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1. Introduction
Within the domain of metric fixed point theory, the renowned Banach contraction principle [1] remains a cornerstone

result, providing a robust framework for ensuring the existence and uniqueness of fixed points for contraction mappings
in the setting of complete metric spaces. Over time, various researchers have introduced generalizations and extensions
of this principle by refining the conditions for contractions, incorporating auxiliary functions, and broadening the scope of
metric spaces where such fixed point results hold. These advancements have significantly expanded the applicability of
the principle to more complex and diverse mathematical frameworks. In particular, we concentrate on the partial metric
spaces and the M-metric spaces.

The concept of partial metric spaces, first introduced by Matthews in 1994 [2], represents a generalization of
traditional metric spaces by allowing the self-distance of points to be nonzero. Partial metric spaces have found extensive
applications, particularly in the development of topological frameworks relevant to information science and computer
science. In 2014, Asadi et al. [3] further developed the concept by extending partial metric spaces to M-metric spaces
and established the Banach contraction principle and the Kannan contraction for complete M-metric spaces. An M-metric
space serves as a generalization of a partial metric space, where the nonzero small self-distance, and the triangle inequality
are modified. This structure broadens the scope of fixed point theorems and has proven useful in various applications.
This foundational work has spurred significant interest, leading to the derivation of numerous fixed point theorems in M-
metric spaces by various researchers (see, for example, [4–10]). We aim to provide a deeper understanding of M-metric
space, especially in the context of partially ordered structures, which opens new possibilities for fixed and common fixed
point results.
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Alternatively, fixed point theory has seen significant advances within the framework of partially ordered metric
spaces. The initial breakthrough in this area was provided by Ran and Reurings [11], who applied their findings to matrix
equations. Later, Nieto and Rodríguez-López [12] expanded upon this result, using it to establish a unique solution for
periodic boundary value problems. Numerous subsequent contributions have emerged from various researchers [13–18].

Reich contraction [19] have been studied extensively in various settings, the current paper introduces new fixed
and common fixed point results in the context of partially ordered M-metric spaces. These results not only generalize
the previous findings but also provide new insights into the interplay between Reich contractions and partial orderings,
offering a more comprehensive understanding of fixed points in such spaces.

The initial section of this paper presents fundamental definitions and principal results concerning partial metric spaces
and M-metric spaces. In addition, we explore notable contractions, such as almost generalized contractions and Reich
contractions, within the realm of partially ordered metric spaces. In the subsequent section, we derive common fixed point
results utilizing the concept of partially ordered M-metric spaces, proving and extending established common fixed point
theorems, all backed by examples in partially ordered M-metric spaces. Lastly, we discuss fixed point results for such
contractions in partially ordered M-metric spaces, illustrated through examples, and provides pertinent corollaries.

2. Preliminaries
We begin this section by introducing the key notations and definitions that will be essential to our discussion.
Definition 1 [20] Consider a self-mapping F on a metric space (Y, d). Then F is called a weak contraction if there

are two constants δ ∈ (0, 1) and L ≥ 0 such that

d(F(s), F(t))≤ δd(s, t)+Ld(F(s), t) for any s, t ∈ Y.

In [20], Berinde employed the concept of weak contraction mappings and proved the subsequent theorem concerning
fixed points.

Theorem 1 Assume that F is a weak contraction self-mapping in a complete metric space (Y, d). Then F has a fixed
point.

It is important to note that, as shown in Example 1 of [20], a weak contraction does not always guarantee a unique
fixed point.

Definition 2 [21] Let F be a self-mapping on a metric space (Y, d), then F satisfy almost generalized contractive
condition if there exist δ ∈ [0, 1) and L ⩾ 0, such that for all s, t ∈ Y :

d(F(s), F(t))⩽ δM(s, t)+LN(s, t),

where

M(s, t) = max
{

d(s, t), d(s, F(s)), d(t, F(t)),
d(s, F(t))+d(t, F(s))

2

}

and

N(s, t) = min{d(s, F(s)), d(t, F(t)), d(s, F(t)), d(t, F(s))}.
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Reich [19] introduced the subsequent definition in 1971.
Definition 3 A mapping F in a metric space (Y, d) is called Reich contraction if there exist constants α, β , γ ≥ 0

with α +β + γ < 1 such that for all s, t ∈ Y ,

d(F(s), F(t))≤ αd(s, t)+βd(s, F(s))+ γd(t, F(t)).

It guarantees that a mapping F , that satisfy Reich contraction, in a complete metric space, has a unique fixed point.
Jungck [22] introduced the notion of compatible mappings, after which generalized compatibility to the notion of weakly
compatible mappings. The pair {F, G} is called weakly compatible if they commute at their coincidence points; i.e., if
F(s) = G(s) = c for some s ∈ Y , then FG(s) = GF(s), and s is called a coincidence point of F and G, and c is called a
point of coincidence.

Definition 4 [23] Let (Y, ⪯) be a partially ordered set, and let F be a mapping. Then F is called a weak annihilator
of G if FG(s) ⪯ s for all s ∈ Y . And F is called a dominating mapping if s ⪯ F(s) for all s ∈ Y . In addition, if F(s) ⪯ s
for all s ∈ Y , then F is called dominated mapping.

Example 1 Let Y = [0, 1] endowed with usual ordering and F, G : Y → Y given by

F(s) =
√

s, G(s) = s4.

Then, ∀s ∈ Y s ⪯ F(s), so F is a dominating map. In addition, F is a weak annihilator of G; i.e., FG(s) = s2 ⪯ s for
all s ∈ Y .

Definition 5 [2] A partial metric on a non-empty set Y is defined as a mapping ρ : Y ×Y → [0, ∞) that adheres to
the following properties for any elements s, t, c ∈ Y :

(ρ1) s = t if and only if ρ(s, t) = ρ(s, s) = ρ(t, t) (T0-separation);
(ρ2) ρ(s, s)≤ ρ(s, t) (small self-distance);
(ρ3) ρ(s, t) = ρ(t, s) (symmetry);
(ρ4) ρ(s, t)≤ ρ(s, c)+ρ(c, t)−ρ(c, c) (triangular inequality).
A partial metric space is a pair (Y, ρ).
Note that all metric spaces qualify as partial metric spaces. Nonetheless, the subsequent example demonstrates that

the converse is not always true.
Example 2 [2] Consider Y = {[s, t] : s, t ∈ R, s ≤ t} and define ρ : Y ×Y → [0, ∞) such that

ρ([s, t], [ j, k]) = max{t, k}−min{s, j}.

The pair (Y, ρ) constitutes a partial metric space, but it does not meet the criteria for a metric space because
ρ([s, t], [s, t]) ̸= 0.

Definition 6 [3] An M-metric on a non-empty set Y is a function m : Y ×Y −→ [0, ∞) fulfilling the subsequent
conditions for all s, t, c ∈ Y :

(m1) s = t if and only if m(s, t) = m(s, s) = m(t, t) (T0-separation);
(m2) m{s, t} ≤ m(s, t) (modified small self-distance);
(m3) m(s, t) = m(t, s) (symmetry);
(m4) m(s, t)−m{s, t} ≤ (m(s, c)−m{s, c})+ (m(c, t)−m{c, t}) (modified triangular inequality), where m{s, t} :=

min{m(s, s), m(t, t)}. Then, an M-metric space is a pair (Y, m).
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As stated in [3], the M-metric described in m within Y induces a T0 topology τm on Y characterized by a basis
consisting of open m-balls {Bm(s, ε), s ∈ Y, ε > 0}, where Bm(s, ε) = {t ∈ Y : m(s, t)< m{s, t}+ ε}, holds for every
s ∈Y and ε > 0. Additionally, suppose (Y, m) is an M-metric space, and let mu, mv : Y ×Y → [0, ∞) be defined as follows:

1. mu(s, t) = m(s, t)−m{s, t} whenever s ̸= t and if s = t, then mu(s, t) = 0.
2. mv(s, t) = m(s, t)−2m{s, t}+M{s, t}, where M{s, t} := max{m(s, s), m(t, t)}.
Thus, the functions mu, mv constitute usual metrics on Y .
Remark 1 [3] For all s, t, c ∈ Y ,
1. 0 ≤ M{s, t}+m{s, t} = m(s, s)+m(t, t),
2. 0 ≤ M{s, t}−m{s, t} = |m(s, s)−m(t, t)|,
3. M{s, t}−m{s, t} ≤

(
M{s, c}−m{s, c}

)
+
(
M{c, t}−m{c, t}

)
.

Example 3 [3] Assume Y = [0, ∞). Then the function m : Y ×Y → [0, ∞) defined by m(s, t) =
s+ t

2
constitutes an

M-metric on Y.
The subsequent definitions are vital for what follows.
Definition 7 [3] Consider an M-metric space (Y, m) and a sequence {sn}n∈N in this space. Then:
1. The sequence converges to a point s ∈ Y if and only if

lim
n→∞

(
m(sn, s)−m{sn, s}

)
= 0.

2. {sn} is called an m-Cauchy sequence if

lim
n, m→∞

(
m(sn, sm)−m{sn, sm}

)
, lim

n, m→∞

(
M{sn, sm}−m{sn, sm}

)
exist and are finite.

3. The space (Y, m) is called complete if every m-Cauchy sequence {sn} in Y converges to a point s ∈ Y, such that

lim
n→∞

(
m(sn, s)−m{sn, s}

)
= 0 = lim

n→∞

(
M{sn, s}−m{sn, s}

)
.

Lemma 1 [3] If {sn} and {tn} are two sequences such that sn → s and tn → t as n → ∞ in an M-metric space (Y, m).
Then

lim
n→∞

(
m(sn, tn)−m{sn, tn}

)
= m(s, t)−m{s, t}.

Lemma 2 [3] Suppose that {sn} is a sequence in an M-metric space (Y, m) such that sn converges to s ∈Y as n → ∞.
Then,

lim
n→∞

(
m(sn, t)−m{sn, t}

)
= m(s, t)−m{s, t}.

Lemma 3 [3] Let {sn} be a sequence in an M-metric space (Y, m), satisfying
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m(sn+1, sn)≤ ᾱm(sn, sn−1) , for some ᾱ ∈ [0, 1), ∀n ∈ N.

Then,
(i). limn→∞ m(sn, sn−1) = 0,
(ii). limn→∞ m(sn, sn) = 0,
(iii). limn→∞ msm, sn = 0,
(iv). {sn} is an m-Cauchy sequence.
Definition 8 Let Y be a non-empty set. Then (Y, m, ⪯) is called a partially ordered M-metric space if (Y, m) is an

M-metric space, and (Y, ⪯) is a partially ordered set. Also, s, t ∈ Y are called comparable if s ⪯ t or t ⪯ s holds.

3. Main results
In this part, we establish common fixed point results for four mappings in the setting of partially ordered complete

M-metric space.
Theorem 2 Consider (Y, ⪯, m) as a partially ordered complete M-metric space with self-mappings f , g, T , and S on

the set Y , where f (Y )⊆ T (Y ) and g(Y )⊆ S(Y ). Let f and g be dominating mappings that function as weak annihilators
of T and S, respectively. Suppose there exist δ ∈ [0, 1) and L ≥ 0 such that

m( f (s), g(t))⩽ δM(s, t)+LN(s, t), (1)

where

M(s, t) = max

{
m(S(s), T (t)), m( f (s), S(s)), m(g(t), T (t)),

[m(S(s), f (s))+1]m(g(t), T (t))
m( f (s), g(t))+1

}

and

N(s, t) = min{mu( f (s), S(s)), mu(g(t), T (t)), mu(S(s), g(t)), mu( f (s), T (t))},

for all comparable elements s, t ∈ Y . For a non-decreasing sequence {sn} with sn ⪯ tn for all n and tn → z as n → ∞, it
follows that sn ⪯ z. Additionally, if { f , S} and {g, T} are weakly compatible, and at least one of f (Y ), g(Y ), S(Y ), or
T (Y ) is a complete subspace of Y , then f , g, S, and T share a common fixed point.

Proof. We select an arbitrary point s0 ∈ Y . Given that f (Y ) ⊆ T (Y ), it follows that f (s0) = T (s1) and s1 ∈ Y .
Additionally, for g(s1) ∈ S(Y ), we find there exists s2 ∈ Y such that g(s1) = S(s2). Generally, let s2n+1 ∈ Y such that
f (s2n) = T (s2n+1) and s2n+2 ∈ Y such that g(s2n+1) = S(s2n+2). We then establish a sequence {tn} in Y where t2n =

f (s2n) = T (s2n+1) and t2n+1 = g(s2n+1) = S(s2n+2) for n ≥ 0. Consequently, based on the above assumption, we derive:
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s2n ⪯ f (s2n) = T (s2n+1)⪯ f (T (s2n+1))⪯ s2n+1,

and

s2n+1 ⪯ g(s2n+1) = S(s2n+2)⪯ g(S(s2n+2))⪯ s2n+2.

Therefore, for all n ≥ 0, we observe sn ⪯ sn+1. If m(t2k, t2k+1) = 0 for some k ≥ 0, then t2k = t2k+1, meaning g and
T share a coincidence point. From equation (1), we infer that

m(t2k+1, t2k+2) = m( f (s2k+2), g(s2k+1))⩽ δM (s2k+2, s2k+1)+LN (s2k+2, s2k+1) ,

where

M (s2k+2, s2k+1) = max

{
m(S(s2k+2), T (s2k+1)) , m( f (s2k+2), S(s2k+2)) ,

m(g(s2k+1), T (s2k+1)) ,
[m(S(s2k+2), f (s2k+2))+1]m(g(s2k+1), T (s2k+1))

m( f (s2k+2), g(s2k+1))+1

}

= max

{
m(t2k+1, t2k) , m(t2k+2, t2k+1) , m(t2k+1, t2k) ,

[m(t2k+1, t2k+2)+1]m(t2k+1, t2k)

m(t2k+2, t2k+1)+1

}

= max{0, m(t2k+2, t2k+1)}= m(t2k+2, t2k+1) ,

and

N (s2k+2, s2k+1) = min{mu (t2k+2, t2k+1) , mu (t2k+1, t2k) , mu (t2k+1, t2k+1) ,

mu (t2k+2, t2k)}= 0.

Consequently, we have m(t2k+2, t2k+1) ≤ δm(t2k+2, t2k+1). Given δ ∈ [0, 1), it follows that m(t2k+2, t2k+1) =

0, implying t2k+1 = t2k+2. Similarly, it can be shown that t2k+2 = t2k+3. Therefore, t2n is a common fixed point of f and
S. Now, assume that m(tn, tn+1)> 0 for each n. Our objective is to demonstrate that for each n ≥ 1,
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m(tn, tn+1)≤ δm(tn−1, tn) (2)

Since s2n and s2n+1 are comparable, from equation (1), we obtain

m(t2n, t2n+1) = m( f (s2n), g(s2n+1))⩽ δM (s2n, s2n+1)+LN (s2n, s2n+1) ,

where

M (s2n, s2n+1) = max{m(S(s2n), T (s2n+1)) , m( f (s2n), S(s2n)) , m(g(s2n+1), T (s2n+1)) ,

[m(S(s2n), f (s2n))+1]m(g(s2n+1), T (s2n+1))

m( f (s2n), g(s2n+1))+1

}

= max{m(t2n−1, t2n) , m(t2n, t2n−1) , m(t2n+1, t2n) ,

[m(t2n−1, t2n)+1]m(t2n+1, t2n)

m(t2n−1, t2n)+1

}

≤ max{m(t2n−1, t2n) , m(t2n+1, t2n)}

and

N (s2n, s2n+1) = min{mu (t2n, t2n−1) , mu (t2n+1, t2n) , mu (t2n−1, t2n+1) , mu (t2n, t2n)}

= 0.

If max{m(t2n−1, t2n) , m(t2n+1, t2n)} = m(t2n, t2n+1) ≥ m(t2n−1, t2n) > 0, then we have m(t2n, t2n+1) ≤ δm
(t2n, t2n+1). This leads to a contradiction because δ ∈ [0, 1). Therefore, m(t2n, t2n+1) < m(t2n−1, t2n), indicating that
m(t2n, t2n+1) ≤ δm(t2n−1, t2n) . Similarly, we can prove that m(t2n, t2n−1) ≤ δm(t2n−1, t2n−2) . Thus, (2) holds true for
each n. Consequently, for each n ∈ N, it follows that m(tn, tn+1) ≤ δm(tn−1, tn) ≤ ·· · ≤ δ nm(t0, t1). Now, we prove
that the sequence {tn} is an m-Cauchy sequence in Y . By (m4), we have

m(t2n+1, t2n+3)−m{t2n+1, t2n+3} ⩽
(
m(t2n+1, t2n+2)−m{t2n+1, t2n+2}

)
+
(
m(t2n+2, t2n+3)−m{t2n+2, t2n+3}

)
⩽ m(t2n+1, t2n+2)+m(t2n+2, t2n+3) .
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Similarly,

m(t2n+1, t2n+4)−m{t2n+1, t2n+4} ⩽ (m(t2n+1, t2n+2)−m{t2n+1, t2n+2})

+(m(t2n+2, t2n+3)−m{t2n+2, t2n+3})

+(m(t2n+3, t2n+4)−m{t2n+3, t2n+4})

⩽ m(t2n+1, t2n+2)+m(t2n+2, t2n+3)+m(t2n+3, t2n+4)

In general, for n > m with m = 2k+1, we obtain

m(tm, tn)−m{tm, tn} ≤
n−1

∑
i=m

m(ti, ti+1)≤
n−1

∑
i=m

δ im(t0, t1) ,

since δ ∈ [0, 1). The convergence of the series ∑n−1
i=m δ im(t0, t1) implies that

lim
n, m→∞

m(tm, tn)−m{tm, tn}.

exists and is finite. In a similar manner, it can be inferred that

M{tm, tn}−m{tm, tn} ≤
n−1

∑
i=m

M{ti, ti+1}−m{ti, ti+1} ≤
n−1

∑
i=m

M{ti, ti+1}

≤
n−1

∑
i=m

m(ti, ti+1)≤
n−1

∑
i=m

δ im(t0, t1) ,

which implies that

lim
n, m→∞

M{tm, tn}−m{tm, tn}

exists and is finite. Hence, {tn} is an m-Cauchy sequence, and since Y is complete, there exists a point t in Y such that

lim
n→∞

(
m(tn, t)−m{tn, t}

)
= 0 = lim

n→∞

(
M{tn, t}−m{tn, t}

)
.

Alternatively,
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lim
n→∞

m(tn, t) = lim
n→∞

m{tn, t} = lim
n→∞

M{tn, t} = 0,

Therefore,

lim
n→∞

m( f (s2n), t) = lim
n→∞

m(T (s2n+1), t) = lim
n→∞

m(g(s2n+1), t) = lim
n→∞

m(S(s2n+2), t) = 0.

We now demonstrate that t is the fixed point of the mappings g and T . Let us assume T (Y ) is complete.
Consequently, there exists an element s ∈ Y such that t = T (s). We need to show g(s) = t. For contradiction, assume
m(g(s), t)> 0. Furthermore, s2n+1 ⪯ f (s2n+1), and f (s2n+1)→ t as n→∞, therefore s2n+1 ⪯ t. Given that the dominating
map f acts as a weak annihilator of T , as a consequence, s2n+1 ⪯ t = T (s)⪯ f (T (s))⪯ s. Thus, from (1), we get

m( f (s2n+1), g(s))⩽ δM (s2n+1, s)+LN (s2n+1, s)

where

M (s2n+1, s) = max{m(S(s2n+1), T (s)) , m( f (s2n+1), S(s2n+1)) , m(g(s), T (s)),

[m(S(s2n+1), f (s2n+1))+1] ·m(g(s), T (s))
m(g(s), f (s2n+1))+1

}

= max{m(t2n+1, t) , m(t2n+1, t2n) , m(g(s), t),

[m(t2n, t2n+1)+1] ·m(g(s), t)
m(g(s), t2n+1)+1

}
.

and

N (s2n+1, s) = min{mu ( f (s2n+1), S(s2n+1)) , mu(g(s), T (s)),

mu (S(s2n+1), g(s)) , mu ( f (s2n+1), T (s))}

= min{mu (t2n+1, t2n) , mu(g(s), t), mu (t2n, g(s)) , mu (t2n+1, t)} .

By taking the limit as n → ∞, we get M(s2n+1, s) = m(g(s), t) and limn→∞ N(s2n+1, s) = 0. Thus, we have
m(g(s), t) ⩽ δm(g(s), t), which is sensible only if m(g(s), t) = 0. This outcome contradicts the assumption that
m(g(s), t) > 0. Consequently, g(s) = t, leading to the conclusion that g(s) = T (s) = t. Since the mappings g and T
are weakly compatible, it follows that g(t) = g(T (s)) = T (g(s)) = T (t). In a similar manner, we will demonstrate that
g(t) = t. Assume, in contradiction, that m(g(t), t)> 0. From (1) we have
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m(t2n+1, g(t)) = m( f (s2n+1), g(t))⩽ δM (s2n+1, t)+LN (s2n+1, t)

where

M (s2n+1, t) = max{m(S(s2n+1), T (t)) , m( f (s2n+1), S(s2n+1)) , m(g(t), T (t)) ,

[m(S(s2n+1), f (s2n+1))+1]m(g(t), T (t))
m(g(t), f (s2n+1))+1

}

= max

{
m(t2n, g(t)) , m(t2n+1, t2n) , m(g(t), T (t)) ,

[m(t2n, t2n+1)+1]m(g(t), t)
m(g(t), t2n+1)+1

}
.

and

N (s2n+1, t) = min{mu ( f (s2n+1), S(s2n+1)) , mu (g(t), T (t)) ,

mu (S(s2n+1), g(t)) , mu ( f (s2n+1), T (t))}

= min{mu (t2n+1, t2n) , mu (g(t), T (t)) , mu (t2n, g(t)) , mu (t2n+1, T (t))}

= 0.

Taking n → ∞, we obtain

lim
n→∞

M(s2n+1, t) = m(t, g(t)),

leading to m(t, g(t)) ⩽ δm(t, g(t)). This inequality holds only if m(t, g(t)) = 0, which contradicts m(t, g(t)) > 0.
Consequently, g(t) = t. Similarly, it can be demonstrated that t is also a fixed point of f and S. Therefore, we have
f (t) = g(t) = S(t) = T (t) = t. The arguments for the cases where S(Y ), f (Y ), or g(Y ) are complete follow the same
procedure.

The subsequent example demonstrates the validity of Theorem 2.
Example 4 Consider self-mappings f , g, T and S defined on the set Y = [0, ∞) endowed with partial order (s, t ∈

[0, 1] with s ≤ t) or s ⪯ t ⇐⇒ s = t. We define f and T as follows:
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f (s) = g(s) =

{
es −1, s ∈ [0, 1],

e−1, s > 1,
T (s) = S(s) =

{
ln(1+ s), s ∈ [0, 1],

ln2, s > 1.

Let m : Y ×Y → [0, ∞) be defined by m(s, t) =
s+ t

2
. Then, (Y, ⪯, m) is a complete partially ordered M-metric

space. Now, let us verify whether these mappings satisfy the conditions given in Theorem 2. Initially, we show that f is
a dominating map and a weak annihilator of T . Indeed, for s ∈ [0, 1), s ⪯ es − 1 = f (s), while for s > 1, s ⪯ f (s) = s.
Also, f T (s) = s ⪯ s, ∀s ∈ Y.

Next, we verify that f and T satisfy condition 1. We choose δ = 9/10, and L = 2. Suppose that t ⪯ s, then we have
two cases. Case I: if s ∈ [0, 1] (and so t ∈ [0, 1]). We derive

m( f (s), g(t)) =
f (s)+g(t)

2
=

es + et −2
2

≤ δ · f (s)+S(s)
2

+L ·
(

f (s)+S(s)
2

−min{ f (s), S(s)}
)

= δ · es −1+ ln(1+ s)
2

+L ·
(

es −1+ ln(1+ s)
2

− ln(1+ s)
)
.

Consequently, m( f (s), g(t))≤ δM(s, t)+LN(s, t), for any s, t ∈ [0, 1]. Case II: if s > 1 (and so s = t), then

m( f (s), g(s)) = e−1 ≤ δ · e−1+ ln2
2

+L ·
(

e−1+ ln2
2

− ln2
)
.

Hence, the mappings f and T meet condition 1 in Theorem 2 and possess a common fixed point, that is s = 0.
Corollary 1 Consider a partially ordered complete M-metric space (Y, ⪯, m), with self-mappings f and T in Y such

that f (Y )⊆ T (Y ). Let f be a dominating mapping and act as a weak annihilator of T . Suppose there exist δ ∈ [0, 1) and
L ≥ 0 so that

m( f (s), f (t))≤ δM(s, t)+LN(s, t),

where

M(s, t) = max

{
m(T (s), T (t)), m( f (s), T (s)), m( f (t), T (t)),

[m(T (s), f (s))+1]m( f (t), T (t))
m(T (t), f (s))+1

}

and
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N(s, t) = min{m( f (s), T (s)), m( f (t), T (t)), m(T (s), f (t)), m( f (s), T (t))} ,

for any comparable elements s, t ∈Y . Given a nondecreasing sequence {sn} with sn ⪯ tn for all n and tn → c as n → ∞, if
sn ⪯ c holds, then f and T share a common fixed point.

Next, we give fixed point results for almost m-generalized contractions and Reich contractions in a complete partially
ordered M-metric space. In addition, we substantiate our findings with appropriate examples to verify their validity.
First, we define the concept of an almost m-generalized contraction for a self-mapping F on Y in a partially ordered
M-metric space as follows:

m(F(s), F(t))⩽ δM(s, t)+LN(s, t), (3)

for some δ ∈ [0, 1) and L ⩾ 0, and for every comparable s, t ∈ Y, where

M(s, t) = max

{
m(s, t), m(s, F(s)), m(t, F(t)),

m(t, F(t))[1+m(s, F(s))]
1+m(s, t)

,
m(s, F(s))m(t, F(t))

1+m(s, t)

}

and

N(s, t) = min{mu(s, F(s)), mu(t, F(t)), mu(s, F(t)), mu(t, F(s))}.

Theorem 3 Let (Y, ⪯, m) be a complete partially ordered M-metric space, and a mapping F : Y → Y satisfying
almost m-generalized contraction, and let F be a continuous, dominating mapping. Then F admits at least one fixed point
in Y .

Proof. We choose any point s0 ∈ Y. Then, we have F(s0) = s1, if F(s0) ̸= s0, then s0 ≺ F(s0). We construct a
sequence {sn} ⊆ Y given by sn+1 = F(sn), n ∈ N. As F is a dominating mapping, we demonstrate

s0 ≺ F(s0) = s1 ⪯ F(s1)⪯ ·· · ⪯ sn ⪯ sn+1, · · · .

If for some n ∈ N, sn+1 = sn, then F possess a fixed point. Suppose that m(sn, sn+1)> 0 for each n. Then, from (3)
we obtain

m(sn, sn+1) = m(F(sn−1), F(sn))⩽ δM(sn−1, sn)+LN(sn−1, sn), (4)

where
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M(sn−1, sn) = max{m(sn−1, sn), m(sn−1, F(sn−1)), m(sn, F(sn)),

m(sn, F(sn))[1+m(sn−1, F(sn−1))]

1+m(sn−1, sn)
,

m(sn−1, F(sn−1))m(sn, F(sn))

1+m(sn−1, sn)

}

= max{m(sn−1, sn), m(sn−1, sn), m(sn, sn+1),

m(sn, sn+1)[1+m(sn−1, sn)]

1+m(sn−1, sn)
,

m(sn−1, sn)m(sn, sn+1)

1+m(sn−1, sn)

}

≤ max{m(sn−1, sn), m(sn, sn+1)}

and

N(sn−1, sn) = min{mu(sn−1, Fsn−1), mu(sn, Fsn), mu(sn−1, Fsn), mu(sn, Fsn−1)}

= min{mu(sn−1, sn), mu(sn, sn+1), mu(sn−1, sn+1), mu(sn, sn)}= 0.

Assume that max{m(sn−1, sn), m(sn, sn+1)} = m(sn, sn+1) for some n. From statement (4), it follows that
m(sn, sn+1) ⩽ δm(sn, sn+1), which is a contradiction because δ ∈ [0, 1). Hence, the relation max{m(sn−1, sn), m(sn,

sn+1)}= m(sn−1, sn) must hold. Therefore,

m(sn, sn+1)⩽ δm(sn−1, sn).

According to Lemma 3 (i), we have

lim
n→∞

m(sn, sn+1) = 0. (5)

Thus, the sequence {sn} is an m-Cauchy sequence. Since (Y, m) is a complete M-metric space, there exists some
z ∈ Y such that {sn} converges to z as n → ∞ with respect to τm. This implies

lim
n→∞

(
m(sn, z)−m{sn, z}

)
= 0 = lim

n→∞

(
M{sn, z}−m{sn, z}

)
.

Equivalently,

lim
n→∞

m(sn, z) = lim
n→∞

m{sn, z} = lim
n→∞

min{m(sn, sn), m(z, z)}= 0, (6)
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We now demonstrate that z is a fixed point of F . From (3), we derive

m(sn+1, F(z)) = m(F(sn), F(z))≤ δM(sn, z)+LN(sn, z), (7)

where

M(sn, z) = max{m(sn, z), m(sn, sn+1), m(z, F(z)),

m(z, F(z))[1+m(sn, sn+1)]

1+m(sn, z)
,

m(sn, sn+1)m(z, F(z))
1+m(sn, z)

}

and

N(sn, z) = min{mu(sn, sn+1), mu(z, F(z)), mu(sn, F(z)), mu(z, sn+1)}.

By letting n→∞ in equation (7) and applying equations (5) and (6), we find thatM(sn, z)=m(z, F(z)) andN(sn, z)=
0. Thus, we conclude that m(z, F(z))≤ δm(z, F(z))< m(z, F(z)). Therefore, m(z, F(z)) = mF(z), z. Furthermore, from
(3) we have

m(F(z), F(z))≤ δm(z, F(z)) = m{F(z), z}.

Consequently,

m(F(z), F(z)) = m(z, F(z)) = m(z, z) = m{F(z), z}.

Thus, F(z) = z is indeed a fixed point.
We now provide the following example to substantiate our previously mentioned result.
Example 5 Consider Y = {s = (s1, s2, · · · , sn) ∈ Rn | 0 < s1 ≤ 1 and si = 0 for all i > 1} endowed with the usual

order ⪯. Let m : Y ×Y → [0, ∞) be an M-metric space defined as follows:

m(s, t) =
s+ t

2
, ∀s, t ∈ Y.

Let F : Y → Y defined by

F(s) =
(

1− s1

2
, 0, 0, . . . , 0

)
.

It can be shown that F is an almost m-generalized contraction. Specifically, choose δ = 1/2 and L = 2, and we
analyze the subsequent three cases:

Case 1: If s1 = t1 = 1, then
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m(F(s), F(t)) = 1/2 ≤ δ ·1+L ·1/4,

Case 2: If s1 = t1 ∈ (0, 1), then

m(F(s), F(t)) = 1− s1

2
≤ δ ·1/2+L ·1/2,

Case 3: If s1 ̸= t1 ∈ (0, 1), then

m(F(s), F(t)) = 1− s1

4
− t1

4
< δ

(
1+ s1/2

2

)
+L

(
1+ s1 − t1/2

2

)
.

Therefore, according to Theorem 3, F possess a fixed point, which is s = (2/3, 0, 0, · · · , 0).
Corollary 2 Consider (Y, ⪯, m) as a complete partially ordered M-metric space. Let F be a continuous and

dominating self-mapping on Y , if there exists δ ∈ [0, 1) and for any comparable elements s, t ∈ Y :

m(F(s), F(t))⩽ δ max

{
m(s, t), m(s, F(s)), m(t, F(t)),

m(t, F(t))[1+m(s, F(s))]
1+m(s, t)

,
m(s, F(s))m(t, F(t))

1+m(s, t)

}
.

Then F admits at least one fixed point in Y .
Theorem 4 Let (Y, ⪯, m) be a complete partially ordered M-metric space, and let F be a continuous, dominating

self-mapping on Y . If for any two comparable elements s, t ∈ Y , we have

m(F(s), F(t))⩽ αm(s, t)+βm(s, F(s))+ζ m(t, F(t)), (8)

where α, β , ζ ≥ 0 and α +β +ζ < 1. Then the mapping F possess at least one fixed point.
Proof. Consider a sequence {sn} ⊆ Y such that sn+1 = F(sn) for all n ∈ N. Since F is a dominating map, we have

s0 ≺ F(s0) = s1 ⪯ F(s1)⪯ ·· · ⪯ sn ⪯ sn+1, · · · .

If there exists an integer n ∈ N such that m(sn+1, sn) = 0, it follows that F(sn) = sn+1 = sn, thereby indicating that
sn is a fixed point. Suppose m(sn, sn+1)> 0 for each n. From (8), we get

m(sn, sn+1) = m(F(sn−1), F(sn))⩽ αm(sn−1, sn)+βm(sn−1, F(sn−1))+ζ m(sn, F(sn))

= αm(sn−1, sn)+βm(sn−1, sn)+ζ m(sn, sn+1),

Contemporary Mathematics 1752 | Nawab Hussain, et al.



m(sn, sn+1)(1−ζ )⩽ (α +β )m(sn−1, sn)

m(sn, sn+1)⩽
α +β
1−ζ

m(sn−1, sn).

Subsequently,

m(sn, sn+1)⩽ λm(sn−1, sn),

where λ = (α +β )/(1−ζ ), with λ in the interval [0, 1). Therefore, applying Lemma 3 (i), we infer that

lim
n→∞

m(sn, sn+1) = 0. (9)

Thus, we conclude that the sequence {sn} serves as anm-Cauchy sequence. Given that (Y, m) is a complete space, per
Definition 7, it follows that

lim
n→∞

m(sn, z) = lim
n→∞

m{sn, z} = lim
n→∞

M{sn, z} = 0, (10)

the sequence {sn} converges to z as n → ∞.
We now show that z is a fixed point of F . Assuming m(z, F(z)) > 0, we can apply the axiom (m4) to arrive at a

contradiction.

m(z, F(z))−m{z, F(z)} ≤ m(z, sn+1)−m{z, sn+1}+m(sn+1, F(z))−m{sn+1, F(z)}

≤ m(F(sn), F(z))⩽ αm(sn, z)+βm(sn, sn+1)+ζ m(z, F(z)).

Using equations (9) and (10), we obtain m(z, F(z))⩽ ζ m(z, F(z))< m(z, F(z)). Hence, m(z, F(z)) = 0.Also, from
(8) we have

m(F(z), F(z))⩽ αm(z, z)+(β +ζ )m(z, F(z)) = 0.

As a result,

m(F(z), F(z)) = m(z, F(z)) = m(z, z).

Thus, F(z) = z is a fixed point.
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Corollary 3 Let (Y, ⪯, m) denote a complete partially ordered M-metric space, and let F : Y → Y be a continuous,
dominating self-mapping. Assume that for all comparable elements s, t ∈ Y , the following inequality holds:

m(F(s), F(t))≤ θm(s, t),

where θ ∈ [0, 1). Under these conditions, the mapping F possess at least one fixed point.
Corollary 4 Let (Y, ⪯, m) be a complete partially ordered M-metric space, and let F : Y → Y be a continuous,

dominating self-mapping. Suppose that for all s, t ∈ Y with s and t comparable under ⪯, the inequality

m(F(s), F(t))≤ ε
(
m(s, F(s))+m(t, F(t))

)
is satisfied, where ε ∈ [0, 1). Under these conditions, the mapping F admits at least one fixed point in Y .

4. Conclusions and future work
This paper provides a comprehensive investigation into almost m-generalized contractions and Reich contractions,

alongside their associated fixed point theorems, within the framework of partially ordered M-metric spaces. The analysis
culminates in the establishment of common fixed point results for generalized contractions in such spaces. As a direction
for future research, we suggest exploring the extension of these results to partially ordered Mb-metric spaces, partially
ordered rectangular Mb-metric spaces, and partially ordered fuzzy M-metric spaces.
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