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Abstract: The ozone layer has acted as the planet’s natural sunscreen, protecting people, plants, and animals from harmful
ultraviolet rays. The Antarctic ozone hole was first announced in a paper by the British Antarctic Survey’s Joe Farman,
Brian Gardiner, and Jonathan Shanklin in 1985. Many investigations are still conducting to determine the connection
between ozone depletion and climate change. This research study investigates the impact of the ozone layer’s depletion
at the Antarctic pole on global climate change data such as temperature and precipitation, after the year 1985 through a
fractal dimension, Multifractal Detrended Fluctuation Analysis (MFDFA), and standard correlation coefficient. For this,
the research work has analyzed 45 years of climate change variables such as global monthly temperature anomaly, global
monthly precipitation anomaly, and Southern Hemisphere minimum ozone time series data from 1979 to 2023. The fractal
dimension of the time series is obtained by rescaled range analysis, which is used to identify the fractality of the time series
and long-range correlations and persistence. To study the multifractality of these fractal time series, MFDFA procedure
has been applied. By applying MFDFA to these time series data, this research has identified significant multifractal
characteristics, indicating complex dynamics and long-range correlations, and identified potential nonlinear patterns. This
research provides valuable insights into the complex dynamics of time series data, as revealed by the calculated exponent
values and MFDFA spectrum. The strong correlation observed between the exponent values of temperature anomalies,
and precipitation anomalies, with ozone depletion time series provides compelling evidence for the significant impact of
ozone depletion on climate change. These results highlight the potential of multifractality for understanding the intricate
mechanisms underlying climate change.
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Abbreviation
H Hurst Exponent
FD Fractal Dimension
GMTA Global Monthly Temperature Anomaly
GMPA Global Monthly Precipitation Anomaly
SHMO3 Southern Hemisphere Minimum Ozone
MFDFA Multifractal Detrended Fluctuation Analysis

1. Introduction
Long-term changes in the climate that have taken place over decades, centuries, or longer have been referred to as

climate change. All creatures on Earth have become aware of climate change through multiple disasters like intense rain,
high temperatures, heat waves, landslides, floods, and so on. Global warming has raised interest in climate change studies
during the last few decades. Many of the factors influencing climate change have been identified on Earth. Among many
factors, greenhouse gases have been recognized as the primary contributors to increasing global warming. Scientists
have also been searching for the causes of climate change above the surface of the Earth, especially space-related factors.
Therefore, the researchers have been searching for the factors from the atmosphere.

The atmosphere has been described as a blanket of gases that surrounds the Earth. It has been made up of a mixture
of gases, mostly nitrogen, oxygen, argon, and carbon dioxide. It has reached over 500 km above the surface of the
planet. The atmosphere contains many layers. The stratosphere is one of the atmospheric layers, lying between 12 to 50
kilometers above the Earth’s surface, and contains the natural ozone (O3) layer. Ozone has been identified as a gas made
up of three oxygen atoms (O3). The ozone layer in the stratosphere has been absorbing most of the sun’s ultraviolet (UV)
radiation. A hole in the ozone layer over Antarctica has been discovered by the British Antarctic Survey’s Joe Farman,
Brian Gardiner, and Jonathan Shanklin, and it was announced in 1985 [1]. The Antarctic ozone hole is an event where
the ozone concentration over Antarctica becomes significantly depleted during the Southern Hemisphere’s springtime
(September-November). This depletion is mainly caused by human-made chemicals called chlorofluorocarbons (CFCs),
which are commonly used in air conditioners, refrigerators, fire extinguishers, aerosols, and other goods. Usually, these
goods are referred to as ozone-depleting substances (ODS) [2].

This ozone is measured in units called Dobson Units (DU). Dobson Unit has referred to the thickness of the ozone
layer in a vertical column from the surface to the top of the atmosphere, a quantity called the “total column ozone amount”.
Before 1979, total column ozone values over Antarctica had never depleted below 220 Dobson Units (DU). The global
mean ozone concentration in the upper atmosphere is around 300 DU, with regional variations ranging from 230 to 500
DU. Ozone in the total column rises with latitude and has an average minimum throughout the equatorial belt. The region
where ozone column values are equal to or less than 220 DU is commonly referred to as the ozone hole.

Ozone depletion has referred to two phenomena: a decrease in the overall amount of ozone in the stratosphere and a
drop in ozone on the pole side during the long springtime [3–6]. Figure 1 represents the layers of the atmosphere along
with the ozone layer in the stratosphere and ozone depletion over Antarctica. This ozone hole has become a global issue.
The scientists have made awareness about the ozone hole to governments, and have made efforts to stop it. As a result,
Mostafa Kamal Tolba, head of the United Nations Environment Programme (UNEP), brought the nations together for
a global agreement to safeguard the stratospheric ozone layer. This agreement was signed in 1987 and has called the
Montreal Protocol, which has gradually ceased the manufacturing and use of ozone-depleting substances (ODS). It has
been ratified by 197 countries, making it the first treaty in the history of the United Nations to achieve universal ratification.
The protocol has been successful in reducing the atmospheric concentrations of key ODS, such as chlorofluorocarbons
(CFCs) and halons, by over 90% since its implementation [7].

Many researchers have been attempting to determine the association between the ozone hole and climate change.
Nowadays, researchers have preferred to work on meteorological phenomena, especially temperature and precipitation
data in the anomalies, rather than absolute values. An anomaly refers to a deviation from the expected or typical pattern
or behavior. Temperature (or precipitation) anomalies typically represent deviations from the long-term average or
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climatological norm for a given location and period. Temperature anomalies have indicated whether temperatures have
been higher or lower than average for a specific period, while precipitation anomalies have indicated whether precipitation
amounts have been above or below average. These have been used to understand and monitor climate variability and
change, as well as to estimate the impacts of weather events such as heatwaves, droughts, heavy rainfall, and so on [8].

Figure 1. Ozone depletion in the stratosphere

Researchers have used many different tools and models for their research. Ozone depletion has been analyzed by
the authors of the article [9] using mathematical models, particularly the weighted multiplicative algebraic reconstruction
technique. In the article [10], the authors have discussed how the mathematical model has been crucial as it has allowed for
simulating ozone depletion phenomena through chemical kinetics and Ordinary Differential Equations (ODEs), providing
insights into concentration variations of stratospheric elements. This has aided ozone monitoring stations in predicting
future atmospheric changes effectively. In the article [11], the mathematical model has been essential in assessing the
impact of temperature increases caused by greenhouse gases like CFC on prey-predator dynamics. Using stability theory,
it has provided a threshold stress parameter to predict the survival or extinction of populations, offering valuable insights
into ecosystem stability. The mathematical model has been pivotal in improving the accuracy of Taiwan’s daily maximum
ozone concentration predictions by utilizing a two-stage fuzzy time series approach in the article [12]. It has outperformed
traditional models, providing enhanced tools for assessing air quality and addressing environmental concerns. In [13], the
authors have used the short-term variability method to analyze the Antarctic ozone hole, sea surface temperature, surface
temperature, and zonal wind. They have concluded from their result that the ozone hole-related surface wind anomalies
have caused cooling across the Southern Ocean, which might have impacted temperatures in the eastern tropical Pacific.
In the article [14], the authors have used satellite data and passive-tracer methods to examine ozone loss in the Antarctic
over eight years 2013 to 2020. They have identified that the highest ozone loss in 2020 was due to high chlorine levels
and a stable polar vortex. In the article [15], the authors have discussed the time series of airborne observation of ozone
and meteorological quantities with fractal geometry and Hurst exponent. As a result, they have suggested that ozone and
horizontal wind speed have behaved as random, self-affine fractals and multifractality is present in the persistent variables.
In the article [16], the authors have discussed the complexity of analyzing environmental phenomena like atmospheric
pollution, temperature variability, global warming, and ozone layer depletion (OLD) using deterministic models. Their
study has introduced time series modeling to analyze the fluctuating dynamics of the ozone layer and has employed
techniques like bi-spectrum analysis and correlation dimension to understand the chaotic nature of OLD.
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The concept of multifractality has found widespread application across various fields. Researchers have identified
multifractality using a range of tools, including Detrended fluctuation Analysis (DFA), Multifractal Detrended fluctuation
Analysis (MFDFA), Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), and wavelet transform, among
others. In continuation, the authors of the paper [17] have used wavelet and detrended fluctuation analysis techniques for
non-stationary data of total column ozone to detect long-range correlation. Their results have shown that column ozone
fluctuations exhibit persistent long-range power-law correlations for all-time lags between 4 months and 11 years. The
ozone research with modern techniques has continued with the 10-minute ozone concentration time series fromCordoba in
2007 has been examined by the authors of the paper [18] usingmultifractal analysis to comprehend its seasonal patterns and
multifractal character. Beyond conventional statistical techniques, multifractal analysis has provided extensive insights
into the structure of ozone time series by revealing heterogeneity. So, the multifractal detrended fluctuation analysis
(MFDFA) has become awidespread technique to find the complexity andmultifractality of the variables. Many researchers
have been utilizing the MFDFA as a tool for their research.

In the sequence, the authors of the article [19] have utilized multifractal detrended fluctuation analysis (MFDFA) on
a daily time series spanning 31 years from stations across Europe to analyze the scaling properties of agro-meteorological
factors. Their results have revealed a multifractal structure with diverse dynamics across variables. And they have
suggested that the MFDFA has an effective technique for offering insights into the effectiveness of climate dynamics.
Following that, MFDFA has been applied by the researchers of the article [20] to daily total ozone concentration (TOC)
data for the years 2015 to 2019. It has been possible to identify multifractal behavior and obtain a generalized Hurst
exponent larger than 0.5.

In [21], they have analyzed that hierarchical organization is central to complexity, with multifractality as its
key quantifying concept. While model cascades show symmetric singularity spectra, empirical data often exhibit
asymmetric spectra. Examples include financial markets, narrative text variability, and Sunspot Number fluctuations,
where asymmetry, particularly in Sunspot data, suggests either distortion by the Wolf formula or a different underlying
dynamic mechanism. In this order, the analysis of multifractality has been employed in many time series like Southern
Oscillation Index [22], the presence of natural radionuclides in the atmosphere and water [23], a study of ozone, pollutants
like NOx, SO2, and surface temperature in Kolkata’s pre-lock-down (2019) and lock-down (2020) periods [24], the impact
of COVID-19 lock-downs on air quality in the Hong Kong port area [25], the time series of total ozone concentrations in
NewDelhi [26]. Investigation of PM2.5 and PM10 Dynamics in the Caribbean Basin [27], multifractality analysis of fractal
interpolation functions [28], time series analysis of Mpox outbreak [29]. The multifractal analysis has been extended to
the joint multifractal analysis. This technique has been used for three variables, temperature, NO2, and ozone, that coexist
in the same geometric support in the paper [30]. Scale-dependent interactions among variables have been shown by joint
multifractal analysis conducted on hourly data from Seville in the summer of 2011. They have obtained the result that the
temperature has significantly impacted ozone concentrations across time scales.

Literature reviews have shown that multifractal analysis, particularly through theMFDFA procedure, has been crucial
for understanding multifractal behavior in climate systems. MFDFA has been recognized as a robust tool for analyzing
the complex, scale-dependent variability in atmospheric data. This approach has enabled a better understanding of the
mechanisms governing climate variability and ozone depletion, which are critical for predicting long-term trends and
addressing environmental challenges [31]. These qualities of MFDFA have inspired us to use it for studying climate
change.

We have analyzed climate changes considering various influencing factors. In a previous study [32], we examined the
impact of carbon dioxide on temperature and precipitation. Now, we have turned our focus to studying the effects of ozone
depletion on climate change using multifractal analysis. MFDFA has been chosen for its robustness in analyzing complex
time series and its ability to detect multifractal properties, making it ideal for exploring the dynamics of non-stationary
data.
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Figure 2. Schematic diagram

By leveraging the fractal dimension as an analytical tool, this study has provided deeper insights into the scaling
properties and multifractal nature of the time series. The fractal dimension, derived from the Hurst exponent (D = 2−H),
has indicated the sources of multifractality in chosen datasets like SHMO3, GMTA, and GMPA. Non-integer fractal
dimension values have revealed the fractal nature of the data, which has been fundamental to identifying multifractal
characteristics. This has strengthened our commitment to using the MFDFA procedure.

While substantial research has focused on ozone depletion and climate change individually, no study has yet
explored the time-series data of ozone depletion in the Southern Hemisphere alongside global climate variables such
as temperature anomalies and precipitation anomalies. This work has employed analytical tools like fractal dimension,
MFDFA exponents, their spectrum, and standard correlation coefficients. This study has represented a significant effort to
address this gap, providing a novel perspective on the intricate relationship between ozone depletion and climate change.
By doing so, it has held the potential to enrich our understanding of their interconnected dynamics. The key contributions
and novel aspects of this research are summarized as follows: This study has introduced a novel approach by employing
fractal dimension, MFDFA procedure, and standard correlation coefficient to examine the impact of ozone depletion on
global temperature and precipitation anomalies.

• It has emphasized the complexity and persistence of these climate variables from 1979 to 2023, with a particular
focus on the post-1985 period, when ozone depletion has accelerated and has begun to influence climate patterns.

• By integrating fractal dimension, MFDFA exponents and their spectrum, and correlation coefficients, this research
has offered a unique perspective on the interdependence between changes in ozone depletion and global climate anomalies.
To aid in understanding the overall approach, this study has presented a Schematic diagram in Figure (2).

The article has been organized as follows: Section 2 has outlined the methodologies employed in this work, while
Section 3 describes the data collection process and provides an overview of the dataset. Section 4 has discussed the results,
Section 5 has addressed the research limitations and has suggested potential directions for future work, and Section 6
concludes the study by summarizing the key findings.

Contemporary Mathematics 598 | A. Gowrisankar, et al.



2. Methods and materials
This research has utilized the following methods:
• Rescaled Range analysis
• Fractal Dimension
• Multifractal Detrended Fluctuation Analysis (MFDFA)
• Correlation coefficient.

2.1 Rescaled range analysis

To calculate the Hurst Exponent using rescaled range analysis, the non-stationary time series Xk has been divided into
segmentsXt , where the segment lengths are powers of two, and t has varied from 1, 2, . . . , N. The time series has been split
into s non-overlapping subintervals of equal length, where s is the segment length. The mean of the data for each segment
has been calculated as X̄t =

1
s

∑s
i=1 Xi, where t is the segment index and Xi represents the data points within that segment.

To, detrend the data, the mean X̄t of the segment has been subtracted from each data point Xi within the segment to obtain
the deviations Yi = Xi − X̄t for t = 1, 2, . . . , N. This step represents the fluctuation around the mean. Next, calculate the
cumulative sum of deviations for each point within the segment has been calculated as yi = ∑i

j=1 Yj, where i runs over the
data points in the segment. After this, find the range of the cumulative sum for each interval Ri = max(yi)−min(yi) for

i = 1, 2, . . . , s. The standard deviation for each segment has been calculated as σs =

√
(

1
s

∑s
i=1(Xi − X̄t)2) where s is the

segment length. Finally, the range has been divided by the standard deviation for each segment as (R/S)s =
Rs

σs
where s

is the segment length. Logarithmic scaling has been applied to both R/S and s, which has resulted in a straight line on
a log− log plot. Then fit a linear regression to the plot log(s) vs log(R/S). The slope of this fit line has been a Hurst
exponent H. If the Hurst exponent value has fallen between 0 < H < 0.5, then it has indicated anti-persistence, meaning
that an increase in value is more likely to be followed by a decreased value, reflecting short range correlations. If H = 0.5,
it has represented a random walk, indicating the absence of correlations and making future values unpredictable. If the
Hurst exponent value has fallen between 0.5 < H < 1, it has indicated persistence, meaning that an increase in value is
likely to be followed by another increase, reflecting long-range correlations [33].

2.2 Fractal dimension

From this Hurst exponent value, one can find the fractal dimension easily. A fractal is an object, a curve, or a pattern
that keeps repeating at any scale indefinitely. It has a self-similar pattern with unlimited complexity at various sizes. The
fractal has been classified into two categories due to its self-similarity: random fractals and deterministic fractals. Random
fractals are statistically self-similar; deterministic fractals are exactly self-similar. Numerous natural examples, such as
lightning, coastlines, and tree branches, have been classified as random fractals. The Cantor set, the Sierpinski gasket,
and Menger’s sponge have been a few examples of deterministic fractals. All fractal objects have non-integer dimensions.
The fractal has no proper definition, even though Mandelbrot, known as the father of fractals defined it as “a set for which
the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension” [34, 35]. Many different methods have
been used to obtain the fractal dimension. To find the fractal dimension from the Hurst exponent value, Mandelbrot has
developed the formula as

FD = E +1−H (1)

where FD is the fractal dimension, E is the Euclidean dimension, and H is the Hurst exponent. The Euclidean dimension
has E = 0 for a point, 1 for a line, and 2 for a surface. Whenever H has less than 1, then the object intrudes into the next
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dimension, just as a curve or rough surface requires embedding in 3-D space to be visualized. The Euclidean dimension
for time series data is one. Therefore, the equation 1 becomes

FD = 2−H. (2)

Thus the formula, equation 2 has been used to find the fractal dimension through the Hurst exponent for one-
dimension objects [36].

2.3 Multifractal detrended fluctuation analysis (MFDFA)

Multifractal is a measure to quantify the fractal datasets. Multi-fractal analysis has become a powerful method
of characterizing long-range correlations within time series through the calculation of different scaling exponents for
different parts of the series [37–41]. The multifractal detrended fluctuation analysis (MFDFA) extension of the Detrended
fluctuation analysis (DFA) model has made it possible to unfold the scaling behavior of the fluctuations in the time
series and find the spectrum of singularities. This has been formulated and spread by Kantelhardt et al. in [42]. A
multifractal system has become a generalization of a fractal system. Unlike traditional fractals, which have a single
exponent (the fractal dimension) to describe their dynamics, multifractal systems have many exponents to describe the
complexity, irregularity, and persistence at different scales. Examples of multifractal systems in nature are coastlines,
mountain topography, fully developed turbulence, real-world scenes, heartbeat dynamics, human gait, brain activity, and
many more.

The MFDFA has exhibited scaling properties across multiple scales. By analyzing the fluctuations in the data across
different scales, MFDFA has offered insights into the underlying complexity and organization of the dataset. In MFDFA,
relationships between variables have often been inferred from the scaling properties observed across various scales. The
scaling exponent derived from MFDFA has provided insights into their relationships. Essentially, if two variables have
demonstrated similar scaling exponents across different scales, then it suggests they have shared similar underlying
dynamics or structures. Conversely, differences in scaling exponents have indicated different underlying processes or
relationships between the variables [43, 44].

Multifractal spectrum analysis has been another method used to characterize the multifractal properties of a dataset.
It has quantified the distribution of singularity exponents, which has described the local scaling behavior of the data across
different scales. To describe the dynamics, multifractal systems have required a continuous spectrum of exponents known
as the singularity spectrum. The behavior around any point has been described by a local power law. The exponent in
this power law has been called the singularity exponent, which characterizes the local degree of singularity or regularity
around the point. The ensemble of points sharing the same singularity exponent has formed the singularity manifold,
which is a fractal set. The curve representing the relationship between singularity exponents and their measure has been
called the singularity spectrum.

It has fully described the statistical distribution of the variable in the multifractal system. By distorting datasets
extracted from patterns, a multifractal spectrum has been generated. The spectrum has illustrated how scaling varies
across the dataset. Both MFDFA exponents and multifractal spectrum analysis have provided valuable insights into
the relationships between variables by characterizing their scaling properties and multifractal structures. The MFDFA
concepts and their various applications have been understood from the article [42].

The MFDFA has comprised five steps, with the first three steps having employed a conventional DFA procedure.
Let’s assume that xk has been a series of length N, and the series has exhibited compact support, i.e., xk has equaled zero
for only an insignificant fraction of the values.

• The profile Y(i) has been determined by subtracting the mean value and integrating the time series, which has
converted the noises into random walks.
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Y(i)≡
i

∑
k=1

[xk − x̄], i = 1, 2, 3, . . . , N (3)

where x̄ is the mean of the series.
• The profile Y(i) has been divided into

Ns ≡ int(N/s) (4)

non-overlapping segments of equal length s.
• To avoid bias at the edges, the process has been repeated starting from the opposite end of the profile, resulting in

2Ns segments.
• The least square fit technique has been applied to the series to determine the local trend for each of the 2Ns segments.

Then, the variance has been found as:

F2(ν , s)≡ 1
s

s

∑
i=1

{Y[(ν −1)s+ i]−yν(i)}2 (5)

for each segment ν , ν = 1, 2, 3, . . . , Ns and

F2(ν , s)≡ 1
s

s

∑
i=1

{Y[(N − (ν −Ns)s+ i]−yν(i)}2 (6)

for ν = Ns +1, . . . , 2Ns, where yν(i) segment ν has been the fitting polynomial in segment ν .
• To obtain the qth order fluctuation function Fq(s), all the segments have been averaged:

Fq(s)≡

{
1

2Ns

2Ns

∑
ν=1

[F2(ν , s)]
q
2

} 1
q

, (7)

where q has been able to take any real value except zero.
• Fs has depended on the time scale s for different values of q, increasing as the scale s has increased.
• The scaling behavior of the fluctuation function has been determined by analyzing log− log plots of Fq(s) versus

s for each value of q. For multifractal time series, Fq(s) has increased (for large values of s) as a power law:

Fq(s)∼ sH(q) (8)

with the generalized Hurst exponentH(q) depending on q. For stationary time series, the exponentH(2) has been identical
to the Hurst exponent.

• For monofractal time series, which have been characterized by a single exponent over all scales, H(q) has been
independent of q, whereas for multifractal time series, H(q) has varied with q. This dependence has been considered a
characteristic property of the multifractal process.
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• If q= 0 in align (7), it has become a diverging exponent, the value of H(0), which has represented the limit of H(q)
as q has approached zero, cannot have been determined using the standard averaging method. Therefore, researchers have
used a logarithmic averaging method, given by:

F0(s)≡ exp

{
1

4Ns

2Ns

∑
ν=1

In[F2(ν , s)]

}
∼ sH(0), (9)

• Note that H(0) cannot be defined for time series with fractal support, where H(q) diverges as q → 0.
• For monofractal time series with compact support, H(q) has not depended on q because the variances F2(ν , s) have

been consistent across all segments. In this case, the standard averaging method has produced the same scaling behavior
for all q values.

• A noticeable dependence of H(q) on q has occurred when small and large fluctuations have scaled differently. For
positive q, segments with large variance F2(ν , s) have dominated the average F2(s), so H(q) has described the scaling
of segments with large fluctuations. For negative q, segments with small variance F2(ν , s) have been more influential in
the average F2(s), so H(q) has described the scaling of segments with small fluctuations.

• In continuation with the above, the multifractal spectrum has been obtained using the relationship:

τq = qH(q)−1 (10)

• An alternative measure to analyze the multifractal characteristics of a series has been to calculate the singularity
spectrum, also called the multifractal spectrum f (α). The multifractal spectrum may have been related to τq through the
Legendre transform:

α(q) =
dτq
dq

(11)

and

f (α(q)) = q(α(q))− τq, (12)

where α(q) has been the singularity strength or Hölder exponent, and f (α(q)) has denoted the singularity dimension of
the subset of the series that has been characterized by α(q).

• By employing align (10), a relationship between α and f (α) with H(q) has been derived. It has been:

α(q) = H(q)+qH ′(q) (13)

and

f (α(q)) = q[α(q)−H(q)]+1, (14)

where H ′(q) has been the derivative of H(q).
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• The strength of the multifractality has been derived from the width of the spectrum. The width of the multifractal
spectrum has been calculated as:

width(w) = α(maximum)−α(minimum)

FromMFDFA, the researchers have obtained the following exponents: q-order generalized Hurst exponents H(q), q-
order mass exponents (τq), q-order singularity exponents α(q), and q-order singularity dimensions f (α(q)). The
generalized Hurst exponents characterize a time series of long-term memory or persistence. The value of H(q) has been
calculated often for different orders of q to capture the scaling behavior of fluctuations across different scales. The
H(q) values obtained from MFDFA may exceed one. The value of H(q) < 0.5 indicates short-term reversals, negative
correlation, or anti-persistence; if it equals 0.5, it suggests no correlation or a random walk with no memory. The
H(q)> 0.5 indicates long-term correlation or positive persistence.

Themass exponent (τq), also known as themoment exponent, characterizes the distribution of fluctuations at different
scales. It has provided information about how the moments of the probability distribution function of fluctuations scale
with the order of the moment q. The singularity exponents α(q) have characterized the local regularity or irregularity in
the data. It has been obtained from the multifractal spectrum and describes how the singularity strength varies with scale.
The singularity dimension f (α(q)), also known as the multifractal spectrum, has described the distribution of singularity
strengths across different scales. It has provided a comprehensive view of the multifractal properties of the dataset. The
multifractal of the dataset has been measured by the width of the multifractal spectrum, which has been represented by
the difference between the maximum value of α(q) and the minimum value of α(q). Matlab software has been used to
find the MFDFA, and the coding has been taken from the articles [45, 46].

The asymmetry of the MFDFA spectrum has provided insights into the distribution of singularities in a time series. It
has indicated whether large fluctuations or small fluctuations dominate the multifractal behavior. A left-skewed spectrum
has suggested the dominance of small fluctuations, while a right-skewed spectrum has indicated the prevalence of large
fluctuations. This characteristic has been widely used to identify and interpret the nature of variability and scaling in
complex systems, including climate and environmental data. The asymmetry measure has offered a deeper understanding
of the imbalance in multifractal structures, enhancing the analysis of non-linear and non-stationary data.

2.4 Correlation coefficient

A statistical measure of the degree to which two variables have shown a linear relationship is the correlation
coefficient. Correlation analysis has allowed researchers to investigate whether changes in one variable have correlated
with changes in another. After data collection, the scatter plot is used to visualize the data, with one variable drawn along
the x-axis and another variable plotted along the y-axis. Researchers have been able to examine the scatter plot through
their sight to determine whether there are any observable patterns or whether the variables have a linear connection. It is
implied that a straight line could plausibly match the data points in a linear connection.

The correlation coefficient has been constrained to a range from−1 to 1. The values within this range have indicated
the strength and direction of the correlation. Specifically, a correlation coefficient falling between−1 and 0 has signified
a negative correlation, while a value of 0 has suggested no correlation at all. On the other hand, coefficients ranging
from 0 to 1 have indicated a positive correlation. In instances where the coefficient has precisely equaled −1 or 1, it has
denoted a perfect negative or perfect positive correlation, respectively. The positive coefficients have signified that the
variables have changed in the same direction, whereas a negative coefficient has implied they have varied inversely. The
magnitude of the correlation coefficient, irrespective of its sign, has been represented by its absolute value. The correlation
coefficient values have quantified the strength of the correlation coefficient. When the correlation value has reached 1
(either positively or negatively), the variables have a strong correlation between them [47, 48]. For this analysis, Excel
software has been used.
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3. Data description
To analyze stratospheric ozone depletion’s impact on climate variables such as temperature and precipitation, this

study has used monthly data ranging from 1979 to 2023. The Global Monthly Temperature Anomaly (GMTA), Global
Monthly Precipitation Anomaly (GMPA), and Southern Hemisphere MinimumOzone (SHMO3) data have been extracted
from the data reservoirs ‘Our World in Data’ [49], ‘Copernicus Climate Data’ [50], and ‘NASA Climate Data’ [51],
respectively. GMTAdata has been drawn directly from the data reservoir ‘OurWorldData’ asmonthly data. The combined
land-surface air and sea-surface water temperature anomaly has been given as the deviation from the 1951 to 1980 mean.
The temperature data has been given in Celsius units. SHMO3 data has also been obtained directly from the source ‘NASA
Climate Data’ as monthly data for the Southern Hemisphere, with a few missing data points. The missing data have been
adjusted by the average of the preceding and succeeding two years of its respective monthly data. It has been measured
in units of Dobson (DU). The total precipitation data have also been available as a monthly data source for the various
locations of the world under the division of “Essential Climate Variables for the Assessment of Climate Variability Since
1979 to the Present”.

Figure 3. Visualization of variables: (a) GMTA, (b) GMPA, (c) SHMO3, and (d) comparison of GMTA and GMPA with normalized SHMO3
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The average of the total precipitation at all locations in the data reservoir has been considered as GMPA. Precipitation
is defined as the accumulation of liquid and frozen water (including rain and snow) that falls to the surface of the earth.
Precipitation variables have excluded fog, dew, and the precipitation that evaporates in the atmosphere before reaching
the surface. The monthly mean precipitation data has been presented in units of meter ‘m’, meaning that the amount of
precipitation that falls over a day has been expressed as “m/day”. For ease of reference, the data has been converted to
mm/day by multiplying it by 1,000. Figure 3 is a graphical representation of the variables GMTA, GMPA, and SHMO3

in Figures 3(a), 3(b), and 3(c), respectively. SHMO3 data has been normalized by using the statistical method (x− x̄)/N
to compare it with other variables, which is displayed in Figure 3(d).

4. Results and discussion
In this section, the analysis has found the fractal dimension of three variables: SHMO3, GMTA, and GMPA, using

Excel software. The fractal dimension values of the variables have been obtained from the Hurst exponent values by using
the method of rescaled range analysis.

Figure 4. The log− log plot of (a) GMPA, (b) GMTA, (c) SHMO3, and (d) a combination of all the variables in a single plot
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Each variable consists of 540 time-series data points, which have been divided into 7 segments as 2, 4, 8, 16, 32,
64, and 128 in the powers of 2. The x-axis values of the plot have represented the logarithm of these segment sizes (n),
while the corresponding y-axis values have represented the logarithm of the average rescaled range values. Each point on
the plot has been represented by the segment size. Figure 4 depicts the log− log plots of GMPA, GMTA, SHMO3, and
the combination of all three variables. In Figure 4(a), the light green curve has been indicated as the regression curve of
GMPA, with its corresponding linear fit being represented by red dashed lines. Next to it, in Figure 4(b), the non-linear the
red curve has been represented as the regression curve of GMTA, while the small blue dashed lines have depicted its linear
fit. In Figure 4(c), the blue curve has been represented by SHMO3, and its linear fit has been denoted by red dashed lines.
Ultimately, Figure 4(d), shows the comparison of log− log plots of all variables. All plots have exhibited a non-linear
relationship. To estimate the Hurst exponent values, linear regression has been applied to the curves. The slope of the
linear fit is represented as the Hurst exponent (H). The obtained and calculated H & FD values have been mentioned
in their respective graphs. Remarkably, all regression curves have lain above the linear fit line, indicating persistence
in the data. Among the variables, GMTA has had the highest Hurst exponent, suggesting the strongest persistence and
most predictable trends, followed by GMPA and SHMO3. This has indicated that GMTA’s behavior over time has been
influenced by strong long-term memory effects, which could have had implications for climate modeling and prediction.
They have had a chance of a reduction in the data value after a few months. Therefore, the variables GMTA, GMPA, and
SHMO3 has exhibited persistence with long-range memory. From the result, it has been observed that SHMO3 has more
roughness and complexity, which has been followed by GMPA and GMTA.

The obtained values of the Hurst exponent (H) and fractal dimension (FD) have been displayed in Table 1. Table
1, has shown the value of the fractal dimension (FD) of SHMO3, as 1.3355. This value has indicated a higher level of
complexity, irregularity, and less level of persistence over time. It has suggested a significant degree of persistence or long-
range dependence on the data, with trends or patterns that have tended to recur on different timescales contributing to its
fractal dimension. The FD value of GMTA has been 1.0852, indicating that the variable has a medium level of complexity
and irregularity compared to SHMO3. It has been suggested a relatively smooth, regular, and highly persistent behavior
over time. The data have exhibited some degree of randomness or short-range dependence, with more recurring patterns
on different timescales. For GMPA, the fractal dimension value is around 1.127, which indicates that the data has moderate
complexity with some recurring patterns or structures across different scales. It’s not entirely smooth (like a straight line)
but also not highly irregular (like random noise). The value suggests a degree of long-range dependence or moderate
persistence in the data, where trends or features may have persisted over time or across different resolutions. This table
has summarized the key quantitative findings from the analysis of the three variables-SHMO, GMTA, and GMPA.

Table 1. The Hurst exponent (H) and Fractal dimension (FD) values of the variables

Variables H FD

SHMO3 0.6644 1.3355
GMTA 0.9148 1.0852
GMPA 0.8721 1.1278

The results of this study have demonstrated that all analyzed time series exhibit fractal characteristics and long-range
persistence. Therefore, multifractal analysis, specifically the MFDFA procedure, has been employed to measure this
fractal behavior.

Next to this, the study discussed the outcomes of the variables from the MFDFA procedure using MATLAB software.
The procedure has analyzed 45 years of monthly data, spanning from 1979 to 2023, which has a time series of 540 data
points. The segment sizes ‘s’ were selected logarithmically between a minimum of 4 and a maximum of 540, with 8
equally spaced resolutions to ensure adequate coverage of both short and long timescales. A total of 25 ‘q’ values were
used, ranging symmetrically from −5 to 5, to explore multifractality across a spectrum of small and large fluctuations. A
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least squares method was applied for polynomial fitting, with the detrending performed using a first-order polynomial to
effectively remove linear trends within each segment.

Figure 5 has shown log-log plots that represent the scales versus fluctuation function Fq(s) for different q-values
obtained from the MFDFA. These plots have allowed us to explore the scaling behavior of each variable in Figure 5(a)
SHMO3, Figure 5(b) GMTA, and Figure 5(c) GMPA. The approximate linearity of the plots across different q-values has
indicated the presence of a scaling relationship. For positive q-values, the fluctuation function Fq(s) has emphasized larger
fluctuations, while for negative q-values it has emphasized smaller fluctuations. The difference in slopes across q-values
has reflected the multifractal nature of the data. GMPA, in Figure 5(c), has exhibited consistent scaling across different
scales s. The spread of Fq(s) for varying q-values has suggested moderate multifractal characteristics which has observe
from the more negative values of q. Similar to GMPA but with a slightly more pronounced separation between q-values,
GMTA in Figure 5(b) has indicated stronger multifractality or a broader range of fluctuation dynamics. SHMO3, in Figure
5(a), has displayed a steeper increase in Fq(s), particularly for higher q-values. This has suggested that larger fluctuations
have dominated the scaling behavior and that the multifractality may have been influenced more strongly by extreme
values. Each variable has exhibited unique scaling behaviors, as reflected in the Fq(s) plots. These differences have
been tied to their multifractal properties and have been quantified by the generalized Hurst exponent, mass exponent, and
singularity spectrum. SHMO3 has likely had the strongest multifractality, followed by GMTA and GMPA. This scaling
behavior has indeed shaped the MFDFA spectrum f (α).

Figure 5. The log-log plot of sclae s versus function Fq(s) for the variables (a) SHMO3, (b) GMTA, and (c) GMPA with different q-values along with
their linear fits
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The obtained generalized Hurst exponent H(q) values for different q-values have varied between 1.0547 to 0.6363
for SHMO3, 1.4202 to 1.1213 for GMTA, and 1.3332 to 0.8323 for GMPA. In comparison, the generalized Hurst exponent
values of GMTA have been observed to be higher than the other variables. Throughout all q-values, the generalized Hurst
exponents have remained above 0.5 for all the variables, indicating long-range dependence, especially GMTA values of all
q-order have exceeded 1, which means strong range dependence and persistence. The variability of the generalized Hurst
exponents across different scales has offered insights into the multifractal characteristics of the time series, showcasing
varying degrees of long-termmemory at different scales. Particularly, the GMTAvalues have consistently exhibited higher
levels than the others, which can be visualized in Figure 6(a). The H(q) values of all the variables have lied between 0.6
and 1.4202, implying that all are persistent. The maximum value of SHMO3 has been found to be lower than the minimum
values of GMTA. Although GMTA and GMPA have both demonstrated persistence, there have been distinctions in their
specific dynamics and suggested variations in the underlying processes. GMPA has exhibited persistence to a slightly
lesser extent or with different dynamics compared to GMTA.

Figure 6. The exponents value from MFDFA method

The mass exponents (τq) values of the variables have exhibited a range of variation across different q values, which
are from −6.2737 to 2.1816 for SHMO3, −8.101 to 4.6064 for GMTA, and −7.6658 to 3.162 for GMPA. In multifractal
analysis, the τq parameter has been associated with the generalized Hurst exponents and described how the fluctuation
function has scaled for a given q-order. Positive τq values have signified areas of high singularity strength, indicating
pronounced fluctuations or irregularities in the time series. Conversely, negative τq values have indicated regions of low
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singularity strength, suggesting smoother or more regular segments within the series. By comparing the τq values of three
distinct variables, researchers have assessed how the distributions of singularity strength differ among them. Notably, the
τq values have increased with higher q values, indicating multifractality within the data.

These τq values have complemented the singularity exponents α(q) and singularity dimensions f (α(q)) values by
offering insights into the distribution of singularity strengths across various scales. Analyzing τq values has enabled the
study to discern relationships between variables by comparing their singularity strength distributions and characterizing
their multifractal properties. The Figure 6(b), has been displayed the mass exponents (τq). SHMO3, GMTA, and GMPA
have been depicted in blue, red, and green colors, respectively. The graph has illustrated the q-order on the x-axis ranging
from -5 to 5, while the mass exponent values have ranged from -10 to 5 on the y-axis. The GMTA values, which have
spanned from a low of -8.1 to a high of 4.6063, have shown greater variability than the other variables. The graph of
SHMO3 has shown a non-linear curve, which has indicated more multifractality. All three variables have exhibited non-
linear graphs, which have indicated the presence of multifractality.

Figure 7. MFDFA spectrum

The singularity exponent values of the variables, across various q values, have ranged from 1.2096 to 0.6095 for
SHMO3, 1.5431 to 1.0502 for GMTA, and 1.4721 to 0.6495 for GMPA. These values have characterized the local
regularity or irregularity within the data. The α(q) values of all variables have fallen between 0.6 and 1.54. A α(q)
value close to 1 suggested strong singularities or points of non-analytic behavior in the time series, often corresponding to
regions of extreme fluctuations or irregularities. A α(q) value greater than 1 has indicated a smoother curve than expected,
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while a value less than 1 has suggested more roughness. All the values of GMTA lie above one. Significant variations
in the singularity exponents across scales have suggested multifractality, indicating different degrees of irregularity or
roughness at different scales. Positive α(q) values have indicated regions of higher irregularity, reflecting varying degrees
of irregularity across the series. Figure 6(c) shows the singularity exponent’s graph. This study has observed from these
graphs that the values of GMTA (the red color line) are higher than other variables, and all the values are above one. They
have a greater local inconsistency in the SHMO3 results.

The multifractal spectrum has provided valuable insights into the extent of multifractality exhibited by the time series
data. The width of this spectrum has served as a key indicator of the system’s multifractal complexity. A wider spectrum
means amoremultifractal nature, which has indicated greater complexity within the time series. Themultifractal spectrum
has been drawn as a plot of α(q) versus f (α(q)), in Figure 7. In Figure 7(a), the spectrum of SHMO3 has exhibited a
wider width, indicating increased complexity and roughness across different scales. The left asymmetry observed in the
SHMO3 spectrum has been indicating that the time series has been exhibiting more large fluctuations, which should be
examined using positive values of q. Figure 7(b) displays the narrow spectrum of GMTA and its left asymmetry observed
has been suggesting that the time series has also been showing larger fluctuations, which can be best observed with the help
of positive values of q. Figure 7(c) presents the spectrum of GMPA, which also demonstrated a wider width compared to
GMTA and SHMO3 and its right asymmetry observed has been indicating the presence of more small fluctuations in the
time series, which should be analyzed using negative values of q. Therefore, SHMO3 and GMPA have exhibited higher
multifractality and roughness across different scales. Figure 7(d) visualizes the multifractal spectrum of all variables,
enabling easy identification of spectrum width.

In Table 2, α(q) maximum (α(q) max), α(q) minimum (α(q) min) value, and the width (ω) of the multifractal
spectrum have been exhibited, with GMPA (0.8278) being shown as the widest spectrum, followed by SHMO3 (0.6037),
and thenGMTA (0.4991). Generally, a broader spectrum has suggested highermultifractality or complexity across various
scales. The spectrum width has reflected the complexity of the scaling behavior. The data in this table have highlighted
that GMPA has exhibited the most multifractality, while GMTA has shown the least multifractality among the variables,
which has helped to predict the variable in the future. These characteristics have underscored the interconnected and
complex nature of these variables in climate change studies. The spectrumwidth has reflected the complexity of the scaling
behavior. The data in this table have highlighted that GMPAhas exhibited themostmultifractality, while GMTAhas shown
the least multifractality among the variables, which has helped to predict the variable in the future. These characteristics
have underscored the interconnected and complex nature of these variables in climate change studies. Irregularities across
different scales have been evident in all variable’s time series data. GMPA has exhibited the highest level of multifractality,
suggesting a more complex and heterogeneous scaling structure. SHMO3 has shown moderate multifractality, while
GMTA has had the least, implying relatively homogeneous scaling behavior. A wider spectrum has suggested that the
variable has been influenced by multiple processes operating at different scales, which has been crucial for understanding
the variability and complexity of climate systems.

Table 2. The maximum and minimum values of the singularity exponents value α(q), and spectrum width (ω) of the variables SHMO3, GMTA, and
GMPA

Variables α(q) max α(q) min ω

SHMO3 1.2126 0.6089 0.6037
GMTA 1.5460 1.0469 0.4991
GMPA 1.4750 0.6472 0.8278

The correlation coefficient has been applied to the exponent values of H(q), τq, α(q), derived from MFDFA for
each variable, and the actual variable data values from the data repository. This study has used the correlation values
between the variables generated from Excel software. Table 3 gives the obtained values of the correlation coefficient
between the variables. The correlation coefficients of the q-order generalizedHurst exponents valueH(q), for the variables
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SHMO3, GMPA, and GMTA have a positive and strong correlation between them (0.9571 and 0.9952). The graph 8(a) has
illustrated this concept, with the abscissa values representing theH(q) value of SHMO3 andwith the ordinates representing
GMTA and GMPA. Figure 8’s color depiction of GMTA and GMPA has been red and green, respectively.

The correlation coefficients between SHMO3, GMPA, and GMTA for the q-order mass exponent values (τq) have
been obtained as 0.9994 and 0.9972, respectively. The exponents have correlated strongly and positively with one another.
Figure 8(b) has an illustrated correlation coefficient plot of the mass exponent values (τq) of the variables, whose abscissa
and ordinate are the τq values of SHMO3 and the τq value of GMPA and GMTA. Positive strength has been shown by the
correlation coefficient values of α(q) between the pairings of SHMO3 with GMTA and GMPA, which have been 0.9910
and 0.9465, respectively. The correlation graph of the α(q) has been displayed in Figure 8(c). In this case, the x-axis has
reflected the α(q) values of SHMO3, and the corresponding y-axis has displayed the α(q) values of GMTA and GMPA.
Both the data values have traveled in the same positive direction. The correlation coefficients of the actual data values of
the variables have been found to have an extremely poor negative correlation.

Figure 8. Comparison of correlation coefficients between the variables SHMO3, GMTA, and GMPA from MFDFA exponent values

The direction and magnitude of correlations have been observed through the high positive correlation coefficients
between the exponent values H(q), τq, α(q) for SHMO3, GMPA, and GMTA, indicating a strong interdependence among
the variables. Specifically, the generalized Hurst exponent H(q) has shown correlations of 0.9571 (SHMO3-GMPA) and
0.9952 (SHMO3-GMTA). This has implied that the scaling properties of these variables have aligned closely, reflecting
similar multifractal behaviors. The mass exponent τq has exhibited even stronger correlations (0.9994 and 0.9972),
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emphasizing that the cumulative scaling behavior of these variables has been nearly identical. The singularity strength
α(q) has shown slightly lower but still significant correlation values of 0.9910 and 0.9465, which has suggested that the
multifractal spectrum widths have been strongly related across these variables. The correlation coefficients of the actual
data values have been negatively correlated, indicating that direct comparisons of raw data trends might not have fully
captured the underlying interdependencies revealed by the multifractal analysis.

The mechanisms behind these relationships have likely arisen from the interdependent dynamics of climate variables.
SHMO3 has directly affected atmospheric processes, such as the radiation balance and chemical composition, which,
in turn, have influenced GMTA and GMPA. For instance, the depletion of ozone has led to increased ultraviolet (UV)
radiation, impacting atmospheric circulation patterns, which have influenced temperature anomalies and precipitation
distributions. The strong correlations in the multifractal exponents have suggested that these effects have not been isolated
but are part of a coupled system with shared scaling properties and long-term memory. While the high correlations have
indicated strong relationships, they have not implied direct causality. The observed correlations may have been mediated
by external factors such as seasonal variations, solar radiation, or aerosol concentrations that have affected all three
variables simultaneously. Seasonal cycles and regional climate phenomena, such as El Niño-Southern Oscillation (ENSO),
may have introduced periodic trends that have amplified or suppressed these correlations. The negative correlation in raw
data values may have reflected phase differences or offsets in how each variable has responded to external drivers, which
multifractal analysis has helped to disentangle. These have been the implications for causality and external factors.

Finally, from the results, MFDFA exponent values have been most useful in determining the irregularity, robustness,
and persistence of the variable and exponents form it has used to find the relationship between the variables. This
usefulness has been highlighted through the comparison of the correlation coefficient findings between the values acquired
from the real data and the MFDFA exponent values. Therefore, based on the results, the study has concluded that ozone
depletion influences climate change variables (GMPA & GMTA). It has been shown that the MFDFA approach facilitates
a thorough examination of the variables; on the other hand, the study got the information that real data alone is not enough
for the analysis to find the relationship between them.

Table 3. Correlation coefficient values comparison between the variables GMTA, and GMPA with the SHMO3 for the MFDFA exponent values and
real data

Correlation coefficients

Exponents Variables GMPA GMTA

H(q) SHMO3 0.9571 0.9952
τq SHMO3 0.9994 0.9972

α(q) SHMO3 0.9465 0.9910
Data SHMO3 -0.0834 -0.1236

5. Limitations of the study
This study has some limitations that warrant attention: Missing data for the three variables-5.9% (SHMO3), 0.5%

(GMPA), and 0.1% (GMTA)-was imputed using the classical monthly mean method. While this approach produced
results consistent with the raw data, it may overlook short-term trends and fluctuations, potentially introducing biases.
Advanced imputation techniques, such as regression models or machine learning approaches, could address these issues
in future studies. The analysis focused on three variables derived from a single dataset over a limited temporal scale.
While the results highlight significant multifractal properties and correlations among these variables, their applicability to
other climate variables or regional contexts is limited. Future research should incorporate broader datasets with additional
climate variables and extended spatial-temporal coverage.

Themethods employed, including Fractal Dimension analysis, Multifractal Detrended FluctuationAnalysis (MFDFA),
and correlation coefficient analysis, effectively reveal the nonlinear dynamics and long-range correlations among variables.
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However, they do not fully capture external drivers or causality in climate ozone interactions. Integrating additional
methods, such as causal inference techniques, wavelet coherence analysis, or advanced machine learning models, could
provide a more comprehensive understanding of these complex systems. The observed correlations (e.g., Generalized
Hurst Exponent: 0.9571 and 0.9952; Mass Exponent: 0.9994 and 0.9972) indicate strong interdependence among the
variables. However, they may also reflect external factors, such as seasonal variations or shared atmospheric drivers,
rather than direct interactions. The negative correlations in raw data values (−0.083 and −0.1236) suggest possible
temporal misalignment, which should be explored further using multivariate models. By addressing these limitations,
future studies can build on the findings of this research and contribute to a deeper understanding of climate-ozone dynamics.
The discrepancy between scaling behavior in Fq(s) plots and the width of singularity spectra has highlighted the inherent
complexity of multifractal analysis. The dominance of larger or smaller fluctuations has potentially skewed interpretations
of multifractality when spectrum asymmetry and width have not been jointly considered. Future studies are encouraged
to incorporate additional metrics to better disentangle the respective contributions of fluctuation intensity and diversity
to multifractal behavior. Techniques such as MF-DXA [52], MF-X-DFA [53], and MFCCA [54] have been proposed to
enhance the identification and quantification of multifractal behaviors in cross-correlations, addressing the limitations of
existing methods. These methods will be utilized in our future work.

6. Conclusion
Based on the acquired findings, this study has suggested that multifractality is a powerful measure for determining

fractal behavior in dynamic systems. TheMFDFAmodel has also been a reliable tool for identifying multifractal behavior.
This approach has used climate change variables, such as GMTA and GMPA, to determine their relationship with ozone
depletion. From the results, it has been clearly proven that all the variables are fractal and exhibit multifractal behavior.
From the derived exponent values, it has been observed that there is a high correlation between ozone depletion and
climatic factors. All the variables have demonstrated multifractal properties, measured by the width of the multifractal
spectrum. GMTA has shown less multifractality than SHMO3, which, in turn, has been followed by GMPA. The values
of the Hurst exponent have highlighted the complexity and irregularity of the variables. It has been observed that GMTA
and GMPA exhibit a high level of persistence, whereas SHMO3 has a lower persistence level. The analysis has revealed
distinct multifractal characteristics for each variable. SHMO3 and GMTA have exhibited stronger scaling behaviors
for larger fluctuations, as reflected in their Fq(s) plots and the right asymmetry of their singularity spectra. In contrast,
GMPA, characterized by left asymmetry signifying dominance by smaller fluctuations, has demonstrated greater overall
multifractality due to its wider singularity spectrum. These findings have underscored the complementary interplay
between scaling behavior and spectrum width in multifractal analysis. While SHMO3 and GMTA have highlighted the
intensity of fluctuations, GMPA has emphasized the diversity of fluctuation patterns.

The results from the correlation coefficients have helped the study to find the strength and direction between the
variables. Thus, the results of this study have confirmed that ozone depletion has an impact on climate change. The study
has observed another reality that GMTA and GMPA have increased more since 1985 and they will be greater in the future.
The rapid increment of the GMTA has occurred not only due to ozone depletion but also due to other factors. This rapid
increase has not only affected people through natural calamities but may also lead to the emergence of new diseases. The
high positive correlation (> 0.9) observed among the MFDFA exponents for ozone depletion, global temperature, and
precipitation has demonstrated a strong interdependence among these variables. These findings have highlighted that
targeted actions to mitigate ozone depletion, such as the strict enforcement of international protocols (e.g., the Montreal
Protocol), has the potential to reduce cascading effects on global temperature and precipitation. The multifractal nature of
these variables has emphasized the necessity for dynamic and nonlinear models to predict future climate scenarios more
effectively. This approach has paved the way for the development of more accurate and region-specific climate adaptation
plans.

Furthermore, practical measures, such as enhancing public awareness and supporting sustainable technologies, have
been identified as key strategies to reduce anthropogenic contributions to ozone depletion and its secondary effects.
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These findings have underscored the interconnectedness of atmospheric variables and have reinforced the importance of
integrating them into global climate models to provide a robust foundation for informed policymaking and environmental
management. Therefore, based on these results, this study recommends that governments take measures to reduce factors
contributing to the increase in GMTA and to protect all life on the planet. In future studies, we plan to investigate additional
factors influencing climate change using advanced techniques such as cross-MFDFA, Multivariate Hurst Exponents,
bifurcation analysis, neural networks, and fractal interpolation methods. These methodologies will enable us to explore
long-range correlations, nonlinear dynamics, and complex interdependencies among climate variables. Such approaches
will provide deeper insights into the multifaceted nature of climate systems and help to improve predictive models for
better climate change mitigation and adaptation strategies.
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