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robustness and flexibility of the NEIW distribution. The latest Bayesian analysis software STAN is used to perform
the Bayesian analysis using Hamiltonian Monte Carlo (HMC) under No-U-Turn Sampler (NUTS). Overall, this research
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Keywords: Inverse Weibull, G-family, Bayesian analysis, Hamiltonian Monte Carlo, posterior distribution

MSC: 35A01, 65L10, 65L12, 65L20, 65L70

Abbreviation
CDF Cumulative probability Distribution Function
HMC Hamiltonian Monte Carlo
NEIW New Exponentiated Inverse Weibul
PDF Probability Density Function

Copyright ©2025 Nirajan Bam, et al.
DOI: https://doi.org/10.37256/cm.6120256255
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 6 Issue 1|2025| 827 Contemporary Mathematics

http://ojs.wiserpub.com/index.php/CM/
http://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0009-0006-3211-0986
https://orcid.org/0000-0001-9811-3879
https://orcid.org/0000-0003-3917-8773
https://orcid.org/0000-0002-9350-6048
https://doi.org/10.37256/cm.6120256255
https://creativecommons.org/licenses/by/4.0/


1. Introduction
The diverse and complex nature of data in applied disciplines often surpasses the capabilities of traditional statistical

models, necessitating the development of more flexible distributions. To address these challenges, researchers have
created new families of distributions designed to accommodate the unique characteristics of data across the natural, applied,
and social sciences. The ongoing development of versatile distribution families is crucial for capturing the complexities
inherent in applied fields. Despite significant progress, there remains a pressing need for new and innovative distribution
families to address the evolving challenges of modern data analysis.

The process of creating new distribution families often involves augmenting existing distributions with additional
parameters, enabling the definition of novel distributions. For example, the Weibull family arose through a power
transformation of the exponential distribution, while the gamma distribution was derived via Laplace transformations
applied to the exponential distribution [1]. Similarly, new families can be generated by adding parameters to the survival
function of an existing base distribution [1]. This approach of incorporating additional parameters into the survival
function of a base distribution to generate a new family of distributions is widely popular. Exponentiating a baseline
distribution is another approach that can be used to add an additional parameter [2]. Lehmann type-I (L-I) and type-II
(L-II) models [3] are simple and adaptable techniques for incorporating additional parameters into a baseline distribution.
The L-I model is often discussed in the context of the Power Function (PF) distribution. The PF distribution is created by
simply raising any baseline model to a power. The corresponding cumulative distribution function (CDF) is then given
by

F(x; α, ψ) = (G(x; ψ))α ; α > 0, x ∈ R. (1)

where ψ is a parameter vector of the baseline distribution G(x; ψ). For α = 1, the L-I model reduces back to the original
baseline distribution. Utilizing equation (1), various lifetime distribution models have been introduced. These include
the exponentiated Gumbel (EGu) [4], the exponentiated generalized class [5], the exponentiated Kumaraswamy Dagum
(EKu-D) [6], the exponentiated Weibull-G (EW-G) [7], and the exponentiated power function distribution [8].

The simplicity and utility of the PF distribution have led researchers to investigate its applications, extensions, and
generalizations in various scientific fields. Lehmann Type-II (L-II) models are also well-represented in the literature,
with notable examples including the Lehmann Type II Inverse Weibull distribution [9] and the Lehmann Type II-Teissier
distribution [10].

With some modification on Lehmann Type II type distribution, Cordeiro and Castro [11], and Corderio et al. [12]
presented the concept of adding two parameters to the baseline distribution where the cumulative distribution function
(CDF) is given by

F(x; α, β , ψ) = [1− (1−G(x; ψ))α ]β ; α > 0, β > 0, x ∈ R.

Building on the concept of exponentiation, we propose a novel method to expand existing distributions by introducing
an additional parameter, forming what we call the ‘A New Exponentiated G-Family of Distributions’. This new family
demonstrates greater robustness compared to traditional compound probability distributions and holds significant potential
for modeling complex empirical datasets. A key special member of this family includes three parameters, allowing it to
effectively capture a wider range of dataset characteristics, such as skewness, kurtosis, failure rates, and mathematical
tractability. This enhanced flexibility enables a more accurate representation of intricate data patterns and distributional
properties.

To further empower data analysis, both classical and Bayesian estimation methods were developed, with maximum
likelihood estimation applied to estimate the parameters. The model’s validity was rigorously tested through Monte Carlo
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simulations. When applied to real-world datasets and compared against several existing distributions, the proposed model
consistently outperformed its counterparts, offering a superior fit for complex data scenarios.

For Bayesian analysis, we have used the Bayesian analysis software STAN, which uses Hamiltonian Monte Carlo
(HMC) under the No-U-Turn Sampler (NUTS) [13]. For more information on Bayesian analysis, the reader can go through
[14–16].

The structure of the manuscript is organized as follows: Section 2 introduces the New Exponentiated G-Family
(NEG) of distributions, and Section 3 focuses on the New Exponentiated Inverse Weibull (NEIW) distribution. Section
4 discusses various statistical properties, while Section 5 explores statistical inferences related to the NEIW distribution.
Sections 6 and 7 present the simulation study and a practical application, respectively. Bayesian analysis of the proposed
model, using STAN, is detailed in Section 8. Finally, Section 9 concludes the manuscript.

The structure of the remaining sections of this manuscript is delineated as follows: Section 2 introduces the New
Exponentiated G-Family (NEG) of distribution, while Section 3 focuses on the New Exponentiated Inverse Weibull
(NEIW) distribution. Section 4 discusses various statistical properties, and Section 5 provides a discussion on the statistical
inferences pertinent to the NEIW distribution. Sections 6 and 7 present the simulation study and a practical application,
respectively. Bayesian analysis of the proposed model, using STAN, is detailed in Section 8. Finally, Section 9 concludes
the manuscript.

2. A new exponentiated G-Family of distribution
Let G(x; ψ) be the baseline CDF, with ψ as a vector of associated parameters. The CDF F(x) of the New

Exponentiated G-family (NEG) of distributions is defined as:

F(x; α, ψ) =
(1+G(x; ψ))α −1

2α −1
, α > 0, x ∈ R, (2)

where α is the shape parameter. By differentiating the CDF in equation (2), the PDF f (x) of the family is obtained as:

f (x; α, ψ) =
α(1+G(x; ψ))α−1

2α −1
g(x; ψ); α > 0, x ∈ R. (3)

The corresponding survival/reliability R(x) and hazard H(x) functions are respectively given by

R(x; α, ψ) = 1−
[
(1+G(x; ψ))α −1

2α −1

]
; α > 0, x ∈ R. (4)

and

H(x; α, ψ) =
α(1+G(x; ψ))α−1g(x; ψ)

2α −1

[
1−
{
(1+G(x; ψ))α −1

2α −1

}]−1

; α > 0, x ∈ R. (5)

2.1 Quantile function
For any p in the range (0, 1), the p-th quantile function, denoted by Q(p), for the NEG family is defined as the value

Q(p) that satisfies F(Q(p)) = p, with the condition that Q(p) > 0. This function can be expressed in a simplified form
as:
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Qx(p) = G−1
[{

(p(2α −1)+1)1/α −1
}]

; p ∈ (0, 1),

where G−1 refers to the baseline quantile function. By setting p = 0.5, we can find the median of the NEG family. The
impact of the shape parameters on skewness and kurtosis can be investigated through Q(p). The random deviates can be
generated by:

x = G−1
[{

(w(2α −1)+1)1/α −1
}]

; w ∈ (0, 1).

2.2 Linear form of new exponentiated-G family of distribution

The linear form of the PDF is crucial for deriving the statistical properties of the NEG family of distributions. By
applying a Taylor series expansion, the CDF of the NEG, as presented in equation (2), transforms into

F(x; α, ψ) =
1

2α −1

{
∞

∑
i=0

(
α
i

)
Gi(x; ψ)−1

}
; x ∈ R. (6)

Since the base CDF G(x) is well defined and valid CDF F(x) holds the property of continuity and differentiability
hence by differentiating the CDF in equation (6), the PDF f (x) of the family is obtained as

f (x; α, ψ) =
1

2α −1

∞

∑
i=0

(
α
i

)
iGi−1(x; ψ)g(x; ψ); x ∈ R. (7)

3. Special member
3.1 A New Exponentiated Inverse Weibull (NEIW) distribution

The CDF and PDF of the baseline Inverse Weibull distribution are given by:

G(x; β , δ ) = e−βx−δ
where β > 0, δ > 0, x > 0,

and

g(x; β , δ ) = βδx−(δ+1)e−βx−δ
where β > 0, δ > 0, x > 0.

By substituting G(x; β , δ ) and g(x; β , δ ) into equations (2), (3), (4), and (5), we derive the CDF, PDF, reliability
function, and hazard function of the NEIW distribution. The CDF and PDF of the NEIW distribution are expressed as
follows:
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F(x; α, β , δ ) =

(
1+ e−βx−δ

)α
−1

2α −1
where α > 0, β > 0, δ > 0, x > 0.

f (x; α, β , δ ) =
αβδ

2α −1

(
1+ e−βx−δ

)α−1
e−βx−δ

x−(δ+1) where α > 0, β > 0, δ > 0, x > 0.

The reliability and hazard functions can be presented as:

R(x; α, β , δ ) = 1−F(x) = 1−


(

1+ e−βx−δ
)α

−1

2α −1

 for x > 0,

and

H(x; α, β , δ ) =
αβδ

2α −1

(
1+ e−βx−δ

)α−1
e−βx−δ

x−(δ+1)


2α −

(
1+ e−βx−δ

)α

2α −1


−1

for x > 0.

Figure 1. Possible shapes of PDF and HRF of NEIW

The NEIW distribution exhibits a variety of shapes for its density function, such as increasing, decreasing, unimodal,
and right-skewed forms. Depending on the parameter values, it can display both decreasing and increasing failure rates,
as shown in Figure 1. The quantile function QX (p) and random deviate for the NEIW distribution are given by
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QX (p) =
{
−β
{

log
{
{p(2α −1)+1}1/α −1

}}−1
}1/δ

; 0 < p < 1, (8)

and

x =
{
−β
{

log
{
{u(2α −1)+1}1/α −1

}}−1
}1/δ

; 0 < u < 1. (9)

3.2 The Linear form of NEIW distribution

The Linear form of NEIW distribution The linear form of CDF and PDF of NEIW distribution are given respectively

F(x; α, β , δ ) =
1

2α −1

{
∞

∑
i=0

(
α
i

)
e−iβx−δ −1

}
; x > 0.

and

f (x; α, β , δ ) =
∞

∑
i=0

∆ie−iβx−δ
x−(δ+1); x > 0

where ∆i =
βδ i

2α −1

(
α
i

)
.

4. Statistical properties of NEIW distribution
4.1 Moments

The rth non-central moment, mean, and variance for the NEIW distributions are given respectively as

E [X r] =
∞

∑
i=0

∆i

∞∫
0

xr−δ−1e−iβx−δ
dx =

∞

∑
i=0

∆i

∞∫
0

t−
r
δ +1−1e−iβ tdt; where x−δ = t

=
∞

∑
i=0

∆i

δ−1Γ
(
− r

δ
+1
)

{iβ}−
r
δ +1 =

∞

∑
i=0

∆i

δ−1Γ
(

δ − r
δ

)
{iβ}

δ−r
δ

; δ > r. (10)

Now, the first four raw moments are given by:
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E[X ] =
∞

∑
i=0

∆i

δ−1Γ
(

δ −1
δ

)
{iβ}

δ−1
δ

; δ > 1,

E[X2] =
∞

∑
i=0

∆i

δ−1Γ
(

δ −2
δ

)
{iβ}

δ−2
δ

; δ > 2,

E[X3] =
∞

∑
i=0

∆i

δ−1Γ
(

δ −3
δ

)
{iβ}

δ−3
δ

; δ > 3,

E[X4] =
∞

∑
i=0

∆i

δ−1Γ
(

δ −4
δ

)
{iβ}

δ−4
δ

; δ > 4.

The first four central moments are:

µ1 = 0,

µ2 = E
[
X2]− [E (X)]2,

µ3 = E
[
X3]−3E [X ]E

[
X2]+2(E [X ])3,

µ4 = E
[
X4]−4E [X ]E

[
X3]+6(E [X ])2E

[
X2]−3(E [X ])4.

Table 1 presents the mean, variance, the third and fourth moments for various combinations of parameter values.

4.2 Moment generating function (MGF)

The moment-generating function MX (t) for the NEIW distributions is given by

MX (t) =
∞

∑
i=0

∞

∑
k=0

∆i
tk

k!

∫ ∞

0
xr−(δ+1)e−iβx−δ

dx

=
∞

∑
i=0

∞

∑
k=0

∆i
tk

k!

∫ ∞

0
t−

r
δ +1−1e−iβ t dt
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=
∞

∑
i=0

∞

∑
k=0

∆i
tk

k!

δ−1Γ
(
− r

δ
+1
)

(iβ )−
r
δ +1

=
∞

∑
i=0

∞

∑
k=0

∆i
tk

k!

δ−1Γ
(

δ − r
δ

)
(iβ )

δ−r
δ

, δ > r.

Table 1. Computed mean, variance, third and fourth moments for various values of α , β , and δ

No. α β δ Mean Variance µ3 µ4

1 0.25 0.5 4.2 0.9759 0.1350 0.2295 4.4154
2 0.25 0.5 2.75 1.0120 0.5820 -5.5585 18.8247
3 0.25 0.5 2.5 1.0310 0.9606 -4.8369 15.2444
4 0.25 1.2 4.2 1.2021 0.2048 0.4289 10.1643
5 0.25 1.2 2.75 1.3913 1.1001 -14.4455 67.2611
6 0.25 1.2 2.5 1.4633 1.9350 -13.8298 61.8656
7 0.25 1.75 4.2 1.3151 0.2451 0.5616 14.5590
8 0.25 1.75 2.75 1.5960 1.4474 -21.8014 116.4396
9 0.25 1.75 2.5 1.7017 2.6168 -21.7493 113.1410
10 0.5 0.5 4.2 0.9948 0.1490 0.2846 5.8319
11 0.5 0.5 2.75 1.0445 0.6875 -7.5971 25.4120
12 0.5 0.5 2.5 1.0686 1.1638 -6.8025 19.5649
13 0.5 1.2 4.2 1.2254 0.2261 0.5318 13.4250
14 0.5 1.2 2.75 1.4360 1.2995 -19.7436 90.7973
15 0.5 1.2 2.5 1.5167 2.3446 -19.4501 79.3993
16 0.5 1.75 4.2 1.3405 0.2706 0.6963 19.2295
17 0.5 1.75 2.75 1.6472 1.7098 -29.7974 157.1847
18 0.5 1.75 2.5 1.7638 3.1706 -30.5878 145.2069
19 1.2 0.5 4.2 1.0380 0.1712 0.3467 7.4933
20 1.2 0.5 2.75 1.1175 0.8327 -10.0552 35.7012
21 1.2 0.5 2.5 1.1522 1.4336 -9.2226 27.9517
22 1.2 1.2 4.2 1.2786 0.2597 0.6479 17.2497
23 1.2 1.2 2.75 1.5364 1.5741 -26.1317 127.5608
24 1.2 1.2 2.5 1.6354 2.8880 -26.3698 113.4347
25 1.2 1.75 4.2 1.3987 0.3109 0.8483 24.7079
26 1.2 1.75 2.75 1.7624 2.0711 -39.4385 220.8281
27 1.2 1.75 2.5 1.9018 3.9056 -41.4700 207.4516

5. Statistical inference
5.1 Method of estimation

Let Xi ∼ NEIW (x; α, β , δ ), i = 1, ..., n, then their log density and log-likelihood function are respectively given by
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logL = log
(

αβδ
2α −1

)
+(α −1) log(1+ e−βx−δ

)− (δ +1) log(x)−βx−δ ,

and

ℓ(x; α, β , δ ) = n log
(

αβδ
2α −1

)
+(α −1)

n

∑
i=1

log(1+ e−βx−δ
i )− (δ +1)

n

∑
i=1

log(xi)−β
n

∑
i=1

x−δ
i . (11)

Differentiating equation (11) with respect to α , β , and δ , taken equal to zero, we have obtained
∂ℓ
∂α

= 0,
∂ℓ
∂β

= 0

and
∂ℓ
∂δ

= 0. To solve these non-linear equations for α , β , and δ we used the maxLik package [17] in R-software [18].

5.2 Confidence interval for large sample
Under certain conditions, the first derivative of the logarithm of the likelihood function with respect to parameter θ

viz.,
∂

∂θ
logL, is asymptotically normally distributed with mean zero and variance is given by:

Var
(

∂
∂θ

logL
)
= E

(
∂

∂θ
logL

)2

=−E
(

∂ 2

∂θ 2 logL
)
.

Hence for large n,

Z =

∂
∂θ

logL√
Var

(
∂

∂θ
logL

) ∼ N (0, 1) .

The result allows us to determine a confidence interval for the parameter θ in a large sample. Consequently, for a
large sample, the confidence interval for θ with a confidence level of (1−c)% is derived by transforming the inequalities
into

P(|Z| ≤ τc) = 1− c

where τc is given by

1√
2π

τc∫
−τc

exp
(
−t2/2

)
dt = 1− c.

Thus Confidence interval for α , β , and δ are given by α̂ ±SE (α̂), β̂ ±SE
(

β̂
)
and δ̂ ±SE

(
δ̂
)
at the confidence

coefficient (1− c)%.
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6. Simulation
Using the maxLikR package introduced by [17], we generated samples from the quantile function defined in equation

(8) for various parameter combinations of the NEIW distribution. We then calculated the Maximum Likelihood Estimates
(MLEs) for each sample using the maxLik() function with the BFGS algorithm. This approach allows us to assess
parameter estimation issues such as the sharpness or flatness of the likelihood function, as well as to estimate the bias in
the MLEs, including their size and direction (underestimate or overestimate).

The simulation used sample sizes of 300, 350, 400, 450, 500, 550, 600, 650, and 700, repeated 10,000 times. We
computed the average estimate value, bias, and mean square error (MSE). The initial values of the model parameters are
listed in Table 2. The results are summarized in Tables 3, 4, 5, and 6, which display the bias (Bα , Bβ , Bδ ), MSEs (Mα , Mβ ,
Mδ ), and confidence intervals (CI) for each parameter. Our findings indicate that the MLE method effectively estimates
the parameters α , β , and δ of the proposed model.

Table 2. Initial values taken for simulation study

Table Initial value

Table 3 (α = 1.5, β = 0.5, δ = 0.75)

Table 4 (α = 2.5, β = 1.5, δ = 0.5)

Table 5 (α = 5.5, β = 1.75, δ = 1.5)

Table 6 (α = 3.5, β = 1.25, δ = 0.25)

Table 3. Simulation study of the parameters estimated using MLE

Sample Bα Bβ Bδ Mα Mβ Mδ CIα CIβ CIδ

300 0.2785 0.0052 -0.002 3.3893 0.0248 0.0031 (0.00 7.1352) (0.1783 0.7664) (0.6466 0.8559)
350 0.1987 0.0087 -0.0023 2.6709 0.0216 0.0028 (0.00 5.0333) (0.2250 0.7625) (0.6500 0.8475)
400 0.2145 0.0034 -5.0E-04 2.6695 0.0210 0.0026 (0.00 5.0585) (0.2265 0.7490) (0.6580 0.8422)
450 0.1722 0.0076 -0.0023 2.4724 0.0196 0.0026 (0.00 4.8287) (0.2384 0.7516) (0.6564 0.8449)
500 0.1512 0.0066 -0.0013 2.0242 0.0184 0.0023 (0.00 4.596) (0.2479 0.7542) (0.6591 0.8388)
550 0.1863 0.0038 -4.0E-04 2.4539 0.0186 0.0022 (0.00 4.7345) (0.2478 0.7418) (0.6642 0.8355)
600 0.1682 0.0022 2.0E-04 1.8645 0.0159 0.002 (0.00 4.1002) (0.2710 0.7366) (0.6651 0.8334)
650 0.1186 0.0069 -0.0018 1.705 0.0165 0.0021 (0.00 4.2325) (0.2682 0.7391) (0.6655 0.8348)
700 0.1188 0.0031 -9.0E-04 1.4507 0.0139 0.0018 (0.00 3.6426) (0.3051 0.7321) (0.6677 0.8253)

Table 4. Simulation study of the parameters estimated using MLE

Sample Bα Bβ Bδ Mα Mβ Mδ CIα CIβ CIδ

300 0.1942 0.0323 -0.0051 4.1715 0.1973 0.0012 (0.0000 8.787) (0.5390 2.3583) (0.4235 0.5565)
350 0.2305 0.0192 -0.005 4.1753 0.1923 0.0011 (0.0000 8.8032) (0.5508 2.3466) (0.4240 0.5541)
400 0.2093 0.0078 -0.0042 3.2446 0.1699 9.0E-04 (0.0000 7.6299) (0.6235 2.3093) (0.4335 0.5538)
450 0.1667 0.0193 -0.0052 3.4043 0.162 9.0E-04 (0.0000 7.4655) (0.6032 2.3050) (0.4309 0.5486)
500 0.1178 0.0213 -0.0041 2.5324 0.1386 8.0E-04 (9.0E-04 6.4729) (0.7613 2.2847) (0.4369 0.5470)
550 0.1211 0.0164 -0.0041 2.4403 0.1294 7.0E-04 (0.0064 5.8389) (0.8090 2.2413) (0.4368 0.5414)
600 0.1265 0.0168 -0.0036 2.4301 0.1212 7.0E-04 (0.1465 5.9763) (0.8108 2.2479) (0.4389 0.5397)
650 0.1774 7.0E-04 -0.0029 2.4802 0.1127 6.0E-04 (0.1779 5.8845) (0.8227 2.1821) (0.4381 0.5385)
700 0.1739 0.0062 -0.0034 2.6574 0.1151 6.0E-04 (0.4146 6.4350) (0.7504 2.1480) (0.4399 0.5368)
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Table 5. Simulation study of the parameters estimated using MLE

Sample Bα Bβ Bδ Mα Mβ Mδ CIα CIβ CIδ

300 -0.2355 0.3142 -0.0198 9.8327 0.7454 0.0064 (1.0516 12.4549) (0.7034 3.7979) (1.3167 1.6216)

350 -0.2178 0.3155 -0.0170 9.4709 0.7478 0.0053 (1.0307 12.4795) (0.7018 3.9130) (1.3341 1.6146)

400 -0.3193 0.3066 -0.0150 6.9963 0.6561 0.0047 (1.3797 11.9078) (0.7190 3.6473) (1.3564 1.6174)

450 -0.0685 0.2298 -0.0161 6.794 0.5892 0.0041 (1.5539 11.6766) (0.7637 3.6052) (1.3554 1.5985)

500 -0.0365 0.2053 -0.0150 6.6153 0.5549 0.0039 (1.6539 11.4443) (0.7820 3.5652) (1.3644 1.5986)

550 -0.1129 0.2253 -0.0164 6.2770 0.5531 0.0035 (1.6103 11.8952) (0.7226 3.4749) (1.3695 1.5915)

600 -0.0473 0.1805 -0.0126 5.5848 0.4597 0.0032 (2.0034 11.0979) (0.8255 3.2740) (1.3739 1.5890)

650 -0.1453 0.2028 -0.0131 5.0647 0.4665 0.0030 (1.8341 11.287) (0.7890 3.3238) (1.3809 1.5855)

700 -0.0442 0.1687 -0.0122 4.9512 0.4184 0.0026 (2.1161 10.8385) (0.8074 3.2140) (1.3898 1.5832)

Table 6. Simulation study of the parameters estimated using MLE

Sample Bα Bβ Bδ Mα Mβ Mδ CIα CIβ CIδ

300 -0.0078 0.1025 -0.005 4.8588 0.2139 3.0E-04 (4.0E-04 9.4469) (0.4863 2.2654) (0.2111 0.2741)

350 0.0385 0.0717 -0.0031 3.7313 0.1746 2.0E-04 (0.1793 8.6547) (0.5434 2.2371) (0.2125 0.2714)

400 0.1577 0.0507 -0.0030 4.0553 0.1691 2.0E-04 (0.1009 9.4105) (0.5098 2.2215) (0.2147 0.2706)

450 0.1394 0.0461 -0.0028 3.7846 0.1496 2.0E-04 (0.7877 9.1854) (0.5206 2.0792) (0.2199 0.2692)

500 0.0852 0.0455 -0.0022 3.1249 0.1343 1.0E-04 (0.6498 8.3738) (0.5613 2.0867) (0.2203 0.2681)

550 0.1613 0.0267 -0.0020 2.9974 0.1196 1.0E-04 (1.0656 8.2249) (0.5752 1.9647) (0.2245 0.2686)

600 0.1489 0.0344 -0.0024 3.3097 0.1289 1.0E-04 (0.9011 8.3526) (0.5559 2.0331) (0.2221 0.2670)

650 0.1200 0.0383 -0.0017 3.0897 0.1246 1.0E-04 (1.0449 8.7353) (0.5362 2.0008) (0.2257 0.2675)

700 0.0597 0.0499 -0.0020 2.9550 0.1213 1.0E-04 (0.9875 8.4402) (0.5509 1.9903) (0.2248 0.2663)

7. Application
7.1 Data set

The real data set, sourced from Gross and Clark [19], provides the relief times of 20 patients receiving an analgesic.
The data are as follows: “1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.0”.

7.2 Model analysis

To analyze the data set, we calculated several well-known goodness-of-fit statistics and evaluated the fitted models
using the Akaike information criterion (AIC), log-likelihood value (-2logL), Hannan-Quinn information criterion (HQIC),
Kolmogorov-Smirnov (KS), Anderson-Darling (AD), with p-values, and Cramér-von Mises (CVM). All computations
were performed using R software. For comparison, we selected several models: InverseWeibull (IW), KM-transformation
of IW (KMIW) [20], Exponentiated Exponential IW (EEIW) [21], LindleyWeibull (LW) [22], and ExponentiatedWeibull
(EW) [2].

Table 7 presents the estimated parameter values and their associated standard errors (SE) for the models under study,
obtained using theMLEmethod for the relief time data. Table 8 displays the model selection and goodness-of-fit statistics,
including log-likelihood, HQIC, AIC, KS, AD, and CVM, for the data set. It was observed that the suggested model had
the lowest statistics compared to IW, KMIW, EEIW, LW, and EW, indicating that NEIW is more flexible and provides a
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better fit. Graphical illustrations of the fitted models are shown in Figure 2, along with probability-probability plots for
all models under study (See Figure 3). These figures confirm that the NEIW model performs well compared to the other
candidate models.

Table 7. Estimated parameters using MLE method along with SE

Model Parameter SE Parameter SE Parameter SE Parameter SE

NEIW 2.3871 5.4224 5.1682 4.2398 4.3152 1.1347 - -

IW 4.0175 0.7060 6.0224 2.0083 - - - -

KMIW 3.5562 0.6375 1.6907 0.1093 - - - -

EEIW 1.6530 5.3178 3.4486 3.9779 1.2227 1.9090 3.9199 14.5563

LW 9.2825 21.6417 2.0201 0.3020 0.0053 0.0241 - -

EW 138.1805 14.7326 0.7415 0.1190 3.4746 0.2403 - -

Table 8. Model fit and selection statistics

Model -2logL AIC HQIC KS p (KS) CVM p (CVM) AD p (AD)

NEIW 30.7559 36.7559 37.3391 0.0924 0.9956 0.0249 0.9914 0.1493 0.9988

IW 30.8174 34.8174 35.2062 0.1020 0.9854 0.0266 0.9880 0.1545 0.9984

KMIW 30.8867 34.8867 35.2754 1.0000 0.0000 0.1272 0.4705 2.6801 0.0405

EEIW 30.8034 38.8034 39.5809 0.0974 0.9914 0.0257 0.9899 0.1512 0.9986

LW 38.6683 44.6683 45.2514 0.1811 0.5282 0.1456 0.4060 0.8604 0.4380

EW 31.7197 37.7197 38.3028 0.1243 0.9168 0.0396 0.9395 0.2396 0.9756

Figure 2. PDF and CDF fit of the models under study
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Figure 3. PP plot of the models under study

8. Bayesian analysis
Bayesian inference encompasses the procedure of adjusting a probabilitymodel to a provided dataset and summarizing

the result using a probability distribution on the model parameters, referred to as the posterior distribution. In this
section, we have used the dataset presented in the application section. From a Bayesian viewpoint, both the observed
variables (data) and the parameters are treated as stochastic variables [23]. In this study, we have taken the gamma prior
along with the hyper-parameter as α ∼ gamma(10, 100), β ∼ gamma(790, 800) and δ ∼ gamma(880, 900). Hyper-
parameters were selected based on prior and posterior density plots (see Figure 4). We have used the STAN software a
probabilistic programming language for Bayesian analysis. The application of STAN and the Hamiltonian Monte Carlo
(HMC) algorithm has provided valuable insights into the posterior distribution of model parameters in our study [13].
10,000 samples were generated for each chain (A total of 40,000 for all four chains) using the HMC algorithm and No-U-
Turn sampling (NUTS) [24]. By default, STAN uses 20,000 samples as warm-up samples and 20,000 samples were used
in this study.

Assuming observed data x = (x1, ..., xn) and a parameter ψ , the connection between x and the prior distribution h(ψ)

is expressed by means of the likelihood function L(x|ψ), given as:

L(x|α, β , δ ) =
(

αβδ
2α −1

)n n

∏
i=1

(1+ e−βx−δ
i )α−1e−βx−δ

i x−(δ+1)
i .
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The joint distribution of x=(x1, ..., xn) andψ =(α, β , δ ) can therefore be represented as the product of the likelihood
and the prior distribution.

g(x; α, β , δ ) =

{(
αβδ

2α −1

)n n

∏
i=1

(1+ e−βx−δ
i )α−1e−βx−δ

i x−(δ+1)
i

}

×
{

ab

Γ(b)
e−aα αb−1

}{
cd

Γ(d)
e−cβ β d−1

}{
lm

Γ(m)
e−lδ δ m−1

}
.

By applying Bayes’ Theorem, one can update the distribution of ψ = (α, β , δ ) based on the information provided
by the sample x = (x1, ..., xn). This yields the posterior distribution of ψ = (α, β , δ ), given by:

Posterior ∝ likelihood×prior.

f (α, β , δ |x) ∝



{(
αβδ

2α −1

)n n

∏
i=1

(1+ e−βx−δ
i )α−1e−βx−δ

i x−(δ+1)
i

}

×
{

ab

Γ(b)
e−aα αb−1

}{
cd

Γ(d)
e−cβ β d−1

}{
lm

Γ(m)
e−lδ δ m−1

}

.

which can be interpreted as the proportional relationship between the posterior distribution and the product of the likelihood
and the prior.

The full conditional density of parameter α is the term containing α in posterior distribution f (α, β , δ |x) is given
by:

f1(α|x, β , δ ) ∝
(

1
2α −1

)n

e−aα αb+n−1

{
n

∏
i=1

(1+ e−βx−δ
i )α−1e−βx−δ

i x−(δ+1)
i

}
.

The full conditional density of parameter β is the term containing β in posterior distribution f (α, β , δ |x) is given
by:

f2(β |x, α, δ ) ∝ e−cβ β d+n−1

{
n

∏
i=1

(1+ e−βx−δ
i )α−1e−βx−δ

i x−(δ+1)
i

}
.

The full conditional density of parameter δ is the term containing β in posterior distribution f (α, β , δ |x) is given
by:

f3(δ |x, α, β ) ∝ e−lδ δ m+n−1

{
n

∏
i=1

(1+ e−βx−δ
i )α−1e−βx−δ

i x−(δ+1)
i

}
.
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Given the posterior’s complexity, it doesn’t seem possible to draw any near-form conclusions. To facilitate sample-
based on inferences, we propose usingMCMCmethods to generate samples from the posterior distribution. An effectively
constructed Markov chain in Monte Carlo is employed to produce samples; over time, this chain converges to the target
distribution, known as the stationary or equilibrium distribution, which corresponds to our posterior distribution.

Figure 4. Prior and posterior density plots of α , β , and δ

8.1 Sampling information
The results presented in Table 9 were obtained through the application of the STAN probabilistic programming

language to our dataset. STAN employs the HMC algorithm, a powerful method for Bayesian inference, to estimate the
posterior distributions of model parameters [15, 16, 25].

• Acceptance Statistics: The acceptance statistic, representing the proportion of proposed samples that are accepted
during the Markov chain Monte Carlo (MCMC) sampling process, indicates the efficiency of the sampler in exploring the
parameter space. A high acceptance rate suggests that the sampler is effectively traversing the space of possible parameter
values.

• Step Size: The step size parameter regulates the magnitude of the proposed changes to the parameter values during
each iteration of the MCMC algorithm. An optimal step size as observed in Table 9 ensures efficient exploration of the
parameter space while minimizing the autocorrelation between samples (See Figure 5).

• Tree Depth and Leapfrog Steps: In the context of STAN’s implementation of the HMC algorithm, the tree depth
and the number of leapfrog steps are related to the algorithm’s ability to construct trajectories through the parameter
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space. A deeper tree and a larger number of leapfrog steps allow for more complex trajectories, potentially improving the
exploration of the posterior distribution.

• Divergent Transitions: Divergent transitions indicate no potential issues with the sampler’s performance, such as
inadequate step size or insufficient adaptation of other tuning parameters.

• Energy: The energy value, derived from the Hamiltonian function, serves as a diagnostic measure of the overall
goodness-of-fit of the model to the data. Deviations from expected energy levels may suggest problems with model
convergence or discrepancies between the model and the observed data.

Figure 5. Auto-correlation plot for all chains for the parameters α , β , and δ

Overall, the results demonstrate the favorable performance of the STAN sampler in exploring the posterior
distribution ofmodel parameters. The high acceptance rate and absence of divergent transitions indicate efficient sampling,
while reasonable values of step size, tree depth, and leapfrog steps suggest effective exploration of the parameter space.
The consistency of energy levels across chains further supports the validity of the sampling process. These diagnostic
tools assess the efficiency and convergence properties of the MCMC sampler [26]. The well-mixing trace plots (See
Figure 6) for model parameters α , β , and δ demonstrate favorable convergence and low autocorrelation (See Figure 5)
implies that the HMC algorithm is effectively navigating efficiently exploring the posterior landscape, leading to faster
resulting in more rapid convergence. These characteristics indicate that the HMC sampling process has successfully
captured the posterior distribution of the model parameters, providing reliable estimates for inference and interpretation.
The absence of systematic patterns or trends in the trace plots further supports the validity of the sampling procedure,
enhancing confidence in the reliability of the statistical analyses and conclusions drawn from the study.
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Table 9. Sampling information statistics using HMC and NUTS

accept_stat stepsize treedepth n_leapfrog divergent energy

All chains 0.9850 0.3486 3.1739 9.9256 0.0000 1,772.5561

Chain 1 0.9824 0.3771 3.0664 8.9564 0.0000 1,772.5262

Chain 2 0.9845 0.3621 3.1254 9.6836 0.0000 1,772.5618

Chain 3 0.9920 0.2588 3.4992 12.6024 0.0000 1,772.5831

Chain 4 0.9810 0.3963 3.0046 8.4600 0.0000 1,772.5532

Figure 6. Trace plots for the model parameters α , β , and δ

8.2 Posterior analysis
The posterior summary statistics presented in Table 10 provide a comprehensive characterization of the posterior

distribution of model parameters α , β , and δ . These statistics offer valuable insights into the central tendency, variability,
and uncertainty associated with each parameter, facilitating robust inference and interpretation of the model. The high
effective sample sizes and close-to-unity R̂ values indicate reliable estimation and convergence of the MCMC sampling
process, enhancing confidence in the validity of the statistical analyses and conclusions drawn from the study. We have
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also constructed the highest posterior density (HPD) and credible interval (CI) for a 95% confidence level displayed in
Table 11.

Table 10. Posterior summary statistics

Parameter mean se_mean sd 2.50% 50% 97.50% n_eff Rhat

alpha 0.1019 0.0003 0.0317 0.0492 0.0986 0.1735 15,454 1.0000

beta 1.0030 0.0003 0.0355 0.9334 1.0028 1.0740 15,185 1.0003

delta 0.9917 0.0003 0.0325 0.9290 0.9914 1.0571 15,300 1.0004

lp__ -1,771.0700 0.0100 1.2200 -1,774.19 -1,770.75 -1,769.68 8,113 1.0002

Table 11. 95% HPD and CI for the model parameters

Parameter HPD CI

α (0.0446 0.1652) (0.0492 0.1735)

β (0.9351 1.0755) (0.9334 1.0740)

δ (0.9288 1.0565) (0.9290 1.0571)

lp__ (-1,773.434 -1,769.582) (-1,774.19 -1,770.75)

The ergodic mean plots and histograms of model parameters α , β , and δ demonstrate favorable characteristics of
the posterior distribution obtained from MCMC sampling. The convergence of the ergodic mean plots to their respective
means indicates successful convergence of the Markov chains (See Figure 7), while the normal-shaped histograms (See
Figure 8) suggest that the posterior distributions are symmetric and bell-shaped. These findings provide evidence of
reliable estimation and convergence of theMCMC sampling process, enhancing confidence in the validity of the statistical
analyses and conclusions drawn from the study.
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Figure 7. Ergodic mean plots for α , β , and δ

Figure 8. Histograms of posterior distributions for parameters α , β , and δ

Volume 6 Issue 1|2025| 845 Contemporary Mathematics



8.3 Posterior predictive check (PPC)
PPCs are an essential part of Bayesian model validation, allowing us to assess the adequacy of our model in capturing

the observed data. By comparing the observed data to simulated data generated from the posterior predictive distribution,
PPCs help us evaluate whether our model adequately represents the underlying process that generated the data.

Figure 9. Box plots for the observed data y and predicted data yrep

Figure 10. Fitted CDF and Histograms of error of posterior prediction

The box plots presented in Figure 9 provide a visual assessment of the fit between the observed and predicted data
obtained from our Bayesian model. By comparing these distributions, we can evaluate the model’s ability to accurately
represent the observed data and identify potential areas for refinement or further investigation. Besides the PPC box plots,
Figure 10 also displays the CDF and error histograms of the posterior prediction. Overall, PPCs offer valuable insights
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into the validity and robustness of our Bayesian modeling approach, aiding in the interpretation and confidence in the
results obtained.

9. Conclusion
This research has presented and thoroughly examined the characteristics of the “NewExponentiated InverseWeibull”

(NEIW) distribution. It offers diverse applications in reliability engineering, survival analysis, and various other domains.
Our research entailed a comprehensive analysis of several statistical characteristics, conducted simulation studies on
maximum likelihood estimators (MLEs), and performed estimation and assessment of model parameters through real-
world data sets.

Key Findings and Contributions:
• Model Construction: We have proposed the NEIW distribution as a flexible and robust alternative to existing

probability distributions, offering a more comprehensive framework for modeling complex data sets with asymmetric and
heavy-tailed characteristics.

• Properties and Simulation Studies: Through rigorous theoretical analysis and simulation studies, we have elucidated
several important properties of the NEIW distribution, including moments, hazard function behavior, and reliability
measures. Additionally, our simulation studies have provided valuable insights into the performance of MLEs under
different scenarios, highlighting the efficacy and reliability of parameter estimation techniques.

• Empirical Analysis: Utilizing real-world data sets, we have applied both classical and Bayesian approaches to
estimate and analyze the parameters of the NEIW distribution. Our empirical analysis has demonstrated the applicability
of the NEIWmodel in capturing the underlying data structure and extractingmeaningful insights from diverse data sources.
To augment the versatility of data analysis for practitioners, the Bayesian parameter estimation approach is introduced.
For Bayesian analysis, we have used the Bayesian analysis software STAN which uses the HMC algorithm under NUTS.

Implications and Future Directions: The findings of this research have significant implications for practitioners
and researchers in various fields, offering a powerful tool for analyzing and interpreting data with complex distributional
characteristics. Future research endeavors may focus on further exploring the theoretical properties of the NEIW
distribution, refining estimation techniques, and extending its applicability to new domains and applications.

In conclusion, our study contributes to the advancement of statistical modeling and analysis by introducing the
NEIW distribution and providing a comprehensive framework for its utilization in practice. We anticipate that the insights
gained from this research will stimulate further investigations and foster continued innovation in the field of probability
distributions and statistical modeling.
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