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Abstract: Combinatorics on words is a relatively recent and rich field that involves formal grammar, algebra, geometry,
fractals, algorithms, and coding, with initial research focused on repetitions in words. In this paper, we measure the
differences between patterns shared by words of the same length. We introduce word motifs to represent collections of
words that share the same underlying patterns, and we generalize the Hamming distance for comparing word motifs. A
word motif is an equivalence class of words of the same length over an alphabet under the equivalence relation induced by
symbol relabeling. We study initial problems in comparing word motifs. We compute the maximal generalized Hamming
distance for k word motifs of length n over an alphabet of ℓ symbols, and we demonstrate how to calculate the exact
generalized Hamming distance between a pair of word motifs.
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1. Introduction
A word is a sequence with elements from a finite set of symbols called the alphabet. Without loss of generality, we

use the set of the first ℓ positive integers L = {1, 2, . . . , ℓ} as the alphabet and denote the set of all words over the alphabet
by L∗. Initial research regarding combinatorics on words focused on repetitions in words [1]. A substitution is a mapping
h : L → L∗ that assigns each symbol in the alphabet to a word. A word pattern is a word p ∈ L∗. Let w ∈ L∗ be a word,
and we say that the word w contains the pattern p if there exists a substitution h : L → L∗ such that h(p) appears in w
consecutively. If we recursively apply a substitution h to a pattern p, then we have an L-system [2].

In this paper, we study a different aspect of word patterns, where we focus on words of the same length and over the
same alphabet, and we restrict the substitutions to permutations in the symmetric group of order ℓ (symbol relabeling).
We set these restrictions for word pattern comparison, which is a common and important task in various fields of research
including image comparison in computer vision, pattern recognition in cryptography, signal comparison in coding theory,
and sequence analysis in computational biology. For example, comparing word motifs of amino acid sequences allows
for identifying protein structure similarities, and comparing word motifs of codes can offer insights into error correction
schemes where different permutations of symbols represent equivalent states or messages.
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Here, we introduce word motifs. While the study of repetitions in words focuses on the underlying pattern of a
single word, comparing word motifs emphasizes on differentiating underlying patterns shared by all possible words over
an alphabet. We say that two words w1, w2 ∈ L∗ are equivalent if there exists a symbol relabeling substitution h ∈ Sℓ such
that h(w1) = w2, where Sℓ is the symmetric group of order ℓ. Equivalent words share the same underlying pattern and
are treated as a single object for comparison. A word motif is an equivalence class of words in L∗ under the equivalence
relation defined above. See the following section for more details. Word motifs are also related to other concepts in
combinatorics. A word motif containing length-n words over an alphabet of ℓ symbols with n ≤ ℓ can be considered as a
partition of a set with n elements [3]. In particular, a word motif containing length-n words over an alphabet of n symbols
is also called a rhyme scheme for an n-line stanza, and it is known that the number of rhyme schemes for n-line stanzas is
the Bell number Bn [4].

Hamming distance is the main tool used to compare sequences or words [5]. The Hamming distance between a pair
of words of equal length is defined to be the number of positions with different elements in the word, which is an important
tool in coding theory for error detecting. As a word motif is a collection of words sharing the same underlying pattern,
we generalize the Hamming distance to compare word motifs by calculating the minimum Hamming distance over all
combinations of words in each word motif. In this paper, we study initial problems regarding comparing word motifs.
We answer the question of what the maximal generalized Hamming distance is for all pairs of word motifs containing
length-n words over an alphabet of ℓ symbols. Then, we show how to compute the exact generalized Hamming distance
between a pair of word motifs.

2. Word motifs
2.1 Definitions

Let n and ℓ be positive integers and N = {1, 2, 3, . . . , n} and L = {1, 2, 3, . . . , ℓ} be the sets of positive integers
no greater than n and ℓ respectively. We call N the index set and an element in N an index. We call L the alphabet and
an element in L a symbol. We define a word to be a function w : N → L, where n is the length of the word, and ℓ is the
level of the word. Note that the level of a word w is the number of possible symbols present in w(N) rather than the actual
number of symbols appeared in w(N), and the level of a word is determined by the alphabet L instead of the image w(N).
We denote a word as a sequence by w = [x1; x2; . . . ; xn], and we say that each xi is an element of the word. We separate
the elements of a word by semicolons to indicate that we write a word vertically as a column. In this paper, letters w, v
will be used to denote words and x, y will be used to denote the elements in a word.

Let Sℓ be the symmetric group of order ℓ. Two length-n level-ℓ words w = [x1; x2; . . . ; xn] and v = [y1; y2; . . . ; yn]

are equivalent if there exists a permutation ϕ ∈ Sℓ such that ϕ(w) = ϕ(x1); ϕ(x2); . . . ; ϕ(xn) = y1; y2; . . . ; yn = v. For
instance, among the three length-5 level-3words in Example (1), the wordsw1 andw2 are equivalent under the permutation
ϕ = (123) ∈ S3, that is ϕ(w1) = w2, while no permutation can map w1 or w2 to w3, so w3 is not equivalent to w1 or w2.
Here, the permutation ϕ = (123) is written in cycle notation, and we use the cycle notation for permutations throughout
the paper unless otherwise stated.

w1 =


1
1
3
2
1

 w2 =


2
2
1
3
2

 w3 =


1
1
2
2
1

 (1)

Let Wn, ℓ be the set of all length-n level-ℓ words. The equivalence relation induced by permutations in Sℓ partitions
Wn, ℓ. We define a word motif to be an equivalence class of Wn, ℓ. We denote a word motif by t or ⟨w⟩, where w is a word
in the word motif t. We say that the word w is a representative of the word motif t, and that the word motif t is generated
by w. We define the length of a word motif ⟨w⟩ to be the length of w, and similarly, the level of the word motif ⟨w⟩ to be
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the level of w. We denote the set of all length-n level-ℓ word motifs by Tn, ℓ. For instance, the six words in Example (2)
form a length-3 level-3 word motif.

w1 =

1
1
2

 w2 =

1
1
3

 w3 =

2
2
1

 w4 =

2
2
3

 w5 =

3
3
1

 w6 =

3
3
2

 (2)

We say that a word is constant if all of its elements are identical, and a word motif is constant if it contains a constant
word.

2.2 Enumeration
We count the number of length-n level-ℓword motifs and denote the number by |Tn, ℓ|. We say that a length-n level-ℓ

word w : N → L is in standard order if for any i ∈ N with w(i) > 1, there exists a j < i ∈ N such that w( j) = w(i)− 1.
We say such a word w is a standard word of length n and level ℓ. For instance, only w3 among words in Example (1)
is a standard word, and only w1 among words in Example (2) is a standard word. It is easy to show that every length-n
level-ℓ word can be mapped to a standard word by a permutation in Sℓ, and that there exists no permutation in Sℓ that can
map one standard word to a different standard word. Hence, every length-n level-ℓ word motif contains one and only one
standard word, and counting the number of length-n level-ℓ word motifs is equivalent to counting the number of standard
words of length n and level ℓ. We denote the set of all length-n level-ℓ standard words byW ∗

n, ℓ and the number of length-n
level-ℓ standard words by |W ∗

n, ℓ|. We have |Tn, ℓ|= |W ∗
n, ℓ|, and the number |W ∗

n, ℓ| is computed using Stirling numbers of
the second kind [6].

Theorem 1 (Arndt-Sloane [6]) The number of length-n level-ℓ words that are in standard order is given by Formula
(3).

|W ∗
n, ℓ|=

ℓ

∑
m=1

m

∑
i=0

(−1)i

i!
(m− i)n

(m− i)!
(3)

Here, we present an alternative enumeration from the perspective of word motifs. We note that a word motif t ∈n, ℓ

can be considered as the orbit of a word w ∈ t under the action of the symmetric group Sℓ on individual elements of w.
Thus, we can compute |Tn, ℓ| with the orbit-counting theorem, also known as Cauchy-Frobenius lemma or Burnside’s
lemma [7].

Theorem 2 The number of length-n level-ℓwordmotifs is given by Formula (4). In particular, we have |Tn, 2|= 2n−1.

|Tn, ℓ|=
ℓn

ℓ!
+

ℓ

∑
m=2

(ℓ−m)n

(ℓ−m)!

m

∑
i=0

(−1)i

i!
(4)

Proof. The orbit-counting theorem states that the number of orbits can be computed with Formula (5), whereW ϕ
n, ℓ =

w ∈
{
Wn, ℓ | ϕ(w) = w

}
is the set of fixed words by the permutation ϕ ∈ Sℓ [7].

|Tn, ℓ|=
1
Sℓ

∑
ϕ∈Sℓ

|W ϕ
n, ℓ| (5)
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The identity in Sℓ fixes all words in Wn, ℓ, so the number of words fixed by the identity is ℓn. Let Sℓ|m ⊂ Sℓ be the
subset of permutations that derange m symbols, where 2 ≤ m ≤ ℓ. The number of permutations in Sℓ|m can be computed by
counting the number of ways of selectingm symbols from the symbol set L andmultiplying by the number of derangements
of the m symbols. See Formula (6).

Sℓ|m =

(
ℓ

m

)(
m!

m

∑
i=0

(−1)i

i!

)
=

ℓ!
(ℓ−m)!

m

∑
i=0

(−1)i

i!
(6)

We note that a permutation ϕ ∈ Sℓ|m fixes all and only words without the m symbols that ϕ deranges, and there are
(ℓ−m)n such words in W ϕ

n, ℓ. Therefore, we have Formula (7).

∑
ϕ∈Sℓ

|W ϕ
n, ℓ|= ℓn + ℓ!

ℓ

∑
m=2

(ℓ−m)n

(ℓ−m)!

m

∑
i=0

(−1)i

i!
(7)

Then Formula (4) follows applying Formula (7) to Formula (5).
Recall that when n ≤ ℓ, there is an one-to-one correspondence between word motifs and partitions of set with n

elements. So, we have |Tn, ℓ|= Bn for any n ≤ ℓ, where Bn is the n-th Bell number. If we set n = ℓ, then Formula (4) is
equivalent to Dobiński’s formula for Bell numbers [8]. When n > ℓ, the number |Tn, ℓ| equals the number of partitions of
an n-element set with at most ℓ subsets.

3. Hamming distance of word motifs
3.1 Basic definitions

Let W = {w1, w2, . . . , wk} ⊂ Wn, ℓ be a set of words with k ≥ 2. Recall that a word is a function from the index set
N = {1, 2, 3, . . . , n} to the alphabet L = {1, 2, 3, . . . , ℓ}. We define the Hamming distance (or simply the distance) of
words in W to be the number of indices in N whose images in w1, w2, …, wk are not identical. We denote the distance of
the words inW by d(W ) or d(w1, w2, . . . , wk). For instance, the distance of the three length-5 level-3 words in Example
(8) is d(w1, w2, w3) = 4, because only the fourth elements in the words are identical.

w1 =


1
1
3
2
1

 w2 =


3
3
1
2
3

 w3 =


1
1
2
2
1

 (8)

Note that the order of words in W is irrelevant in computing the distance. So to simplify our arguments, we fix the
order of words and write W = [w1, w2, . . . , wk] as a sequence of words. Here, we separate the words in W by colons to
indicate that we list the words horizontally. For example, in computing the distance of the three words w1, w2 and w3 in
Example (8), we write the set W of the three words as in Example (9).
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W = [w1, w2, w3] =


1 3 1
1 3 1
3 1 2
2 2 2
1 3 1

 (9)

Let K = {1, 2, . . . , k} be the set of k positive integers. We assume k ≥ 2 throughout the paper unless otherwise
stated. We define a cross section of W = [w1, w2, . . . , wk] to be a word ci : K → L consisting of the i-th elements of
the words in W , that is ci = [w1(i), w2(i), . . . , wk(i)]. We denote the set of length-k level-ℓ cross sections by Ck, ℓ, to
distinguish the horizontally written words (cross sections) from the vertically written words in Wk, ℓ. Similarly, we say a
cross section is constant if all of its elements are identical. Let s(W ) be the number of constant cross sections in W . We
have d(W ) = n−s(W ). For instance, the words c1 = [1, 3, 1], c2 = [1, 3, 1], c3 = [3, 1, 2], c4 = [2, 2, 2] and c5 = [1, 3, 1]
are cross sections ofW displayed in Example (9), and c4 is the only constant cross section inW , so s(W ) = 1 and d(W ) = 4.

Let T = {t1, t2, . . . , tk} ⊂ Tn, ℓ be a set of word motifs. Recall that a word motif t is an equivalence class of words
under permutations, and t can be denoted by w with a representative w ∈ t. We define the Hamming distance (or simply
the distance) of word motifs in T by Formula (10) and denote the distance by d(T ) or d(t1, t2, . . . , tk).

d(t1, t2, . . . , tk) = min
wi∈ti

d(w1, w2, . . . , wk) (10)

Suppose t1, t2, …, tk are respectively generated by words w1, w2, …, wk in Wn, ℓ, and we write the set W =

[w1, w2, . . . , wk] as a sequence. We can analogously write the set of word motifs as T = ⟨W ⟩= [⟨w1⟩ , ⟨w2⟩ , . . . , ⟨wk⟩] =
[t1, t2, . . . , tk]. The distance of T = t1, t2, . . . , tk can also be defined using permutations. Let Φ = [ϕ1, ϕ2, . . . , ϕk] ∈ Sk

ℓ

be a sequence of permutations, where Sk
ℓ is the Cartesian product of k symmetric groups of order ℓ. We define Φ(W ) =

[ϕ1(w1), ϕ2(w2), . . . , ϕk(wk)] and the distance for a set T = ⟨W ⟩ of word motifs by Formula (11).

d(⟨W ⟩) = min
Φ∈Sk

ℓ

d(Φ(W )) (11)

Note that the distance ofW can be computed by counting the number of constant cross sections inW . So the distance
of T = ⟨W ⟩ can also be computed by Formula (12).

d(⟨W ⟩) = n−max
Φ∈Sk

ℓ

s(Φ(W )) (12)

For instance, the sequence of permutations Φ = [(1), (13), (1)] maps W in Example (9) to Φ(W ) in Example (13),
and there are 4 constant cross sections in Φ(W ). It is easy to check that the maximal number of constant cross sections in
Φ(W ) is 4 for any Φ ∈ Sk

ℓ . So the distance for the set ⟨W ⟩ of word motifs is 1.
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Φ(W ) =


1 1 1
1 1 1
3 3 2
2 2 2
1 1 1

 (13)

3.2 Metric spaces of word motifs

It is well known that the Hamming distance between two words in Wn, ℓ is a metric. Namely, the Hamming distance
has the following three properties.

1. Identity: For any words w, v ∈ Wn, ℓ, we have d(w, v) = 0 if and only if w = v.
2. Symmetry: For any words w, v ∈ Wn, ℓ, we have d(w, v) = d(v, w);
3. Triangle inequality: For any words w1, w2, w3 ∈ Wn, ℓ, the inequality d(w1, w3)+d(w2, w3)≥ d(w1, w2) holds.
It is trivial to check that the generalized Hamming distance of twowordmotifs inTn, ℓ satisfies the first two properties.

Here, we show that the triangle inequality holds for word motifs. Consider three word motifs t1 = ⟨w1⟩ , t2 = ⟨w2⟩ and
t3 = ⟨w3⟩ inTn, ℓ. Suppose that d(t1, t3) = d(ϕ1(w1), w3) for a permutation ϕ1 ∈ Sℓ and that d(t2, t3) = d(ϕ2(w2), w3) for
a permutation ϕ2 ∈ Sℓ. We have d(t1, t3)+ d(t2, t3) = d(ϕ1(w1), w3)+ d(ϕ2(w2), w3) ≥ d(ϕ1(w1), ϕ2(w2)). Note that
d(t1, t2) is defined to be the minimal distance of d(ϕa(w1), ϕb(w2)) over all ϕa, ϕb ∈ Sℓ. We have d(ϕ1(w1), ϕ2(w2))≥
d(t1, t2) and d(t1, t3)+d(t2, t3)≥ d(t1, t2). Therefore, we have the following theorem.

Theorem 3 The generalized Hamming distance defined for a pair of word motifs in Tn, ℓ is a metric, and all word
motifs in Tn, ℓ together with the generalized Hamming distance for two word motifs form a metric space.

3.3 Bounds of the generalized Hamming distance
It is clear that the minimal distance for a set of word motifs is 0. The maximal distance of k word motifs in Tn, ℓ,

denoted by Dn, ℓ, k, is defined by Formula (14).

Dn, ℓ, k = max
ti∈Tn, ℓ

d(t1, t2, . . . , tk) (14)

For any set W = [w1, w2, . . . , wk] of words in Wn, ℓ, we can always apply a sequence of permutations Φ ∈ Sk
ℓ to W

such that every word in Φ(W ) has the same first element. Hence, the maximal distance Dn, ℓ, k has a trivial upper bound.
Lemma 1 For any positive integers n, ℓ and k ≥ 2, we have Dn, ℓ, k ≤ n−1.
We characterize the sets of k word motifs in Tn, ℓ that have distance n − 1. Let c = [a1, a2, . . . , ak] and c′ =

[b1, b2, . . . , bk] be two cross sections in Ck, ℓ. We say that c and c′ are identical if ai = bi for all 1 ≤ i ≤ k. We say that c
and c′ are incompatible if ai ̸= bi for all 1 ≤ i ≤ k. We say that c and c′ are connected (by a sequence of permutations) if
they are either identical or incompatible.

Lemma 2 Let T = ⟨W ⟩= [⟨w1⟩ , ⟨w2⟩ , . . . , ⟨wk⟩] be a set of k word motifs in Tn, ℓ. Then d(T ) = n−1 if and only
if W contains no pair of connected cross sections.

Proof. If there are two identical cross sections c = c′ = [a1, a2, . . . , ak] in W , then the sequence of permutations
Φ∗ = [(a1), (a1a2), . . . , (a1ak)] creates two constant cross sections in Φ∗(W ). So, we have d(T )< n−1, contradicting
the assumption. If there are two incompatible cross sections c = [a1, a2, . . . , ak] and c′ = [b1, b2, . . . , bk] inW , then the
sequence of permutations Φ∗ = [ϕ ∗

1 , ϕ ∗
2 , . . . , ϕ ∗

k ] creates two constant cross sections in Φ∗(W ), where ϕ ∗
i is given by the

two-line notation in Formula (15).
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ϕ ∗
i =

(
ai bi · · ·
a1 b1 · · ·

)
(15)

Note that c and c′ are incompatible, so we have a1 ̸= b1 and ai ̸= bi, which guarantee that the sequence of permutations
Φ∗ is well defined. Similarly, two constant cross sections in Φ(W ) imply d(T )< n−1, which contradicts the assumption.

Conversely, assume d(T ) < n− 1, then there exists a pair of cross sections c = [a1, a2, . . . , ak] and c′ = [b1, b2,

. . . , bk] in W such that Φ(c) and Φ(c′) are constant in Φ(W ) for a sequence of permutations Φ = [ϕ1, ϕ2, . . . , ϕk] ∈ Sk
ℓ .

We claim that c and c′ are either identical or incompatible. If they are not identical or incompatible, then there exists an
index i ∈ N such that ai = bi, and there also exists a different index j ∈ N such that a j ̸= b j. Since the cross sections Φ(c)
and Φ(c′) are constant in Φ(W ), we have ϕi(ai) = ϕ j(a j) and ϕi(bi) = ϕ j(b j). Furthermore, because ai = bi, we have
ϕi(ai) = ϕi(bi). These imply that ϕ j(a j) = ϕ j(b j), which contradicts a j ̸= b j.

The proof of Lemma 2 can be generalized for a set of pairwise connected cross sections.
Lemma 3 LetW = [w1, w2, . . . , wk] be a set of k words in Wn, ℓ. IfW contains m pairwise connected cross sections,

then there exists a sequence of permutations Φ∗ ∈ Sk
ℓ such that the m pairwise connected cross sections are mapped to m

constant cross sections by Φ∗.
Proof. For any 1 ≤ i ≤ m, let ci = [ai

1, ai
2, . . . , ai

k] be one of the m pairwise connected cross sections in W . Since
connected cross sections can be identical, we assume that there are u ≤ m unique cross sections among them. Without
loss of generality, let c1, c2, . . . , cu be the unique cross sections. Because they are pairwise incompatible, the elements
a1

j , a2
j , …au

j are u distinct symbols for any 1 ≤ j ≤ k. We define a sequence of permutations Φ∗ = [ϕ ∗
1 , ϕ ∗

2 , . . . , ϕ ∗
k ] ∈ Sk

ℓ

by the two-line notation in Formula (16)

ϕ ∗
j =

(
a1

j a2
j . . . au−1

j au
j · · ·

a1
1 a2

1 . . . au−1
1 au

1 · · ·

)
(16)

Note that c1, c2, . . . , cu being pairwise incompatible implies that the sequence of permutations Φ∗ is well defined.
It is trivial to check that the m connected cross sections are mapped to m constant cross sections by Φ∗.

We examine the connectedness of cross sections in Ck, ℓ. There are in total ℓk cross sections in Ck, ℓ. We divide
Ck, ℓ into ℓ subsets based on their first elements, and we denote the subset of cross sections with first element i by Ck, ℓ|i.
Let c be a cross section in Ck, ℓ|i and c′ be a cross section in Ck, ℓ|i+1. We say that c is linked to c′ if c′ = ψ(c), where
ψ = (12 . . . ℓ) ∈ Sℓ. Let c be a cross section in Ck, ℓ|1. We define a link L (c) generated by c to be a subset of Ck, ℓ such
that L (c) = c, ψ(c), ψ2(c), . . . , ψℓ−1(c). For instance, we display a link of C5, 3 in Example (17).

c = [1, 2, 3, 1, 1] ψ(c) = [2, 3, 1, 2, 2] ψ2(c) = [3, 1, 2, 3, 3] (17)

It is clear that for any cross section c ∈ Ck, ℓ|1, every subset Ck, ℓ|i has one and only one element in L (c). It is also
trivial that for different cross sections c, c′ ∈ Ck, ℓ|1, we have L (c)∩L (c′) = /0. So the links partition Ck, ℓ, and there are
ℓk−1 links in Ck, ℓ. Moreover, since ψ increases every symbol by 1 in Zℓ (where we set 0 = ℓ), every pair of cross sections
in a link is incompatible, hence connected.

We say that a setW of k words in Wn, ℓ is complete if Φ(W ) contains one and only one constant cross section for any
sequence of permutations Φ ∈ Sk

ℓ . We say that W is semi-complete if Φ(W ) contains at most one constant cross section
for any sequence of permutations Φ ∈ Sk

ℓ . Note that there exist totally ℓk−1 cross sections in Ck, ℓ|1. We list these cross
sections in lexicographic order of the elements in them and construct a set M = [w∗

1, w∗
2, . . . , w∗

k ] of words inWℓk−1, ℓ such
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that the cross sections in M are the cross sections from Ck, ℓ|1 in lexicographic order. See Formula (18). For a positive
integer r < ℓk−1, we define Mr to be the set of k words in Wr, ℓ that contains only the first r cross sections in M.

M = w∗
1, w∗

2, . . . , w∗
k =



1 1 . . . 1 1
1 1 . . . 1 2
...

...
. . .

...
...

1 1 . . . 1 ℓ

1 1 . . . 2 1
...

...
. . .

...
...

1 ℓ . . . ℓ ℓ


(18)

Lemma 4 The set M of k words in Wℓk−1, ℓ is complete, and the set Mr of k words in Wr, ℓ is semi-complete.
Proof. Because w∗

1 is a constant word and there is no identical cross sections in M or Mr, no pair of cross sections in
M or Mr is connected. By Lemma 1 and Lemma 2, we have d(⟨M⟩) = ℓk−1 −1, and d(⟨Mr⟩) = r−1. So M and Mr are
semi-complete.

Let M′ = [w∗
2, w∗

3, . . . , w∗
k ] be a set of k− 1 words in Wℓk−1, ℓ. The cross sections in M′ contain all combinations

of assigning ℓ symbols to k − 1 positions. So there are ℓ unique constant cross sections in M′, namely [1, 1, . . . , 1],
[2, 2, . . . , 2], …, [ℓ, ℓ, . . . , ℓ]. For any sequence of permutations Φ′ = [ϕ2, ϕ3, . . . , ϕk] ∈ Sk−1

ℓ , these constant cross
sections persist in Φ′(M′). So for any sequence of permutations Φ = [ϕ1, ϕ2, . . . , ϕk] in Sk

ℓ , no matter what ϕ1(1) ∈ L in
Φ(M) is, there always exists a constant cross section in Φ(M). Therefore, M is complete.

Theorem 4 The maximal distance of k word motifs of length n and level ℓ is given by Formula (19).

Dn, ℓ, k =
⌈

n− n
ℓk−1

⌉
(19)

Proof. For any setW of k words inWn, ℓ, there exists a linkL (c) generated by a cross section c ∈Ck, ℓ|1 such thatW
has at least

⌈
n/ℓk−1

⌉
cross sections of L (c) due to the pigeonhole principle. These cross sections in L (c) are connected,

so they are constant cross sections in Φ(W ) for a sequence of permutations Φ ∈ Sℓ by Lemma 3. Therefore, we have
s(Φ(W ))≥

⌈
n/ℓk−1

⌉
and Dn, ℓ, k ≤ n−

⌈
n/ℓk−1

⌉
.

Suppose that n = mℓk−1 + r for integers m ≥ 0 and 0 ≤ r < ℓk−1. Consider the set Mn = [M; M; . . . ; M; Mr] of k
words in Wn, ℓ constructed by vertically concatenating m copies of M and one copy of Mr. By Lemma 4, the set M is
complete and the set Mr is semi-complete. So, there are at most m+1 constant cross sections in Φ(Mn) for any sequence
of permutations Φ ∈ Sk

e. Therefore, we have d (⟨Mn⟩) = n− (m+1) = n−
⌈
n/ℓk−1

⌉
and Dn, ℓ, k = n−

⌈
n/ℓk−1

⌉
.

3.4 Computing exact generalized Hamming distances
Let T = ⟨W ⟩= [⟨w1⟩ , ⟨w2⟩ , . . . , ⟨wk⟩] be a set of word motifs in Tn, ℓ andC(W ) = [c1; c2; . . . ; cn] be the sequence

of all cross sections in W . We say that a subset X(W ) ⊂ C(W ) is maximally connected if all the cross sections in X(W )

are pairwise connected, and any cross section in C(W )−X(W ) is connected to some cross section in X(W ). We use
Xi(W ) to denote the set of all maximally connected subsets ofC(W ) that contain ci, and we use µ(Xi(W )) to denote the
maximum cardinality of elements in Xi(W ). Lemma 2 implies that two cross sections that are not connected can not both
be mapped to constant cross sections by any sequence of permutations Φ ∈ Sk

ℓ . So, the minimum number of cross sections
in C(W )−X(W ) over all maximally connected subset X(W ) ⊂C(W ) gives the exact distance d(⟨W ⟩), and we have the
following Lemma 5, where Formula (20) can be used to compute the exact distance.

Lemma 5 Let W = [w1, w2, . . . , wk] be a set of k words in Wn, ℓ.
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d(⟨W ⟩) = n−max
Φ∈Sk

ℓ

s(Φ(W )) = n− max
1≤i≤n

µ(Xi(W )) (20)

Let T = ⟨W ⟩= [⟨w1⟩ , ⟨w2⟩] be a set of two word motifs in Tn, ℓ andC(W ) = [c1; c2; . . . ; cn] be the sequence of all
cross sections inW . To compute the exact distance of the word motifs in ⟨W ⟩, we construct an ℓ×ℓmatrix AW as follows.
For any cross section c = [a, b] ∈ C2, ℓ where a, b ∈ L, if c appears m times in C(W ), then the entry of AW at row a and
column b is AW (a, b) = m. Moreover, any sequence of permutations Φ = [ϕ1, ϕ2] ∈ S2

ℓ can be written as a permutation
matrix PΦ, where ϕ1 permutes rows and ϕ2 permutes columns. Note that the diagonal entries of AW record the number of
constant cross sections in W . Thus, Formula (12) can be written as Formula (21).

d(⟨W ⟩) = n−max
Φ∈S2

ℓ

tr(PΦAW ) (21)

This is equivalent to the linear assignment problem, and we can use the Hungarian algorithm or Kuhn-Munkres
algorithm to compute the exact distance between two word motifs in polynomial time [9, 10]. In general, computing
the exact distance of a set T = ⟨W ⟩ = ⟨w1⟩ , ⟨w2⟩ , . . . , ⟨wk⟩ of word motifs in Tn, ℓ is equivalent to the k-dimensional
assignment problem, and algorithms to solve the assignment problem, for example in [11], can be used to compute the
exact distance of word motifs.

4. Discussion
We have formally introduced word motifs. A word motif is a collection of all words of the same length that share

the same underlying pattern. This paper focused on comparing word motifs, where we generalized the Hamming distance
and found the maximal generalized Hamming distance for k word motifs of length n over an alphabet of ℓ symbols to be
n−
⌈
n/ℓk−1

⌉
. This is the upper bound of the generalized Hamming distance for all sets of k length-n level-ℓ word motifs.

The exact generalized Hamming distance between two word motifs can be computed using the Hungarian algorithm or
Kuhn-Munkres algorithm, where the computational complexity increases linearly to the length of word n, cubically to the
size of the alphabet ℓ, and exponentially to the number of word motifs k. If we need to compare two word motifs over
different alphabets, we only need to consider the union of the alphabets as the new alphabet.

There remains considerable scope to modify the definitions of word motifs and the distances, and to ask various
questions. In general, words of different lengths can also share the same underlying pattern, and our methods can be
generalized to compare word motifs of different lengths. It is interesting to investigate how classic concepts in the fields
such as subword complexity, pattern avoidance, or automaton-based word matching can be generalized for word motifs,
and how methods regarding word motifs can help the study of these concepts. Regarding the generalized Hamming
distance, it is also interesting to investigate its relationship to other distance measures in combinatorics, and its behavior
under additional constraints such as all symbols in the alphabet must be present in a word or adjacent element in a word
must have different symbols.
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