0.0863

dim 3 0.0339 0.0349 0 0 0.0038 0.0349 0.0478 0.00002 0.0081

dim 4 0.0214 0.0591 0.1757 0.1362 0.2248 0.2286 0.2407 0.0089 0.2685

dim 5 0.0372 0.0026 0.0034 0 0.0325 0.0916 0.1016 0.0059 0.0083

dim 6 0.1070 0.0202 0.1154 0.1703 0.0880 0.0224 0.0047 0.0037 0.0687

dim 7 0.0070 0.0290 0.0220 0.1131 0.0477 0.0135 0.0240 0.0241 0.0029

dim 8 0.0241 0.0057 0.0616 0.0890 0.0129 0.0253 0.0244 0.0020 0.0034

dim 9 0.0061 0.0571 0.0062 0.0140 0.0525 0.1129 0.0981 0.0079 0.0077

dim 10 0.0026 0.0125 0.0012 0.0289 0.0507 0.0010 0.0059 0.0009 0.0009

dim 11 0.0039 0.0233 0.0006 0.0356 0.0250 0.0648 0.0265 0.0048 0.0052

BIF5 BIF6 BIF7 BIF8 BIF9 BIF10 BIF11 BIF12 BIF13

dim 1 0.3080 0.0714 0.1450 0.7151 0.6911 0.5895 0.0948 0.3986 0.3639

dim 2 0.0326 0.0681 0.0357 0.0019 0.0042 0.0003 0.1490 0.0721 0.0460

dim 3 0.0203 0 0.0023 0.0058 0.0140 0.0010 0.0499 0.0508 0.0481

dim 4 0.1398 0.0213 0.2948 0.0039 0 0.0657 0.0213 0.0094 0.0577

dim 5 0.0016 0.0521 0.0309 0.0197 0.0212 0.0397 0.0253 0.0852 0.0480

dim 6 0.1404 0.1927 0.0299 0.0192 0.0184 0.0103 0.0683 0.0825 0.0253

dim 7 0.0333 0.1311 0.0252 0.0001 0.0008 0.0016 0.0118 0.0072 0.0654

dim 8 0.0209 0.0334 0.0449 0.0267 0.0298 0.0005 0.0129 0.0139 0.0034

dim 9 0.0106 0.1132 0.0095 0.0203 0.0276 0.0068 0.2099 0.0175 0.0034

dim 10 0.0053 0.0482 0.0048 0.0604 0.0413 0 0.0180 0.0193 0.1943

dim 11 0.0149 0.0263 0.1276 0.0055 0.0015 0 0.0145 0.0013 0.2722

FCO3 GM1 GM2 GM3 GM4 GM5 GM6

dim 1 0.0008 0.0297 0.0207 0.0283 0.0075 0.0702 0.0115

dim 2 0.0549 0.0773 0.6483 0.0780 0.6842 0.2550 0.1612

dim 3 0.0091 0.0233 0.8551 0.0435 0.8645 0.2410 0.2946

dim 4 0.0951 0.0252 0.0205 0.0121 0.0340 0.1847 0.1690

dim 5 0.0119 0.2857 0.0365 0.2610 0.0245 0.3201 0.3811

dim 6 0.0510 0.0317 0.0522 0.1712 0.0961 0.0143 0.0584

dim 7 0.3549 0.1322 0.0244 0.2375 0.0111 0.0832 0.0721

dim 8 0.0048 0.4499 0.0017 0.4557 0.0012 0.0121 0.0218

dim 9 0.0019 0.0507 0.0575 0.1530 0.0602 0.1126 0.0107

dim 10 0.2155 0.0356 0.0149 0.0100 0.0021 0.2333 0.0606

dim 11 0.0022 0.1312 0.0294 0.0125 0.0174 0.0520 0.1105
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(a) Scree plot

21.5

25

20

10

15

5

0
1 3 5 7 92 4 6 8 10 12 14 16 18 20 2211 13 15 17 19 21 2324 26 28 3025 27 29 3132

8.88.4
7.9

5.2
4.64.53.83.43.22.92.62.32.1 1.81.51.41.2 0.90.70.50.50.30.30.30.20.10.10

1
2

6

Pr
in

ci
pa

l v
ar

ia
tio

n

Principal components

BIF13 = indeterminate

GM5 = C/C

GM6 = C/C
GM1 = Met/Val

GM11 = Met/Met

GM5 = G/G
GM6 = T/T

GM4 = G/G
GM2 = T/T

GM3 = T/T

GM3 = A/A

FCO3 = yes

FCO3 = no

GM4 = A/A
GM2 = T/T

GM3 = A/T

GM4 = A/T

-2

-4

-3

-2

-1

-1 0

0

1

1

2

2

3

GM6 = C/TGM2 = C/T
GM5 = C/G GM1 = Val/Val

BIF6 = yes

BIF3 = no
BIF11 = no

BIF7 = no
BIF5 = no BIF6 = no

BIF4 = no

BIF13 = no BIF8 = no
BIF12 = noBIF9 = no

BIF10 = no

BIF5 = yes
BIF7 = yes

BIF4 = yes

BIF10 = yes

BIF12 = yes

BIF11 = yes

BIF13 = yes BIF8 = yes
BIF3 = yes

BIF9 = yes

(b) Levels

D
im

 2
 (8

.7
62

%
)

Dim 1 (21.48%)



Contemporary Mathematics 782 | Zakiah I. Kalantan, et al.

-1.0

-1.0

-0.5

-0.5

0.0

0.0
FCO1 FCO2

FCO5
FCO6

FCO4

BIF2

BIF1

Dim 1 (21.48%)

D
im

 2
 (8

.7
62

%
)

0.5

0.5

1.0

1.0

(c) Numerical variables

(d) All variables
numerical
categorical

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

D
im

 2
 (8

.7
62

%
)

Dim 1 (21.48%)

GM4
GM2

GM5

GM6

GM3
GM1

BIF11

BIF6
BIF7

BIF5 BIF4
BIF12

BIF13
BIF2

BIF1
BIF10

BIF3
BIF9

BIF8

FCO4

FCO3
FCO2

FCO5 FCO6 FCO1
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5.2 Case II: Assessing the intricate interconnections among TBI biomarkers through PCA

By identifying “Brain Injury Fingerprints” (BIFs) and “Functional Connectivity Outcomes” (FCOs), PCAmix may 
adequately investigate the complex relationship between structural brain damage and functional recovery in traumatic 
brain injury (TBI). This method could identify latent patterns in the data, identifying hidden correlations between 
neuroimaging signs and clinical outcomes. The eigenvalues and proportions of each principal component (PC) are 
shown in Table 5, which provides an overview of the local PCAmix implementation outcomes. The first 7 PCs explain 
more than 75% of the total variance, the contributions of all variables to each one of those PCs are presented in Table 
6. Figure 2(a) and 2(b) display the PCs along with their associated variances. PC1 accounts for 33.7 % of the total 
variance and is predominantly influenced by structural brain injury. Categories such as “BIF3 = yes” and “BIF8 = yes,” 
indicative of severe brain damage, exhibit a strong correlation with PC1. Conversely, PC2, which accounts for 11.9% of 
the variance, is more significantly influenced by functional recovery. Variables such as “BIF4 = yes” and “BIF7 = yes,” 
linked to improved functional outcomes, exhibit a positive correlation with PC2.

Table 5. Case II: the contribution of each principle component (PC)

Eigenvalue Proportion Cumulative

comp 1 6.736 33.678 33.678

comp 2 2.394 11.970 45.648

comp 3 1.929 9.646 55.294

comp 4 1.351 6.754 62.048

comp 5 1.294 6.472 68.520

comp 6 1.014 5.070 73.590

comp 7 0.948 4.741 78.332

comp 8 0.815 4.075 82.406

comp 9 0.693 3.465 85.871

comp 10 0.646 3.229 89.100

comp 11 0.501 2.507 91.607

comp 12 0.402 2.012 93.619

comp 13 0.362 1.808 95.426

comp 14 0.274 1.370 96.796

comp 15 0.210 1.051 97.847

comp 16 0.141 0.703 98.550

comp 17 0.106 0.532 99.082

comp 18 0.098 0.491 99.573

comp 19 0.061 0.306 99.879

comp 20 0.024 0.121 100.000
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Table 6. Case II: the contribution levels for all variables

BIF1 BIF2 FCO1 FCO2 FCO4 FCO5 FCO6 BIF3 BIF4 BIF5

dim 1 0.6330 0.4905 0.3455 0.1540 0.0493 0.2421 0.2881 0.7290 0.3929 0.3018

dim 2 0.0119 0.1218 0.1017 0.0771 0.3818 0.2305 0.2309 0.0070 0.3703 0.2162

dim 3 0.1723 0.1089 0.1233 0.1436 0.0042 0.0926 0.1336 0.0020 0.0764 0.1428

dim 4 0.0216 0.0004 0.1361 0.3621 0.0209 0.2360 0.2128 0.0005 0.0001 0.0142

dim 5 0.0241 0.0469 0.0055 0.0122 0.2365 0.0105 0.0035 0.0251 0.0140 0.0557

dim 6 0.0002 0.0001 0.0004 0.0687 0.0019 0.0005 0.0005 0.0001 0.0003 0.0005

dim 7 0.0390 0.0560 0.0222 0.0020 0.0169 0.0739 0.0425 0.0045 0.0001 0.0796

BIF6 BIF7 BIF8 BIF9 BIF10 BIF11 BIF12 BIF13 FCO3

dim 1 0.0696 0.1503 0.7274 0.7071 0.5793 0.0929 0.4022 0.3792 0.0014

dim 2 0.0342 0.3548 0.0003 0.0060 0.0873 0.0726 0.0154 0.0304 0.0440

dim 3 0.1407 0.0043 0.0061 0.0067 0.0010 0.3420 0.2428 0.0037 0.1822

dim 4 0.0269 0.0007 0.0495 0.0466 0.0030 0.0112 0.0527 0.0579 0.0976

dim 5 0.4114 0.0650 0.0149 0.0183 0.0176 0.0325 0.0081 0.0001 0.2924

dim 6 0.0002 0.0041 0.0054 0.0057 0.0003 0.0051 0.0049 0.9028 0.0124

dim 7 0.0474 0.3171 0.0713 0.0391 0.0028 0.0033 0.0606 0.0345 0.0354

(a) Scree plot
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Figure 2. Case II: (a) Variations in principal components; (b) Results for the levels of the qualitative variables; (c) Results for the quantitative 
variables; (d) Results for the square loadings

Figure 2(c) elucidates the relationship between structural and functional components. BIF1 and BIF2, indicators 
of significant structural damage, exhibit a strong correlation with PC1. In contrast, “FCO1” through “FCO6,” which 
denote different dimensions of functional recovery, are strongly associated with PC2. Figure 2(d) clearly illustrates the 
distinction between structural and functional components. PC1 predominantly reflects structural injury, with “BIF1,” 
“BIF2,” “BIF3,” “BIF8,” and “BIF9” exhibiting clustering. PC2 is more closely associated with functional recovery, 
with “FCO1” to “FCO6” and specific structural measures such as “BIF10” and “BIF11” forming a distinct cluster.

To sum up this case, PC1 primarily captures the dimension of structural brain injury, as evidenced by the strong 
clustering of “BIF1” and “BIF9.” Higher scores on PC1 indicate more severe brain injury. Conversely, PC2 reflects 
functional recovery outcomes, with “FCO2” and “FCO4” being key contributors. Higher scores on PC2 are associated 
with better recovery. The inverse relationship between PC1 and PC2 suggests that severe structural damage is linked to 
poorer functional outcomes. However, the presence of independent variance in PC2 indicates that other factors, such as 
genetic or environmental factors, may also influence recovery.

5.3 Case III: Unveiling the Genetic Underpinnings of TBI Recovery with PCAmix

In Case III, PCAmix focuses on the interplay between genetic markers (GMs) and functional outcomes (FCOs), 
isolating these factors to explore their influence on recovery without the confounding effects of structural brain 
injuries. By analyzing the correlation between genetic variants and functional outcomes, this approach can potentially 
identify specific genetic predispositions that may influence recovery trajectories. This could lead to the development 
of personalized treatment strategies based on an individual’s genetic profile. Table 7 presents a summary of the PCA 
findings, including the eigenvalues and the percentage associated with each principal component. Over 75% of the 
overall variation is accounted for by the first 8 principal components; the contributions of all variables to each one of 
those PCs are presented in Table 8. Figure 3(a) presents the PCs and their corresponding variances. The first principal 
component, accounting for 16.96% of the variance, is primarily driven by functional recovery outcomes. Variables 
like “FCO5” and “FCO6” strongly align with PC1, indicating their significant contribution to recovery. In contrast, the 



Contemporary MathematicsVolume 6 Issue 1 |2025| 787

second principal component, explaining 14.70% of the variance, is more influenced by genetic factors. Genetic markers 
such as “GM2 = T/T” and “GM4 = A/A” are strongly correlated with PC2, suggesting their significant role in shaping 
individual recovery trajectories, as shown in Figure 3(b).

Figure 3(c) further illuminates the relationship between functional outcomes and genetic markers. “FCO1” to 
“FCO6” are closely linked to PC1, emphasizing their contribution to functional recovery. Genetic markers, while 
influencing PC2, have a more limited impact on PC1, suggesting that functional outcomes are primarily driven by non-
genetic factors. Figure 3(d) clearly visualizes the separation between genetic and functional factors. PC1 is dominated 
by functional outcomes, with “FCO5” and “FCO6” being the primary drivers. PC2, on the other hand, is primarily 
influenced by genetic markers, with “GM2” and “GM4” contributing significantly to the variance.

In summary, PC1 primarily reflects functional recovery outcomes. “FCO5” and “FCO6”, key indicators of 
functional recovery, strongly correlate with PC1, suggesting that this component captures the shared variance among 
these functional measures. The genetic influence on PC1 is secondary, indicating that genetic factors may play a less 
significant role in driving functional recovery. In contrast, PC2 is dominated by genetic variation. Genetic markers 
like “GM2 = T/T” and “GM4 = A/A” have a strong influence on PC2, suggesting that these genetic variants may play 
a crucial role in shaping individual differences in recovery trajectories. The minimal overlap between PC1 and PC2 
suggests that genetic and functional factors may operate through distinct, yet interconnected, pathways in influencing 
TBI outcomes.

Table 7. Case III: the contribution of each principle component (PC)

Eigenvalue Proportion Cumulative

comp 1 3.053 16.962 16.962

comp 2 2.646 14.703 31.665

comp 3 2.202 12.235 43.900

comp 4 1.718 9.546 53.446

comp 5 1.411 7.840 61.286

comp 6 1.298 7.214 68.500

comp 7 1.052 5.844 74.344

comp 8 0.879 4.885 79.229

comp 9 0.794 4.413 83.642

comp 10 0.626 3.479 87.122

comp 11 0.609 3.381 90.502

comp 12 0.536 2.979 93.481

comp 13 0.511 2.837 96.318

comp 14 0.324 1.797 98.116

comp 15 0.156 0.864 98.980

comp 16 0.099 0.552 99.532

comp 17 0.055 0.304 99.836

comp 18 0.029 0.164 100.000
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Table 8. Case III: the contribution levels for all variables

FCO1 FCO2 FCO4 FCO5 FCO6 FCO3

dim 1 0.4430 0.2708 0.1422 0.5030 0.5800 0.0752

dim 2 0.0242 0.0212 0.0542 0.0042 0.0035 0.0408

dim 3 0.2034 0.1341 0.2382 0.0226 0.0287 0.0000

dim 4 0.0058 0.0014 0.0059 0.1260 0.1227 0.0018

dim 5 0.0065 0.0907 0.0006 0.0316 0.0332 0.3676

dim 6 0.0364 0.1230 0.0562 0.1184 0.1064 0.1468

dim 7 0.0054 0.0127 0.0103 0.0472 0.0117 0.0002

dim 8 0.0013 0.0002 0.0045 0.0005 0.0003 0.0371

GM1 GM2 GM3 GM4 GM5 GM6

dim 1 0.0108 0.2953 0.0280 0.2829 0.1966 0.2253

dim 2 0.0192 0.8643 0.0794 0.8814 0.4125 0.2417

dim 3 0.1449 0.4924 0.0793 0.5856 0.1655 0.1077

dim 4 0.4085 0.0165 0.2893 0.0087 0.3224 0.4092

dim 5 0.2796 0.0140 0.4952 0.0160 0.0067 0.0694

dim 6 0.3161 0.0139 0.3302 0.0058 0.0379 0.0074

dim 7 0.1026 0.0113 0.1472 0.0109 0.4185 0.2739

dim 8 0.2056 0.1191 0.0064 0.0537 0.0471 0.4035

(a) Scree plot
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Figure 3. Case III: (a) Variations in principal components.; (b) Results for the levels of the qualitative variables; (c) Results for the quantitative 
variables; (d) Results for the square loadings

5.4 Summary of global and local PCAmix results

Case I: The global PCAmix combines variables from Brain Imaging Findings (BIF), Functional and Cognitive 
Outcomes (FCO), and Genetic Markers (GM), aiming to capture the overall variance structure across these domains. 
Brain imaging findings (BIF) were the primary contributors to variance, emphasizing their critical role in predicting 
functional and cognitive outcomes. Functional outcomes (FCO) were inversely related to imaging findings, with severe 
injuries predicting poorer recovery. Genetic markers (GM) showed an independent influence, suggesting that genetic 
variations uniquely contribute to resilience and recovery, separate from imaging findings. However, this approach is less 
effective at uncovering specific associations or interactions between variables in distinct subdomains. For instance, the 
relationships between genetic markers and recovery outcomes are diluted in the global model due to the dominance of 
imaging-related variance. The global PCAmix offers a holistic but generalized view, prioritizing the largest sources of 
variance while overshadowing weaker, potentially meaningful cross-domain relationships.

Case II: Assessing the Intricate Interconnections Among TBI Biomarkers Through PCA allows a more focused 
exploration of the relationship between brain imaging findings (BIF) and functional and cognitive outcomes (FCO). This 
results in more apparent clustering and differentiation between these variables, which was less apparent in the global 
analysis. The second case improves specificity by highlighting how specific brain imaging findings, such as midline shift 
or cisternal compression, relate to recovery metrics like GOSE scores or PTSD. Furthermore, it reveals some additional 
insights, like the impact of “BIF” variables on both short-term (e.g., GOSE at 3 months) and long-term recovery (e.g., 
GOSE at 6 months), showing patterns not emphasized in the global model. By excluding “GMs”, this analysis avoids 
the confounding influence of genetic markers, which might not directly influence imaging variables. This allows for 
focused insights into injury-outcome relationships, which are clinically actionable for predicting recovery trajectories.

Case III: Unveiling the Genetic Underpinnings of TBI Recovery with PCAmix focuses on the relationship between 
genetic markers (GM) and functional and cognitive outcomes (FCO), offering insights into how genetic variability might 
influence recovery. This level of specificity is absent in the global PCAmix, where genetic markers are marginalized due 
to their relatively small contribution to the total variance. The third study case helps uncover patterns in how genetics 
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influence recovery from brain injury, like the association of “GM1” and “GM6” with PTSD scores and neurocognitive 
performance, indicating a potential role of dopaminergic pathways in emotional and cognitive recovery. Such specificity 
is invaluable for personalized treatment approaches. Moreover, the analysis identifies potential clusters or subgroups 
based on genetic variability, hinting at individualized recovery trajectories. This case enables a deeper understanding of 
the “GMs” and “FCOs” relationship and reveals precise genotype-phenotype relationships, offering valuable insights for 
personalized recovery strategies and genetic research.

6. Conclusions
This study demonstrates the utility of PCA as a powerful technique for dimensionality reduction and data 

interpretation by selecting ordered and uncorrelated PCs. Using the PCAmix method, we effectively analyzed mixed 
data comprising both numerical and categorical variables, assigning equal importance in the final components without 
analyzing each type separately. Our findings identified three key domains influencing brain injury outcomes: brain 
imaging findings (BIF) assessing structural brain injury, functional and cognitive outcomes (FCO) evaluating recovery, 
and genetic markers (GM).

Global PCAmix is an ideal approach for initial broad exploration, capturing dominant variance trends across 
all domains. However, it lacks the precision required to disentangle specific relationships, making it less effective at 
uncovering associations or interactions between variables in distinct subdomains. In contrast, Unveiling the Genetic 
Underpinnings and Biomarkers of TBI Recovery with PCAmix analyses offers greater specificity and clarity, focusing 
on relationships within subdomains by limiting the scope to selected variable groups. This avoids the issue of 
dominant variables overshadowing smaller but significant contributions, enhances differentiation between variables 
within a domain, and provides focused interpretations by addressing specific research questions. Hidden patterns and 
relationships that may be obscured in the global analysis become evident in Unveiling some important factors, making 
them more effective for targeted research questions, while the global analysis offers a high-level summary.

These results emphasize the multifactorial nature of brain injury outcomes, where interactions between structural 
damage, genetic factors, and functional recovery collectively shape patient prognosis. This comprehensive approach 
could guide targeted interventions or personalized medicine strategies. PCAmix provides a robust framework for 
analyzing such complex interactions, balancing the need for both broad overviews and detailed subdomain insights.
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