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Abstract: The present study introduce a regularization scheme yielding divergent free exact solutions to the classical
field equations underlying the muon self-interaction. Exact results for the self-energy and anomalous g-factor of the
muon and upper bound on the sum of the muon and electron neutrinos rest masses are reported. Yukawa cut-offs with
unique screening constants regularizing the electromagnetic field inherent to the self-interacting muon are presented.
Equations of motion and a transcendental equation satisfied by the muon anomalous g-factor are derived, with solution
aµ = 0.001165920530996(3) matching the most recent experimental value found in the literature to 60 ppt showing an
excellent agreement.
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1. Introduction
The study of the electron’s anomalous magnetic moment have played an essential role in the development of quantum

theory [1–4]. Its successful theoretical description led to the expectation that the followed calculation of the anomalous
component in the muon’s intrinsic magnetic moment will strengthen and crystallize the established knowledge [5–10].
Over the decades, however, with the improvement of the experimental setup and the consequent collection of more data
from highly precise measurements the gap between the measured and calculated values not only remained but thickened
[11–17]. The difference between the most recent experimental average [18, 19] and the most recent consensus on the
average theoretical value [20] is about 2.49 ppb, which is significantly larger than the relevant uncertainty. It is expected
that the analysis of more experimental data will only result in a negligible variation in the measured average value
reaffirming the obtained gap. As a result, a variety of theoretical approaches to the calculation of the corresponding
anomalous component were proposed, see [21] and the references therein.

In the light of the apparent discrepancy many efforts to revise and improve the hadronic vacuum polarization
corrections [22–26] and the hadronic light-by-light scattering one [25–29] have been considered, see also the revision
of Dyson-Schwinger approach [30]. Despite the increasing number of fitting parameters and relevant ambiguity in the
choice of observables needed to calculate these contributions, it is believed that the used quantum field theory approaches
have the prospect to reduce the obtained tension.
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Besides the standard regularization and renormalization procedures used in the above mentioned quantum field
theory calculations [31, 32], any progress in regularizing the muon’s self-interaction at a classical limit is expected to
favor a progress to the resolution of named tension. Yukawa cut-offs [33–36] are the most prominent tools for removing
radial singularities at a microscopic scale in classical theory approaches. The application of Yukawa regulators [37]
implies minimal number of effective parameters and leads to high precision results. Over the years number of attempts to
establish an inherent to the non-composite particles regularization scheme yielding quantitative description of the vacuum
in classical electrodynamics and field theory in general ware discussed [38–49]. Recently an exact regularization scheme
with Yukawa potentials describing a massive off shell photons and no free mass parameters was successfully applied to
quantify the electron g−2 value and the associated self-interaction [50]. To the best of our knowledge calculations of the
muon electromagnetic self-energy and g− 2 value via the application of Yukawa regulators in the classical theory have
not been undertaken yet.

The present study implements the regularization technique proposed in [50] with the aim to quantify exactly the
self-interaction energy (self-energy) and anomalous component in the muon’s intrinsic magnetic moment. The applied
technique regularizes the electrodynamics of non-composite particles yielding a classical stationary description of the
vacuum consistent with the quantum theory beyond the corresponding principle. Accordingly, exact results for the muon’s
self-energy, anomalous g-factor and all intrinsic characteristics underlying the dynamics of its self-interaction are reported.
Improved accuracy in the calculation of the muon anomalous g-factor is obtained (60 ppt), overcoming the existing gap
between the average value predicted by the quantum theory [20] and the measured one [18, 19]. An essential outcome of
the obtained accuracy is an exact bound on the sum of the muon and electron neutrinos rest masses.

2. Theoretical framework
In this section we set-out the mathematical notation of all physical quantities and present all ab-initio relations

underlying the obtained results. We find it convenient to restrict all representations within the mathematical framework
of three-dimensional vector formalism.

2.1 Generalities
Consider a free muon with rest mass and electric charge denoted by mµ and ē = −e, respectively, where e is the

elementary charge. Let R be the muon’s rest frame of reference and rcµ = αλ̄cµ be its electromagnetic radius in R, where
α and λ̄cµ are the fine structure constant and associated reduced Compton wavelength, respectively. Let rµ be the intrinsic
field vector associated to the muon, with magnitude rµ , and ũµ be the magnitude of the tangential velocity ũµ related to its
rotation about the origin of R in the plane perpendicular to the muon’s relative velocity uµ = uµ κκκ defined with respect to
an observer with frame of reference O, where κκκ is the respective unit vector (see Figure 1). Since the system is closed, we
have the constraint uµ = ũµ . Furthermore, the oscillation of rµ is characterized by an angular velocityωωωµ , with magnitude
ωµ = ũµ r−1

µ representing the angular frequency of the corresponding circularly polarized field ΦΦΦµ ∈R3, with || · ||2 = rµ .
The classical representation of the field reads

ΦΦΦµ(x) =
Aµ√

2
(Φµ(x)n∗+Φ∗

µ(x)n),

where the amplitude Aµ ≡ rµ , n ∈C3, is the field’s unit vector and Φµ(x)∈C is a phase factor, with x ∈R1, 3 denoting the
field’s four-position vector with respect to O. The star symbol indicates complex conjugate. The unit vector components
satisfy equations n · n∗ = 1 and n · n = 0 yielding a trivial solution for the component with real part collinear to κκκ .
Accordingly, for the respective field vector, tangential and angular velocity, we have
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rµ = ΦΦΦµ(t), ũµ = Φ̇ΦΦµ(t), ωωωµ =
1
r2

µ
(ΦΦΦµ(t)× Φ̇ΦΦµ(t)),

where the time variable t is defined in R, the dot symbol stands for time derivative and Φµ(x = ct)→ Φµ(t) = eiωµ t . In

the case shown in Figure 1, we have n =

(
1√
2
,

i√
2
, 0
)
and ΦΦΦµ(t) = (rµ cosωµ t, rµ sinωµ t, 0).

ũµ

rµ

uµ

2πrµ

Figure 1. Sketch of a right circularly polarized spatial wave representing a free self-interacting muon. The corresponding field vector rµ (blue arrows)
depicts a helix as the particle moves relative to an observer with velocity uµ

The magnitudes of muon field vector and tangential velocity are a conjugate quantities satisfying

rµ ũµ = λ̄cµ c, (1)

where c is the light speed in vacuum. Moreover, in the considered system the following identity holds uµ ·ωωωµ(uµ ωµ)
−1 =

1, with uµ , ũµ and ωµ being intrinsic quantities. The normal mode of the muon field is unique and even in the case of
an arbitrary motion, uµ remains invariant, with uµ being a component of the total relative velocity. Therefore, for an
arbitrary motion of R with respect to O, the mode will appear as a superposition of different modes, with field dynamics
resembling the one of a wave packet.

The muon’s charge ρe and rest mass ρmµ densities satisfying the equality ρeρ−1
mµ = em−1

µ are defined within the
spherically symmetric spatial domain Ωcµ ⊂ R3, with radius rcµ , boundary ∂Ωcµ and volume Vcµ . The muon effective
rest mass density ρMµ = ρMµ (r) is a smooth function of the radial distance r from the origin of R, with r ∈ (0, +∞) and
ρMµ > ρmµ for all r. The effective mass density results from the particle’s electromagnetic self-interaction [51–57] and
therefore in the considered case, if ∄ e, then ρMµ = ρmµ . The corresponding effective rest mass reads
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Mµ =
∫

Ωcµ
ρMµ dv =

1
2

gµ mµ ,

where gµ = 2(1+aµ) is the g-factor of the muon and aµ is the anomalous component. In particular, we have

gµ =
2

Vcµ

∫
Ωcµ

Gµ dv, Gµ =
eρMµ

mµ ρe
. (2)

The inherent dynamics of rµ underpin the occurrence of intrinsic magnetic moment µµµµ =−1
2

gµ µµ κκκ , where µµ =

eh̄(2mµ)
−1 is the corresponding magneton. The spin magnetic moment µµµµ occur due to the fact that the corresponding

field is polarized. Neither the electric charge nor mass of the muon are spinning. In other words, the muon is characterized
by an intrinsic charge density pseudocurrent jµ = ρerµ ωωωµ defined in R and satisfying

µµµµ = − 1
2

rµ

∫
Ωcµ

Gµ jµ dv

=
gµ ē
2mµ

sµ ,

where

sµ =
1
2

mµ(ΦΦΦµ(t)× Φ̇ΦΦµ(t))

is the corresponding spin angular momentum. In the case depicted in Figure 1 the helicity is positive.

2.2 Field equation
The electromagnetic field in the considered system is inherent to the particle and do not represent a collection of

massive [58–62] and massless on shell photons. Since ω̇ωωµ = 0 and u̇µ = 0, in both frame of references, R and O, the
classical representation of the electromagnetic field is time independent and is characterized by a finite energy depending
on the distance from the origin of R. In other words, it correspond to a collection of off shell photons [38, 63–68]
represented in the classical theory via static angular independent scalar and vector potentials including Yukawa cut-offs
[37]. Thus, the electromagnetic field potentials are not retarded, the radial singularity is removed and the Lorenz gauge
is trivially satisfied.

The classical field equation describing the radial dependence of the electromagnetic field in the considered system
reads

∆rψµ(r)−χ2
µ ϕµ(r)− χ̃2

µ ϕ̃µ(r) = 0, (3)

where ∆r represents the radial spherically symmetric Laplace operator, the real functions ϕµ(r) and ϕ̃µ(r) are the cut-off
terms with screening constants χµ ∈ R>0 and χ̃µ ∈ R>0, respectively, implying the following boundary conditions
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ψµ(r) =

 0, r → ∞, uµ < c,

(χµ + χ̃µ)
ē

4πεo
, r → 0, uµ < c.

where εo is the electric constant. The solution of Equation (3) is a real function regularized to the origin of R with respect
to O and reads

ψµ(r) =
ē

4πεor

(
2− e−χµ r − e−χ̃µ r) . (4)

For all r ∈ (0, +∞), both χµ and χ̃µ represent a fundamental bound to the wave numbers of the effectively massive
off energy shell photons coupled to the muon. Both Yukawa potentials are a regulators to the Coulomb terms that are
implicitly accounted for in Equation (3), since the corresponding screening constants equal zero. Therefore, the function
given in Equation (4) is an amplitude of the oscillating vector field ΛΛΛµ(r, t) = c−2ψµ(r)Φ̇ΦΦµ(t) and has a Fourier transform

ψµ(r) =
ē
εo

∫ χ2
µ eik·r

k2(k2 +χ2
µ)

d3k
(2π)3 +

ē
εo

∫ χ̃2
µ eik̃·r

k̃2(k̃2 + χ̃2
µ)

d3k̃
(2π)3 , (5)

with off shell amplitudes bounded by the regulators χ2
µ(k

2 +χ2
µ)

−1 and χ̃2
µ(k̃

2 + χ̃2
µ)

−1 adding the singularities at k = iχµ
and k̃ = iχ̃µ for the removal of the radial one r = 0 in Equation (4). Here, r is the radial vector taken with respect to R
and the unit vectors of k ∈ C3 and k̃ ∈ C3 are defined in R3.

2.3 Field’s potentials
In the muon’s rest frame of reference the system’s electromagnetic field is described by the centrally symmetric

scalar and pseudovector potentials ψµ(r) and A′
µ(r) = c−2rµ ωωωµ ψµ(r), respectively. Here, we take into account that

A′
µ(r) = (ρρρ(t)×ΛΛΛµ(r, t)), where the unit vector ρρρ = rµ r−1

µ . According to the Lorentz transformations, in the observer’s
frame of reference the system’s electromagnetic field relative to the origin of R is characterized by the scalar and vector
potentials

φµ(r) = γµ ηµ ψµ(r), Aµ(r) = 2γµ
uµ

c2 ψµ(r), (6)

where γµ is the corresponding Lorentz factor and

ηµ = 1+
u2

µ

c2 , ∇ ·Aµ = 0.

As discussed above, the electromagnetic field do not propagate independently from the particle and in O it is
further characterized by the Umov-Poynting vector µ−1

o (Eµ ×Bµ) = 2η−1
µ εoE2

µ uµ , where µo is the vacuum magnetic
permeability, Eµ =−∇φµ(r) and Bµ = 2c−2η−1

µ (uµ ×Eµ) are the corresponding electric and magnetic field components,
respectively.
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2.4 Field’s energy
The energy of the electromagnetic field in the considered system, Wµ(r), is also time independent and regularized.

In general, integrating the corresponding energy density 2η−1
µ εo|∇φµ(r)|2 over R3, we obtain

Wµ(r) = Cµ
rcµ

2r

(
8
(
e2(χµ+χ̃µ )r − e(2χµ+χ̃µ )r − e(χµ+2χ̃µ )r

)

+(2+χµ r)e2χ̃µ r +(2+ χ̃µ r)e2χµ r

+4
(χµ + χ̃µ +χµ χ̃µ r)

χµ + χ̃µ

)
e−2(χµ+χ̃µ )r,

where Cµ = 2γ2
µ ηµ mµ c2. At the origin of R and for uµ < c the electromagnetic field energy in the considered system is

finite. Thus, we have

lim
r→0

Wµ(r) =Cµ rcµ
χ2

µ +6χµ χ̃µ + χ̃2
µ

2(χµ + χ̃µ)
. (7)

In contrast to the non-regularized electrodynamics, here for r → 0 the discussed electromagnetic field energy vanish
when the particle’s rest mass is negligible. In other words, the charge screening (Yukawa cloud) is nearly complete making
the bare particle to appear as a dressed one.

3. Results
3.1 The hamiltonian

The energy of a free self-interacting muon do not depend explicitly on time. The considered system is not
characterized by a potential energy and hence there is no net self-force acting on the muon [69–71]. Moreover, since
the particle is at rest with respect to the origin of R, the vector field in Equation (6) does not contribute to the self-
interaction. In both frame of references the self-interaction depends only on the electromagnetic field scalar potential.
Therefore, in the observational frame of reference the system’s dynamics is entirely intrinsic and described only by an
effective Hamiltonian. The latter reads

Hµ = γµ mµ c2 +Σµ , (8)

where Σµ is the energy of electromagnetic self-interaction. This energy is not a potential energy of a gradient field and
equals the spatial average over the domain Ωcµ of the interaction density −ρeφµ ≡ −γµ(ρeψµ + jµ ·A′

µ). In particular,
with respect to Equation (6), we have the representation
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Σµ =−
∫

Ωcµ
ρeφµ dv

= γµ c2
∫

Ωcµ
(ρMµ −ρmµ )dv, (9)

where the effective mass density reads

ρMµ = ρmµ

(
1+

ηµ ē
mµ c2 ψµ

)

= ρmµ

(
1+ηµ

rcµ

r

(
2− e−χµ r − e−χ̃µ r)) . (10)

Here, we take into account the equality e2 = 4πεorcµ mµ c2.

3.2 The Hamiltonian density

The information about the muon filed vector dynamics, with helix trajectory shown in Figure 1, is embedded in
the Hamiltonian density Hµ = γµ ρMµ c2 associated to Equation (8) as follows Hµ =

∫
Ωcµ

Hµ dv. Taking into account
Equations (1) and (10), we get

Hµ = c2ρmµ

(
γµ +

α
mµ c

Pµ

)
,

where

Pµ =
ē

αc
φµ(r)

= γµ ηµ mµ ũµ
rµ

r

(
2− e−χµ r − e−χ̃µ r)

is the corresponding generalized momentum. Accordingly, we have the equations of motion

ũµ =
∫

Ωcµ

∂Hµ

∂Pµ
dv, Ṗµ = 0

and subsequently the exact values

ũµ = αc, ηµ → ηα = 1+α2, γµ → γα =
1√

1−α2
. (11)
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3.3 Effective mass-energy equivalence
Taking into account Equations (2) and (9), we obtain the self-interaction energy as a function of the muon’s rest mass.

Thus, we have

Σµ = γα aµ mµ c2.

As a result, from Equation (8) we get the muon’s effective relativistic energy

Eµ = γα(1+aµ)mµ c2

=
√

P2
µ c2 +M2

µ c4, (12)

where Pµ = αγα Mµ c is the muon’s momentum. Therefore, as a result of the self-interaction the total energy of a free
muon is γα(1+aµ) times higher than its rest energy and the system’s total rest mass will be (1+aµ) times higher than the
muon’s rest mass. As the frame of reference R moves relatively to an observer in O and the muon field vector oscillates,
the muon will appear as circularly polarized traveling spatial wave with unique mode characterized by the phase factor

Φµ(x) ≡ Φµ(r, τ) = e
i α2
(1+aµ )h̄ (Eµ τ−Pµ r), where we take into account the relation h̄ωµ = α2mµ c2, see Section 2.1. Given

the obtained phase factor the classical and quantum representations of the free self-interacting muon are interchangeable.
Thus, the corresponding spinor field Ψµ(x) that accounts for the obtained muon’s self-energy and anomalous magnetic
moment satisfies the Dirac equation

(ic/∂ −ωµ)Ψµ(x) = 0,

with solution given in Equation (12).

3.4 The anomalous g-factor
The implemented regularization scheme yields a single-parametric transcendental equation for the calculation of the

muon’s anomalous g-factor. In particular, accounting for Equations (2) and (10), we obtain

aµ =
ηα
Vcµ

∫
Ωcµ

rcµ

r

(
2− e−χµ r − e−χ̃µ r)dv. (13)

The screening constants are given by

χµ =
γα mµ c

(1+aµ)h
, χ̃µ =

γα m̃c
(1+aµ)h

, (14)

where h is Plancks constant and the residual rest mass m̃ > 0 for all r ∈ (0, +∞).
Essentially, taking into account Equations (11) and (14), from Equation (13) we get
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aµ = 3ηα

1−


1− e

− αγα
2π(1+aµ )

(
1+

αγα
2π(1+aµ)

)
(

αγα
2π(1+aµ)

)2

 −


1− e

− αγα ξµ
2π(1+aµ )

(
1+

αγα ξµ

2π(1+aµ)

)
(

αγα ξµ

2π(1+aµ)

)2


 , (15)

where

ξµ =
m̃

mµ
. (16)

Table 1. Theoretical and experimental (EXP) data for the muon’s anomalous g-factor (second column).

Approach aµ ξµ Refs.

RCED 0.001165920530996(3) 0.0048363318963797 Eq. (15)

QFT 0.00116591810(43) - [20]

EXP 0.00116592059(22) - [18, 19]

The regularized classical electrodynamics (RCED) and quantum field theory (QFT) results in Table 1 are given in
the second and third rows, respectively. Fourth row represents the most recent experimental average value. The value of
mass ratio ξµ follows from Equation (16). For additional details see Figure 2.

17.5 18 18.5 19 19.5 20 20.5 21

  aμ × 10
9
 - 1,165,900.00

Theory, eq. (15)

Theory, Ref. [20]

Experiment, Refs. [18, 19]

-3 -2.5 -2 -1.5 -1 -0.5 0
ppb

Figure 2. Comparison between themost recent experimental result (black circle) for the muon’s anomalous g-factor and its value obtained from Equation
(15) (blue square). In addition the latest result predicted by the quantum theory (red square) is also shown. The depicted data is further provided in
Table 1

The value of aµ calculated from Equation (15) is given in the second row of Table 1. The computations were carried
out for α = 137.0359990849004−1, with value taken from [50]. The obtained accuracy with respect to the most recent
experimental measurements [18] is about 0.06 ppb, see Figure 2. The value of mass ratio in Equation (16) is given in
the third column in Table 1. We have m̃ = me +mv, where me denotes the electron’s rest mass and mν = mνµ +mν̄e .
Here, mνµ is the muon neutrino rest mass and mν̄e is the electron anti-neutrino rest mass. Numerically, we have mν =

3.8400015(1)× 10−38 kg, where the values of electron’s and muon’s rest masses me = 9.1093837015× 10−31 kg and
mµ = 1.883531627× 10−28 kg, respectively, are taken from NIST [72]. This result suggest that the sum of the muon
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neutrino and electron anti-neutrino rest energies is approximately 0.02154 eV, which is consistent with the reported upper
bound on the sum of the three flavor neutrino rest energies of about 0.120 eV (see [73]). Moreover, it suggests that the
electron anti-neutrino mass satisfies the inequality mν̄e < 3.84× 10−38 kg. This bound is approximately 40 times lower
than the one set by KATRIN collaboration [74, 75].

3.5 Electromagnetic field energy
The total energy of themuon given in Equation (12) is part of the considered system’s total energy. The latter accounts

for the electromagnetic field energy associated to the muon. In the non-regularized electrodynamics, the electromagnetic
field energy associated to the three flavors of charged leptons does not depend on their rest mass and is not defined at the
origin of R. Consequently the corresponding energy density is quantitatively indistinguishable with respect to the flavor
state of these particles. Within the current approach, as a result of the applied regularization the electromagnetic field
energy and its density are flavor dependent. The larger the lepton’s rest mass the higher corresponding electromagnetic
field energy. In the considered case, substituting the obtained from Equation (15) values of mν and aµ in Equation (7),
we obtainWµ(r → 0) = 125.540×103 eV, which is 211.749 times the value of electromagnetic field energy associated to
the electron at the same limit (see [50]) and about 1.18817×10−3 times the muon’s rest energy.

4. Summary and conclusions
The present paper reports on the most recent progress in the application of the regularization technique in

electrodynamics of electrically charged non-composite particles. In general, the regularization is based on the Yukawa
theory with cut-off terms screening the Coulomb potential and describing massive off shell photons. The cut-offs
are characterized by a unique to the particle screening constants that remove the radial singularity in the classical
representation of the corresponding electromagnetic field yielding exact solutions to the system’s equations of motion.

The effectiveness of proposed regularization scheme is demonstrated by quantifying the muon’s intrinsic dynamics
and calculating exactly the corresponding self-energy and anomalous g-factor. The comparison with the muon g− 2
experimental value shows no sign of discrepancy between theory and experiment.

In particular, an exact divergence free classical representation of the electromagnetic field inherent to the muon is
proposed. The electromagnetic field is described as a collection of massless and massive (see the wave vectors given in
Equation (14)) off shell photons, with amplitudes given in Equation (5). At each point in space the energy of these photons
is finite, see Equation (7). As a result, the muon’s self-energy is precisely calculated showing the exact contribution
of electromagnetic self-interaction into the muon’s total mass and energy, see Equation (12). Moreover, the muon’s
anomalous g-factor is calculated with high precision and accuracy (see Equation (15)), improving the latter obtained from
the latest quantum theory calculations, see Figure 2 and Table 1. The obtained accuracy implies that the contribution of
electromagnetic field into the occurrence of anomalous magnetic moment is significantly larger than previously evaluated.
It shows that the main contribution results from the massive off shell photons. The effective mass of these photons further
implies that the muon and electron neutrinos have a rest mass, with upper bound on their sum equal to 3.8400015×10−38

kg, see Equations (15) and (16). In addition, it points out that the contribution of both neutrinos’ rest masses into the
electron-muon mass ratio should be taken by the quantum theory approach in order to improve the relevant result.

The used regularization technique can be applied to quantify the intrinsic dynamics of the tau lepton and to fix
the range of values of the corresponding anomalous g-factor determined by the multiplicity of branching fractions. It is,
furthermore, applicable to composite particles with constant electric charge. Equation (12) shows that the total rest energy
of a collection of free electrically charged particles is always greater than the anticipated value obtained by accounting for
only the particles rest masses.
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