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Abstract: This manuscript is designed with an extensive aim to investigate solitary waves in shallow water with
surface tension. The governing model is the perturbed sixth-order Boussinesq equation, which incorporates higher-order
dispersion effects and perturbative terms that influence wave dynamics. The G′/G-expansion procedure is employed
to systematically retrieve exact solitary wave solutions, providing a diverse set of wave structures that depend on the
interplay between dispersion, nonlinearity, and perturbative effects. The study further establishes the necessary parameter
constraints for the existence of such solitary waves, ensuring the physical viability of the obtained solutions. Additionally,
a detailed analysis of the influence of perturbation terms on the soliton characteristics is provided, revealing novel
behaviors and stability conditions that were previously unexplored. These findings contribute to a deeper understanding
of wave propagation in shallow water systems, with potential applications in engineering and fluid dynamics.
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1. Introduction
The dynamical implications of nonlinear partial differential equations (NLPDEs) are very well conceived from

diverse scientific fields, such as aeronautics, mechanics, nonlinear optics, oceanography, and plasma physics. Their
widespread influence has been seen in each and every discipline of research and innovation. The rapidly growing interest
among scientific community is to decipher exact solutions to nonlinear partial differential equations (NLPDEs), as they
are essential to comprehending both their mathematical and real-world applications. Each of these equations, which have
important practical ramifications, is derived from several mathematical and physical models.
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Researchers in mathematical physics and engineering have been fascinated by the study of nonlinear phenomena
in recent years, as they have shown intriguing properties with a broad range of applications. As a focal topic of study,
NLPDEs provide important insights into the intricacies of several physical phenomena. These formulas are very helpful in
explaining complex processes in a variety of fields, including atmospheric science, fluid mechanics, plasma waves, optical
fiber communications, and soliton theory. The investigation of NLPDEs provides pathways for the comprehension and
control of many systems, opening doors for creative responses to pressing problems in a variety of fields. Since there
are no standrad basic techniques that can be used to evaluate all of these NLPDEs equations, in most of instances, these
equations are difficult to solve analytically, leading to substantial individual analysis of each of these equations. The
two primary categories of obtaining solutions to NLPDEs are numerical or analytical. In recent years, there have seen
significant progress, leading to the development of a number of reliable and efficient mathematical procedures for getting
exact solutions for nonlinear equations. These mathematical procedures include bilinear method [1, 2], inverse scattering
transformation (IST) [3, 4], symmetry reductions [5, 6], variable separation approaches [7, 8], Bäcklund and Darboux
transformations [9, 10], G′/G-expansion method [11], the tanh method [12], the Jacobi elliptic function method [13], the
Exp-function method [14, 15], the homogeneous balance method [16] etc.

The process of the shallow-water wave (SWW) has been described by the basic Boussinessq equation (BE) [17].
This equation takes into account a number of waves and shallow water effects, including diffraction, refraction, shoaling,
weak nonlinearity, and shoaling, playing significant role in fluid dynamics along with many other spheres of physics, such
as one-dimensional nonlinear lattice waves, vibrations in a nonlinear string, ion sound waves in plasma, and propagation
of long waves in shallow water [18–23].

Even though this situation has been the subject of countless models, but none of them have taken surface tension
into account. Boussinesq equation (BE) is one of the models that also explains the passage of waves in shallow water.
A few decades ago, Daripa analyzed even though this situation has been the subject of countless models, none of them
have taken surface tension into account. The Boussinesq equation (BE) is one of the models that also explains the passage
of waves in shallow water. A few decades ago, Daripa analyzed BE again, including the surface tension effect. leading
to formation of the sixth-order BE (6BE) using first principles [24]. It has been demonstrated that solutions to the 6BE
exist and are unique [25–28]. Additionally, without using conserved values, conservation laws for this model have been
examined [29].

The 6BE in its dimensionless form has been perused as follows:

qtt − k2qxx + c
(
q2n)

xx +a1qxxxx +a2qxxtt +b1qxxxxxx +b2qxxxxtt = 0. (1)

The independent variables in this case are the spatial and temporal variables, denoted by x and t respectively and
wave form is indicated by the dependent variable q(x, t). The wave operator is represented by the first two terms, along
with k as wave number. The parameter n, represents the generic power law parameter, providing a more generalized flavor
to considered model, c signifies nonlinearity coefficient. Several many times BE has been investigated with very specific
parameter n = 1. The coefficients of the fourth- and sixth-order dispersion terms are thus shown by the coefficients a j

and b j for j = 1, 2. The coefficients of b j is originated from the surface tension effect.
The 6BE Model with perturbation terms has been portrayed as:

qtt − k2qxx + c
(
q2n)

xx +a1qxxxx +a2qxxtt +b1qxxxxxx +b2qxxxxtt

= θqxqxx +δqmqx +Λqqxxx +νqqxqxx +ξ qxqxxx +ψqxxxxx +κqqxxxxx. (2)

Volume 6 Issue 2|2025| 1757 Contemporary Mathematics



Here, the higher spatial dispersion is represented by the coefficient ofψ , whilst the higher order non-linear dispersion
is represented by the coefficient of δ and m is considered as a positive integer. The other remaining coefficients are found
in the context Whitham hierarchy [24–30].

Several characteristics of the 6BE with and without perturbation terms are covered in this current work. Yet, because
to its intricate structure, it is quite challenging to analyze this model. With the aid of the ansatz method and the G′/G-
expansion method, this model has been studied with a generic appeal for deriving its analytic solutions, considering
some particular values of m, n and hence resulting into diverse variety of analytic solutions and then complemented by a
thorough brief discussion in concluding remarks section.

2. Governing model
The 6BE in its dimensionless form is written as

qtt − k2qxx + c(q2n)xx +a1qxxxx +a2qxxtt +b1qxxxxxx +b2qxxxxtt = 0, (3)

with q = q(x, t).
Utilizing τ = −Vt + x, along with q(x, t) = F(τ), we have recovered the following ordinary differential equation

from the equation (3):

(V 2b2 +b1)F ′′′′′′+(a2V 2 +a1)F ′′′′+ c(4F(τ)2n−2n2 −2F(τ)2n−2n)(F ′)
2

+2ncF(τ)2n−1F ′′+(−k2 +V 2)F ′′ = 0. (4)

Integrating equation (4)with respect to τ twice, obtained ordinary differential equation (ODE) is written as follows:

(V 2b2 +b1)F ′′′′+(a2V 2 +a1)F ′′+ cF(τ)2n +(−k2 +V 2)F = 0. (5)

Next, equation (5) has been examined with the help of G′/G-expansion method for n = 1, n = 3/2, n = 5/2 to
establish the new analytic solutions as in subsequent sections. In this context, it is worth mentioning that an attempt
to recover the complete spectrum of solutions by Lie symmetry analysis was made in 2023. However the research-
incapacitated author, Bansal, failed to integrate it [29]. The current paper successfully recovers this full spectrum of
solutions.

2.1 n = 1
Firstly, we consider n = 1 for (5) and then equation (5) is rewritten as follows:

(V 2b2 +b1)F ′′′′+(a2V 2 +a1)F ′′+ cF(τ)2 +(−k2 +V 2)F = 0. (6)

Homogeneous balance among highest order linear and most nonlinear derivative containing terms in equation (6)
gives m = 4 and hence generate following solution structure:
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F(τ) = A0 +A1

(
G′(τ)
G(τ)

)
+A2

(
G′(τ)
G(τ)

)2

+A3

(
G′(τ)
G(τ)

)3

+A4

(
G′(τ)
G(τ)

)4

, (7)

with Ai, i = 0, 1, 2, 3, 4 are constants, to be determined in the mean process of calculations and G = G(τ) following the
auxiliary equation

G′′+λG′+µG = 0. (8)

Using (5) in equation (4), along with (8), we have furnished following two cases to exploring variety of solutions of
equation (3):

Case-I

V =±
√
−210cλ 4A4 +1,680cλ 2µ A4 −3,360cµ2A4 +4,900k2

70
,

A0 = µ2A4, A1 = 2λ µ A4, A2 = λ 2A4 +2 µ A4, A3 = 2λ A4,

a1 =
3cλ 4A4a2

70
− 12cλ 2µ A4a2

35
+

24cµ2A4a2

35
+

13cλ 2A4

840
− 13cµ A4

210
− k2a2,

b1 =
3cλ 4A4b2

70
− 12cλ 2µ A4b2

35
+

24cµ2A4b2

35
− k2b2 −

cA4

840
, (9)

equipped with A4 as free parameters.
As a result, with the help of (9) and using (7) along with τ =−Vt + x, F(τ) = q(x, t), we have obtained following

solutions structures for equation (3), by utilizing the solutions of (8):
For the instance λ 2 −4µ > 0

q(x, t) =
A4
(
λ 2 −4 µ

)2
(w1 −w2)

2 (w1 +w2)
2

16
(

w2 sinh
(

1
2
(−Vt + x)

√
λ 2 −4 µ

)
+w1 cosh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

))4 . (10)

In (10), for w1 = 0, w2 ̸= 0, one recovers singular solitary waves while for w2 = 0, w1 ̸= 0, one obtains solitary
waves.

For the instance λ 2 −4µ < 0

q(x, t) =
A4
(
λ 2 −4 µ

)2 (w2
1 +w2

2
)2

16
(

w2 sin
(

1
2
(−Vt + x)

√
−λ 2 +4 µ

)
+w1 cos

(
1
2
(−Vt + x)

√
−λ 2 +4 µ

))4 , (11)
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For the instance λ 2 −4µ = 0

q(x, t) =
A4w1

4

((−Vt + x)w1 +w2)
4 , (12)

along with A4, a2, b2, k, c, w1, w2 as free parameters.
We analyze the solitary wave (10) and shock wave (14) as depicted in Figures 1 and 2. Each figure illustrates the

wave dynamics, with surface plots, contour plots, and 2D plots providing detailed insights into the behavior of the waves.
The parameters are addressed constant across all figures as w1 = 1, µ = 1, λ = 2.1, A4 = 1, c = 1, and k = 1.
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Figure 1. Exploring the features of a solitary wave
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Figure 2. Exploring the features of a shock wave

Case-II

V =

√
210cλ 4A4 −1,680cλ 2µ A4 +3,360cµ2A4 +4,900k2

70
,

A0 =−
A4
(
3λ 4 −24λ 2µ −22 µ2

)
70

,

A1 = 2λ µ A4, A2 = λ 2A4 +2 µ A4, A3 = 2λ A4, A4 = A4,

a1 =−3cλ 4A4a2

70
+

12cλ 2µ A4a2

35
− 24cµ2A4a2

35
+

13cλ 2A4

840
− 13cµ A4

210
− k2a2,

b1 =−3cλ 4A4b2

70
+

12cλ 2µ A4b2

35
− 24cµ2A4b2

35
− k2b2 −

cA4

840
, (13)

equipped with A4 as free parameter.
As a result, with the help of (13) and using (7) along with τ =−Vt + x, F(τ) = q(x, t), we have obtained following

solutions structures for equation (3):
For the instance λ 2 −4µ > 0

q(x, t) = A4ϕ1
4 +2ϕ1

3λ A4 +ϕ1
2 (λ 2A4 +2 µ A4

)
+2ϕ1 λ µ A4 −

A4

70
(
3λ 4 −24λ 2µ −22 µ2), (14)

where
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ϕ1 =

√
λ 2 −4 µ

(
w1 sinh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

)
+w2 cosh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

))
2w2 sinh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

)
+2w1 cosh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

) − λ
2
.

In (14), for w1 = 0, w2 ̸= 0, one recovers singular solitary waves while for w2 = 0, w1 ̸= 0, one obtains shock waves.
For the instance λ 2 −4µ < 0

q(x, t) = A4ϕ2
4 +2ϕ2

3λ A4 +ϕ2
2 (λ 2A4 +2 µ A4

)
+2ϕ2 λ µ A4 −

A4

70
(
3λ 4 −24λ 2µ −22 µ2), (15)

where

ϕ2 =

√
−λ 2 +4 µ

(
−w1 sin

(
1
2
(−Vt + x)

√
−λ 2 +4 µ

)
+w2 cos

(
1
2
(−Vt + x)

√
−λ 2 +4 µ

))
2w2 sin

(
1
2
(−Vt + x)

√
−λ 2 +4 µ

)
+2w1 cos

(
1
2
(−Vt + x)

√
−λ 2 +4 µ

) − λ
2
.

For the instance λ 2 −4µ = 0

q(x, t) =
A4w1

4

((−Vt + x)w1 +w2)
4 , (16)

along with A4, a2, b2, k, c, w1, w2 as free parameters.

2.2 n = 3/2

Here, we consider n =
3
2
for (3) and then reduced ODE is rewritten as follows:

(V 2b2 +b1)F ′′′′+(a2V 2 +a1)F ′′+ cF(τ)3 +(−k2 +V 2)F = 0. (17)

Homogeneous balance among highest order linear and most nonlinear derivative containing terms in equation (17)
gives m = 2 and hence generate following solution structure:

F(τ) = A0 +A1

(
G′(τ)
G(τ)

)
+A2

(
G′(τ)
G(τ)

)2

, (18)

with Ai, i = 0, 1, 2 are constants, to be determined in the mean process of calculations and G(τ) following the auxiliary
equation (8). Using (18) in equation (17), along with (8), we have furnished following two cases to exploring variety of
solutions of equation (3):
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Case-I

c =− 4(V 2 − k2)

(λ 2 −4 µ)A1
2 ,

a1 =−V 2λ 2a2 −4V 2µ a2 −2V 2 +2k2

λ 2 −4 µ
,

A0 =
1
2

λ A1, A2 = 0, b1 =−V 2b2, (19)

equipped with A1, V, a2, b2, k as free parameters.
As a result, with the help of (19) and using (18) along with τ =−Vt +x, F(τ) = q(x, t), we have obtained following

solutions structures for equation (3):
For the instance λ 2 −4µ > 0

q(x, t) =
1
2

A1
√

λ 2 −4 µ
(

w1 sinh
(

1
2
(−Vt + x)

√
λ 2 −4 µ

)
+w2 cosh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

))
w2 sinh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

)
+w1 cosh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

) . (20)

In (20), for w1 = 0, w2 ̸= 0, one recovers singular solitary waves while for w2 = 0, w1 ̸= 0, one obtains shock waves.
For the instance λ 2 −4µ < 0

q(x, t) =−1
2

A1
√
−λ 2 +4 µ

(
w1 sin

(
1
2
(x−Vt)

√
−λ 2 +4 µ

)
−w2 cos

(
1
2
(x−Vt)

√
−λ 2 +4 µ

))
w2 sin

(
1
2
(x−Vt)

√
−λ 2 +4 µ

)
+w1 cos

(
1
2
(x−Vt)

√
−λ 2 +4 µ

) , (21)

with w1, w2 as arbitrary parameters.
Case-II

c =− 30(V 2 − k2)

A2
2 (λ 4 −8λ 2µ +16 µ2)

,

A0 = µ A2, A1 = λ A2,

a1 =− 4V 2λ 2a2 −16V 2µ a2 +5V 2 −5k2

4(λ 2 −4 µ)
,

b2 =
−4λ 4b1 +32λ 2µ b1 −64 µ2b1 +V 2 − k2

4V 2 (λ 4 −8λ 2µ +16 µ2)
, (22)
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equipped with V, k, A2, a2, b1 as free parameters.
As a result, with the help of (22) and using (18) along with τ =−Vt +x, F(τ) = q(x, t), we have obtained following

solutions structures for equation (3):
For the instance λ 2 −4µ > 0

q(x, t) =−1
4

A2
(
λ 2 −4 µ

)(
w1

2 −w2
2
)(

w2 sinh
(

1
2
(x−Vt)

√
λ 2 −4 µ

)
+w1 cosh

(
1
2
(x−Vt)

√
λ 2 −4 µ

))2 . (23)

In (23), for w1 = 0, w2 ̸= 0, one recovers singular solitary waves while for w2 = 0, w1 ̸= 0, one obtains solitary
waves.

For the instance λ 2 −4µ < 0

q(x, t) =
1
4

A2
(
w1

2 +w2
2
)(

λ 2 −4 µ
)(

w2 sin
(

1
2
(x−Vt)

√
−λ 2 +4 µ

)
+w1 cos

(
1
2
(x−Vt)

√
−λ 2 +4 µ

))2 , (24)

with w1, w2 as arbitrary parameters.

2.3 n = 5/2

Here, we consider n =
5
2
for (3) and then reduced ODE is rewritten as follows:

(V 2b2 +b1)F ′′′′+(a2V 2 +a1)F ′′+ cF(τ)5 +(−k2 +V 2)F = 0. (25)

Homogeneous balance among highest order linear and most nonlinear derivative containing terms in equation (25)
gives m = 1 and hence generate following solution structure:

F(τ) = A0 +A1

(
G′(τ)
G(τ)

)
, (26)

with Ai, i = 0, 1 are constants, to be determined in the mean process of calculations and G(τ) following the auxiliary
equation (8). Using (26) in equation (25), along with (8), we have furnished following case to exploring variety of
solutions of equation (3):

c =− 16(V 2 − k2)

(λ 4 −8λ 2µ +16 µ2)A1
4 ,

A0 =
1
2

A1λ , a1 =− 3V 2λ 2a2 −12V 2µ a2 −10V 2 +10k2

3(λ 2 −4 µ)
,

b1 =− 3V 2λ 4b2 −24V 2λ 2µ b2 +48V 2µ2b2 −2V 2 +2k2

3(λ 4 −8λ 2µ +16 µ2)
, (27)
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equipped with A1, V, a2, b2, k as free parameters.
As a result, with the help of (27) and using (26) along with τ =−Vt +x, F(τ) = q(x, t), we have obtained following

solutions structures for equation (3):
For the instance λ 2 −4µ > 0

q(x, t) =
1
2

A1
√

λ 2 −4 µ
(

w1 sinh
(

1
2
(−Vt + x)

√
λ 2 −4 µ

)
−w2 cosh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

))
w2 sinh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

)
−w1 cosh

(
1
2
(−Vt + x)

√
λ 2 −4 µ

) . (28)

In (28), for w1 = 0, w2 ̸= 0, one recovers singular solitary waves while for w2 = 0, w1 ̸= 0, one obtains shock waves.
For the instance λ 2 −4µ < 0

q(x, t) =−1
2

A1
√
−λ 2 +4 µ

(
w1 sin

(
1
2
(x−Vt)

√
−λ 2 +4 µ

)
−w2 cos

(
1
2
(x−Vt)

√
−λ 2 +4 µ

))
w2 sin

(
1
2
(x−Vt)

√
−λ 2 +4 µ

)
+w1 cos

(
1
2
(x−Vt)

√
−λ 2 +4 µ

) , (29)

with w1, w2 as arbitrary parameters.

3. Perturbed 6BE
This section is devoted to explore some different types of solutions for 6BE Model with Perturbation terms. It is

remarkable to address that perturbed 6BE is addressed very first time in current study as follow:

qtt − k2qxx + c(q2n)xx +a1qxxxx +a2qxxtt +b1qxxxxxx +b2qxxxxtt

= θqxqxx +δqmqx +Λqqxxx +νqqxqxx +ξ qxqxxx +ψqxxxxx +κqqxxxxx, (30)

with q = q(x, t).
Utilizing τ = −Vt + x, along with q(x, t) = F(τ), we have recovered the following ordinary differential equation

from the equation (30):

(V 2b2 +b1)F ′′′′′′+(−κF(τ)−ψ)F ′′′′′+(a2V 2 +a1)F ′′′′+(−ΛF(τ)−ξ F ′)F ′′′−δF(τ)mF ′

+
(
(−θ −F(τ)ν)F ′+V 2 − k2 +2cF(τ)2n−1n

)
F ′′+ c(4F(τ)2n−2n2 −2F(τ)2n−2n)(F ′)

2
= 0. (31)

Now considering n =
3
2
, m = 1, the equation (31), turns out subsequently as
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(V 2b2 +b1)F ′′′′′′+(−κF(τ)−ψ)F ′′′′′+(a2V 2 +a1)F ′′′′+(−ΛF(τ)−ξ F ′)F ′′′−δF(τ)F ′

(
(−θ −F(τ)ν)F ′+V 2 − k2 +3cF(τ)2

)
F ′′+ c(6F(τ))(F ′)

2
= 0. (32)

Next equation (32) has been examined with the help of extended
(

G′

G

)
-expansion method for recovering the new

analytic solutions as in subsequent portions of this paper: Speculating the homogeneous balance among highest order
derivative term and highly non linear terms in equation (32) leads to the following solution structure for the equation (32)
is assumed:

F(τ) = A0 +A1

(
G′(τ)
G(τ)

)
+A2

(
G(τ)
G′(τ)

)
, (33)

with G(τ) following the auxiliary equation

G′′+λG′+µG = 0, (34)

It is worthy to notice that A0, A1, A2 are parameters, to be evaluated in the mean process of calculations. Utilizing
(33) into (32), along with (34), we furnish the subsequent parameter values for extracting the solutions to equation (32)
as per mentioned details:

Category-I

Λ =
Z1

9κ (λ 2 −4 µ)(3V 2λ b2 −κ A0 +3λ b1)(V 2b2 +b1)
,

δ =− Z2

9κ (3V 2λ b2 −κ A0 +3λ b1)(V 2b2 +b1)
,

ψ =
Z3

3(V 2b2 +b1)(λ 2 −4 µ)2 κ2
,

θ =− Z4

3κ (λ 2 −4 µ)(3V 2λ b2 −κ A0 +3λ b1)(V 2b2 +b1)
,

ξ =− 2Z5

(9V 2λ 2b2 −4V 2µ b2 +λ 2b1 −4 µ b1)(λ 2 −4 µ)κ (V 2b2 +b1)
,

A1 = 0, A2 =
6
(
V 2b2 +b1

)
µ

κ
, (35)

along with
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Z1 = 9V 6λ 4ν b2
3 +486V 6cλ 3b2

3 −72V 6λ 2µ ν b2
3 −30V 4κ2λ 5b2

2 −324V 6cλ µ b2
3 +144V 6µ2ν b2

3

+240V 4κ2λ 3µ b2
2 +27V 4λ 4ν b1b2

2 −432V 4cκ λ 2A0b2
2 +1,458V 4cλ 3b1b2

2 +15V 4κ2λ 3a2b2

−480V 4κ2λ µ2b2
2 −216V 4λ 2µ ν b1b2

2 +10V 2κ3λ 4A0b2 −60V 2κ2λ 5b1b2 +108V 4cκ µ A0b2
2

−972V 4cλ µ b1b2
2 −60V 4κ2λ µ a2b2 +432V 4µ2ν b1b2

2 −80V 2κ3λ 2µ A0b2 +480V 2κ2λ 3µ b1b2

+27V 2λ 4ν b1
2b2 +135V 2cκ2λ A0

2b2 −864V 2cκ λ 2A0b1b2 +1,458V 2cλ 3b1
2b2 −5V 2κ3λ 2A0a2

+160V 2κ3µ2A0b2 +15V 2κ2λ 3a1b2 +15V 2κ2λ 3a2b1 −960V 2κ2λ µ2b1b2 −216V 2λ 2µ ν b1
2b2

+10κ3λ 4A0b1 −30κ2λ 5b1
2 +15V 4κ2λ b2 +216V 2cκ µ A0b1b2 −972V 2cλ µ b1

2b2 −15V 2k2κ2λ b2

+20V 2κ3µ A0a2 −60V 2κ2λ µ a1b2 −60V 2κ2λ µ a2b1 +432V 2µ2ν b1
2b2 −80κ3λ 2µ A0b1

+240κ2λ 3µ b1
2 +9λ 4ν b1

3 −15cκ3A0
3 +135cκ2λ A0

2b1 −432cκ λ 2A0b1
2 +486cλ 3b1

3 −5κ3λ 2A0a1

+160κ3µ2A0b1 +15κ2λ 3a1b1 −480κ2λ µ2b1
2 −72λ 2µ ν b1

3 −5V 2κ3A0 +15V 2κ2λ b1

+108cκ µ A0b1
2 −324cλ µ b1

3 +5k2κ3A0 −15k2κ2λ b1 +20κ3µ A0a1 −60κ2λ µ a1b1 +144 µ2ν b1
3,

Z2 = 9V 6λ 4ν b2
3 −72V 6λ 2µ ν b2

3 −12V 4κ2λ 5b2
2 +648V 6cλ µ b2

3 +144V 6µ2ν b2
3 +96V 4κ2λ 3µ b2

2

+27V 4λ 4ν b1b2
2 −108V 4cκ λ 2A0b2

2 +6V 4κ2λ 3a2b2 −192V 4κ2λ µ2b2
2 −216V 4λ 2µ ν b1b2

2

+4V 2κ3λ 4A0b2 −24V 2κ2λ 5b1b2 −216V 4cκ µ A0b2
2 +1,944V 4cλ µ b1b2

2 −24V 4κ2λ µ a2b2

+432V 4µ2ν b1b2
2 −32V 2κ3λ 2µ A0b2 +192V 2κ2λ 3µ b1b2 +27V 2λ 4ν b1

2b2 +54V 2cκ2λ A0
2b2

−216V 2cκ λ 2A0b1b2 −2V 2κ3λ 2A0a2 +64V 2κ3µ2A0b2 +6V 2κ2λ 3a1b2 +6V 2κ2λ 3a2b1

−384V 2κ2λ µ2b1b2 −216V 2λ 2µ ν b1
2b2 +4κ3λ 4A0b1 −12κ2λ 5b1

2 +6V 4κ2λ b2

−432V 2cκ µ A0b1b2 +1,944V 2cλ µ b1
2b2 −6V 2k2κ2λ b2 +8V 2κ3µ A0a2 −24V 2κ2λ µ a1b2

Contemporary Mathematics 1768 | Yakup Yildirim, et al.



−24V 2κ2λ µ a2b1 +432V 2µ2ν b1
2b2 −32κ3λ 2µ A0b1 +96κ2λ 3µ b1

2 +9λ 4ν b1
3 −6cκ3A0

3

+54cκ2λ A0
2b1 −108cκ λ 2A0b1

2 −2κ3λ 2A0a1 +64κ3µ2A0b1 +6κ2λ 3a1b1 −192κ2λ µ2b1
2

−72λ 2µ ν b1
3 −2V 2κ3A0 +6V 2κ2λ b1 −216cκ µ A0b1

2 +648cλ µ b1
3 +2k2κ3A0 −6k2κ2λ b1

+8κ3µ A0a1 −24κ2λ µ a1b1 +144 µ2ν b1
3,

Z3 = 3V 4κ2λ 5b2
2 +324V 6cλ µ b2

3 −24V 4κ2λ 3µ b2
2 −54V 4cκ λ 2A0b2

2 +3V 4κ2λ 3a2b2 +48V 4κ2λ µ2b2
2

−V 2κ3λ 4A0b2 +6V 2κ2λ 5b1b2 −108V 4cκ µ A0b2
2 +972V 4cλ µ b1b2

2 −12V 4κ2λ µ a2b2

+8V 2κ3λ 2µ A0b2 −48V 2κ2λ 3µ b1b2 +27V 2cκ2λ A0
2b2 −108V 2cκ λ 2A0b1b2 −V 2κ3λ 2A0a2

−16V 2κ3µ2A0b2 +3V 2κ2λ 3a1b2 +3V 2κ2λ 3a2b1 +96V 2κ2λ µ2b1b2 −κ3λ 4A0b1 +3κ2λ 5b1
2

+3V 4κ2λ b2 −216V 2cκ µ A0b1b2 +972V 2cλ µ b1
2b2 −3V 2k2κ2λ b2 +4V 2κ3µ A0a2

−12V 2κ2λ µ a1b2 −12V 2κ2λ µ a2b1 +8κ3λ 2µ A0b1 −24κ2λ 3µ b1
2 −3cκ3A0

3 +27cκ2λ A0
2b1

−54cκ λ 2A0b1
2 −κ3λ 2A0a1 −16κ3µ2A0b1 +3κ2λ 3a1b1 +48κ2λ µ2b1

2 −V 2κ3A0 +3V 2κ2λ b1

−108cκ µ A0b1
2 +324cλ µ b1

3 + k2κ3A0 −3k2κ2λ b1 +4κ3µ A0a1 −12κ2λ µ a1b1,

Z4 =−18V 6λ 4ν b2
3 +162V 6cλ 3b2

3 +36V 6λ 2µ ν b2
3 +15V 4κ2λ 5b2

2 +972V 6cλ µ b2
3 +144V 6µ2ν b2

3

−120V 4κ2λ 3µ b2
2 +18V 4κ λ 3ν A0b2

2 −54V 4λ 4ν b1b2
2 −324V 4cκ λ 2A0b2

2 +486V 4cλ 3b1b2
2

−3V 4κ2λ 3a2b2 +240V 4κ2λ µ2b2
2 −72V 4κ λ µ ν A0b2

2 +108V 4λ 2µ ν b1b2
2 −5V 2κ3λ 4A0b2

+30V 2κ2λ 5b1b2 −324V 4cκ µ A0b2
2 +2,916V 4cλ µ b1b2

2 +12V 4κ2λ µ a2b2 +432V 4µ2ν b1b2
2

+40V 2κ3λ 2µ A0b2 −240V 2κ2λ 3µ b1b2 −3V 2κ2λ 2ν A0
2b2 +36V 2κ λ 3ν A0b1b2 −54V 2λ 4ν b1

2b2

+135V 2cκ2λ A0
2b2 −648V 2cκ λ 2A0b1b2 +486V 2cλ 3b1

2b2 +V 2κ3λ 2A0a2 −80V 2κ3µ2A0b2
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−3V 2κ2λ 3a1b2 −3V 2κ2λ 3a2b1 +480V 2κ2λ µ2b1b2 +12V 2κ2µ ν A0
2b2 −144V 2κ λ µ ν A0b1b2

+108V 2λ 2µ ν b1
2b2 −5κ3λ 4A0b1 +15κ2λ 5b1

2 +15V 4κ2λ b2 −648V 2cκ µ A0b1b2

+2,916V 2cλ µ b1
2b2 −15V 2k2κ2λ b2 −4V 2κ3µ A0a2 +12V 2κ2λ µ a1b2 +12V 2κ2λ µ a2b1

+432V 2µ2ν b1
2b2 +40κ3λ 2µ A0b1 −120κ2λ 3µ b1

2 −3κ2λ 2ν A0
2b1 +18κ λ 3ν A0b1

2 −18λ 4ν b1
3

−15cκ3A0
3 +135cκ2λ A0

2b1 −324cκ λ 2A0b1
2 +162cλ 3b1

3 +κ3λ 2A0a1 −80κ3µ2A0b1

−3κ2λ 3a1b1 +240κ2λ µ2b1
2 +12κ2µ ν A0

2b1 −72κ λ µ ν A0b1
2 +36λ 2µ ν b1

3 −5V 2κ3A0

+15V 2κ2λ b1 −324cκ µ A0b1
2 +972cλ µ b1

3 +5k2κ3A0 −15k2κ2λ b1 −4κ3µ A0a1 +12κ2λ µ a1b1

+144 µ2ν b1
3,

Z5 = 9V 6λ 4ν b2
3 −72V 6λ 2µ ν b2

3 −30V 4κ2λ 5b2
2 +1,620V 6cλ µ b2

3 +144V 6µ2ν b2
3 +240V 4κ2λ 3µ b2

2

+27V 4λ 4ν b1b2
2 −270V 4cκ λ 2A0b2

2 +15V 4κ2λ 3a2b2 −480V 4κ2λ µ2b2
2 −216V 4λ 2µ ν b1b2

2

+10V 2κ3λ 4A0b2 −60V 2κ2λ 5b1b2 −540V 4cκ µ A0b2
2 +4,860V 4cλ µ b1b2

2 −60V 4κ2λ µ a2b2

+432V 4µ2ν b1b2
2 −80V 2κ3λ 2µ A0b2 +480V 2κ2λ 3µ b1b2 +27V 2λ 4ν b1

2b2 +135V 2cκ2λ A0
2b2

−540V 2cκ λ 2A0b1b2 −5V 2κ3λ 2A0a2 +160V 2κ3µ2A0b2 +15V 2κ2λ 3a1b2 +15V 2κ2λ 3a2b1

−960V 2κ2λ µ2b1b2 −216V 2λ 2µ ν b1
2b2 +10κ3λ 4A0b1 −30κ2λ 5b1

2 +15V 4κ2λ b2

−1,080V 2cκ µ A0b1b2 +4,860V 2cλ µ b1
2b2 −15V 2k2κ2λ b2 +20V 2κ3µ A0a2 −60V 2κ2λ µ a1b2

−60V 2κ2λ µ a2b1 +432V 2µ2ν b1
2b2 −80κ3λ 2µ A0b1 +240κ2λ 3µ b1

2 +9λ 4ν b1
3 −15cκ3A0

3

+135cκ2λ A0
2b1 −270cκ λ 2A0b1

2 −5κ3λ 2A0a1 +160κ3µ2A0b1 +15κ2λ 3a1b1 −480κ2λ µ2b1
2

−72λ 2µ ν b1
3 −5V 2κ3A0 +15V 2κ2λ b1 −540cκ µ A0b1

2 +1,620cλ µ b1
3 +5k2κ3A0 −15k2κ2λ b1

+20κ3µ A0a1 −60κ2λ µ a1b1 +144 µ2ν b1
3,
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its worth to mention that all the found parameters are equipped with V , c, A0, b1, b2, a1, k, κ , λ , µ , ν as free parameters.
Using solution of equation (34) along with parameter values (35), we may write the subsequent solution for equation

(30), by reverting back to original variables x, t:
Regrading the instance λ 2 −4µ > 0, we have extracted following solution structure for equation (30):

q(x, t) =


2w2 sinh

(
(x−Vt)

√
λ 2 −4µ

2

)
+2w1 cosh

(
(x−Vt)(

√
λ 2 −4µ)

2

)
√

λ 2 −4µ

(
w1 sinh

(
(x−Vt)

√
λ 2 −4µ

2

)
+w2 cosh

(
(x−Vt)(

√
λ 2 −4µ)

2

)) − λ
2

A2 +A0. (36)

In (36), for w1 = 0, w2 ̸= 0, one recovers shock waves while for w2 = 0, w1 ̸= 0, one obtains singular solitary waves.
Regrading the instance λ 2 −4µ < 0, we have extracted following solution structure for equation (30):

q(x, t) =


2w2 sin

(
(x−Vt)

√
−λ 2 +4µ

2

)
+2w1 cos

(
(x−Vt)(

√
−λ 2 +4µ)

2

)
√
−λ 2 +4µ

(
w1 sin

(
(x−Vt)

√
−λ 2 +4µ

2

)
+w2 cos

(
(x−Vt)(

√
−λ 2 +4µ)

2

)) − λ
2

A2 +A0. (37)

Category-II

Λ =
Z6

9(3V 2λ b2 +κ A0 +3λ b1)(λ 2 −4 µ)(V 2b2 +b1)κ
,

δ =− Z7

9κ (3V 2λ b2 +κ A0 +3λ b1)(V 2b2 +b1)
,

ψ =− Z8

3κ2 (λ 2 −4 µ)(V 2λ 2b2 −4V 2µ b2 +λ 2b1 −4 µ b1)
,

θ =− Z9

3κ (3V 2λ b2 +κ A0 +3λ b1)(λ 2 −4 µ)(V 2b2 +b1)
,

ξ =
2Z10

9
(
V 4λ 2b2

2 −4V 4µ b2
2 +2V 2λ 2b1b2 −8V 2µ b1b2 +λ 2b1

2 −4 µ b1
2)κ (λ 2 −4 µ)

,

A1 =− 6(V 2b2 +b1)

κ
, A2 = 0, (38)

along with
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Z6 =−9V 6λ 4ν b2
3 +486V 6cλ 3b2

3 +72V 6λ 2µ ν b2
3 −30V 4κ2λ 5b2

2 −324V 6cλ µ b2
3

−144V 6µ2ν b2
3 +240V 4κ2λ 3µ b2

2 −27V 4λ 4ν b1b2
2 +432V 4cκ λ 2A0b2

2 +1,458V 4cλ 3b1b2
2

+15V 4κ2λ 3a2b2 −480V 4κ2λ µ2b2
2 +216V 4λ 2µ ν b1b2

2 −10V 2κ3λ 4A0b2

−60V 2κ2λ 5b1b2 −108V 4cκ µ A0b2
2 −972V 4cλ µ b1b2

2 −60V 4κ2λ µ a2b2

−432V 4µ2ν b1b2
2 +80V 2κ3λ 2µ A0b2 +480V 2κ2λ 3µ b1b2 −27V 2λ 4ν b1

2b2

+135V 2cκ2λ A0
2b2 +864V 2cκ λ 2A0b1b2 +1,458V 2cλ 3b1

2b2 +5V 2κ3λ 2A0a2

−160V 2κ3µ2A0b2 +15V 2κ2λ 3a1b2 +15V 2κ2λ 3a2b1 −960V 2κ2λ µ2b1b2

+216V 2λ 2µ ν b1
2b2 −10κ3λ 4A0b1 −30κ2λ 5b1

2 +15V 4κ2λ b2 −216V 2cκ µ A0b1b2

−972V 2cλ µ b1
2b2 −15V 2k2κ2λ b2 −20V 2κ3µ A0a2 −60V 2κ2λ µ a1b2 −60V 2κ2λ µ a2b1

−432V 2µ2ν b1
2b2 +80κ3λ 2µ A0b1 +240κ2λ 3µ b1

2 −9λ 4ν b1
3 +15cκ3A0

3 +135cκ2λ A0
2b1

+432cκ λ 2A0b1
2 +486cλ 3b1

3 +5κ3λ 2A0a1 −160κ3µ2A0b1 +15κ2λ 3a1b1 −480κ2λ µ2b1
2

+72λ 2µ ν b1
3 +5V 2κ3A0 +15V 2κ2λ b1 −108cκ µ A0b1

2 −324cλ µ b1
3 −5k2κ3A0

−15k2κ2λ b1 −20κ3µ A0a1 −60κ2λ µ a1b1 −144 µ2ν b1
3,

Z7 =−9V 6λ 4ν b2
3 +72V 6λ 2µ ν b2

3 −12V 4κ2λ 5b2
2 +648V 6cλ µ b2

3 −144V 6µ2ν b2
3

+96V 4κ2λ 3µ b2
2 −27V 4λ 4ν b1b2

2 +108V 4cκ λ 2A0b2
2 +6V 4κ2λ 3a2b2 −192V 4κ2λ µ2b2

2

+216V 4λ 2µ ν b1b2
2 −4V 2κ3λ 4A0b2 −24V 2κ2λ 5b1b2 +216V 4cκ µ A0b2

2 +1,944V 4cλ µ b1b2
2

−24V 4κ2λ µ a2b2 −432V 4µ2ν b1b2
2 +32V 2κ3λ 2µ A0b2 +192V 2κ2λ 3µ b1b2 −27V 2λ 4ν b1

2b2

+54V 2cκ2λ A0
2b2 +216V 2cκ λ 2A0b1b2 +2V 2κ3λ 2A0a2 −64V 2κ3µ2A0b2 +6V 2κ2λ 3a1b2
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+6V 2κ2λ 3a2b1 −384V 2κ2λ µ2b1b2 +216V 2λ 2µ ν b1
2b2 −4κ3λ 4A0b1 −12κ2λ 5b1

2

+6V 4κ2λ b2 +432V 2cκ µ A0b1b2 +1,944V 2cλ µ b1
2b2 −6V 2k2κ2λ b2 −8V 2κ3µ A0a2

−24V 2κ2λ µ a1b2 −24V 2κ2λ µ a2b1 −432V 2µ2ν b1
2b2 +32κ3λ 2µ A0b1 +96κ2λ 3µ b1

2

−9λ 4ν b1
3 +6cκ3A0

3 +54cκ2λ A0
2b1 +108cκ λ 2A0b1

2 +2κ3λ 2A0a1 −64κ3µ2A0b1

+6κ2λ 3a1b1 −192κ2λ µ2b1
2 +72λ 2µ ν b1

3 +2V 2κ3A0 +6V 2κ2λ b1 +216cκ µ A0b1
2

+648cλ µ b1
3 −2k2κ3A0 −6k2κ2λ b1 −8κ3µ A0a1 −24κ2λ µ a1b1 −144 µ2ν b1

3,

Z8 = 3V 4κ2λ 5b2
2 +324V 6cλ µ b2

3 −24V 4κ2λ 3µ b2
2 +54V 4cκ λ 2A0b2

2 +3V 4κ2λ 3a2b2

+48V 4κ2λ µ2b2
2 +V 2κ3λ 4A0b2 +6V 2κ2λ 5b1b2 +108V 4cκ µ A0b2

2

+972V 4cλ µ b1b2
2 −12V 4κ2λ µ a2b2 −8V 2κ3λ 2µ A0b2 −48V 2κ2λ 3µ b1b2

+27V 2cκ2λ A0
2b2 +108V 2cκ λ 2A0b1b2 +V 2κ3λ 2A0a2 +16V 2κ3µ2A0b2

+3V 2κ2λ 3a1b2 +3V 2κ2λ 3a2b1 +96V 2κ2λ µ2b1b2 +κ3λ 4A0b1 +3κ2λ 5b1
2 +3V 4κ2λ b2

+216V 2cκ µ A0b1b2 +972V 2cλ µ b1
2b2 −3V 2k2κ2λ b2 −4V 2κ3µ A0a2 −12V 2κ2λ µ a1b2

−12V 2κ2λ µ a2b1 −8κ3λ 2µ A0b1 −24κ2λ 3µ b1
2 +3cκ3A0

3 +27cκ2λ A0
2b1

+54cκ λ 2A0b1
2 +κ3λ 2A0a1 +16κ3µ2A0b1 +3κ2λ 3a1b1 +48κ2λ µ2b1

2 +V 2κ3A0

+3V 2κ2λ b1 +108cκ µ A0b1
2 +324cλ µ b1

3 − k2κ3A0 −3k2κ2λ b1 −4κ3µ A0a1 −12κ2λ µ a1b1,

Z9 = 18V 6λ 4ν b2
3 +162V 6cλ 3b2

3 −36V 6λ 2µ ν b2
3 +15V 4κ2λ 5b2

2 +972V 6cλ µ b2
3

−144V 6µ2ν b2
3 −120V 4κ2λ 3µ b2

2 +18V 4κ λ 3ν A0b2
2 +54V 4λ 4ν b1b2

2 +324V 4cκ λ 2A0b2
2

+486V 4cλ 3b1b2
2 −3V 4κ2λ 3a2b2 +240V 4κ2λ µ2b2

2 −72V 4κ λ µ ν A0b2
2

−108V 4λ 2µ ν b1b2
2 +5V 2κ3λ 4A0b2 +30V 2κ2λ 5b1b2 +324V 4cκ µ A0b2

2 +2,916V 4cλ µ b1b2
2

Volume 6 Issue 2|2025| 1773 Contemporary Mathematics



+12V 4κ2λ µ a2b2 −432V 4µ2ν b1b2
2 −40V 2κ3λ 2µ A0b2 −240V 2κ2λ 3µ b1b2

+3V 2κ2λ 2ν A0
2b2 +36V 2κ λ 3ν A0b1b2 +54V 2λ 4ν b1

2b2

+135V 2cκ2λ A0
2b2 +648V 2cκ λ 2A0b1b2 +486V 2cλ 3b1

2b2 −V 2κ3λ 2A0a2

+80V 2κ3µ2A0b2 −3V 2κ2λ 3a1b2 −3V 2κ2λ 3a2b1 +480V 2κ2λ µ2b1b2

−12V 2κ2µ ν A0
2b2 −144V 2κ λ µ ν A0b1b2 −108V 2λ 2µ ν b1

2b2 +5κ3λ 4A0b1

+15κ2λ 5b1
2 +15V 4κ2λ b2 +648V 2cκ µ A0b1b2 +2,916V 2cλ µ b1

2b2 −15V 2k2κ2λ b2

+4V 2κ3µ A0a2 +12V 2κ2λ µ a1b2 +12V 2κ2λ µ a2b1 −432V 2µ2ν b1
2b2

−40κ3λ 2µ A0b1 −120κ2λ 3µ b1
2 +3κ2λ 2ν A0

2b1 +18κ λ 3ν A0b1
2

+18λ 4ν b1
3 +15cκ3A0

3 +135cκ2λ A0
2b1 +324cκ λ 2A0b1

2 +162cλ 3b1
3 −κ3λ 2A0a1

+80κ3µ2A0b1 −3κ2λ 3a1b1 +240κ2λ µ2b1
2 −12κ2µ ν A0

2b1 −72κ λ µ ν A0b1
2

−36λ 2µ ν b1
3 +5V 2κ3A0 +15V 2κ2λ b1 +324cκ µ A0b1

2 +972cλ µ b1
3

−5k2κ3A0 −15k2κ2λ b1 +4κ3µ A0a1 +12κ2λ µ a1b1 −144 µ2ν b1
3,

Z10 =−9V 6λ 4ν b2
3 +72V 6λ 2µ ν b2

3 −30V 4κ2λ 5b2
2

+1,620V 6cλ µ b2
3 −144V 6µ2ν b2

3 +240V 4κ2λ 3µ b2
2 −27V 4λ 4ν b1b2

2

+270V 4cκ λ 2A0b2
2 +15V 4κ2λ 3a2b2 −480V 4κ2λ µ2b2

2 +216V 4λ 2µ ν b1b2
2

−10V 2κ3λ 4A0b2 −60V 2κ2λ 5b1b2 +540V 4cκ µ A0b2
2 +4,860V 4cλ µ b1b2

2

−60V 4κ2λ µ a2b2 −432V 4µ2ν b1b2
2 +80V 2κ3λ 2µ A0b2 +480V 2κ2λ 3µ b1b2

−27V 2λ 4ν b1
2b2 +135V 2cκ2λ A0

2b2 +540V 2cκ λ 2A0b1b2 +5V 2κ3λ 2A0a2

−160V 2κ3µ2A0b2 +15V 2κ2λ 3a1b2 +15V 2κ2λ 3a2b1 −960V 2κ2λ µ2b1b2
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+216V 2λ 2µ ν b1
2b2 −10κ3λ 4A0b1 −30κ2λ 5b1

2

+15V 4κ2λ b2 +1,080V 2cκ µ A0b1b2 +4,860V 2cλ µ b1
2b2 −15V 2k2κ2λ b2

−20V 2κ3µ A0a2 −60V 2κ2λ µ a1b2 −60V 2κ2λ µ a2b1 −432V 2µ2ν b1
2b2

+80κ3λ 2µ A0b1 +240κ2λ 3µ b1
2 −9λ 4ν b1

3 +15cκ3A0
3 +135cκ2λ A0

2b1

+270cκ λ 2A0b1
2 +5κ3λ 2A0a1 −160κ3µ2A0b1 +15κ2λ 3a1b1

−480κ2λ µ2b1
2 +72λ 2µ ν b1

3 +5V 2κ3A0 +15V 2κ2λ b1 +540cκ µ A0b1
2

+1,620cλ µ b1
3 −5k2κ3A0 −15k2κ2λ b1 −20κ3µ A0a1 −60κ2λ µ a1b1 −144 µ2ν b1

3,

its worth to mention that all the obtained parameter values are laced with V , c, A0, b1, b2, a1, k, and λ , κ , µ , ν as free
parameters.

Using solution of equation (34) along with parameter values (33) and (38), we may write the subsequent solution for
equation (30), by reverting back to original variables x, t:

Regrading the instance λ 2 −4µ > 0, we have extracted following solution structure for equation (30):

q(x, t) =


√

λ 2 −4µ

(
w1 sinh

(
(x−Vt)

√
λ 2 −4µ

2

)
+w2 cosh

(
(x−Vt)(

√
λ 2 −4µ)

2

))

2w2 sinh

(
(x−Vt)

√
λ 2 −4µ

2

)
+2w1 cosh

(
(x−Vt)(

√
λ 2 −4µ)

2

) − λ
2

A1 +A0. (39)

In (39), for w1 = 0, w2 ̸= 0, one recovers singular solitary waves while for w2 = 0, w1 ̸= 0, one obtains shock waves.
Regrading the instance λ 2 −4µ < 0, we have extracted following solution structure for equation (30):

q(x, t) =


√
−λ 2 +4µ

(
w1 sin

(
(x−Vt)

√
−λ 2 +4µ

2

)
+w2 cos

(
(x−Vt)(

√
−λ 2 +4µ)

2

))

2w2 sin

(
(x−Vt)

√
−λ 2 +4µ

2

)
+2w1 cos

(
(x−Vt)(

√
−λ 2 +4µ)

2

) − λ
2

A1 +A0. (40)

4. Extended tanh approach
Furthermore, the solutions to Eq. (30) are furnished through the extended Tanh approach. This technique proposed

the following solution structure for ODE (32), and then finally leading to formation of soliton solutions to governing
model (30):
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F (τ) = A0 +A1 tanh(pτ)+
A2

tanh(pτ)
. (41)

Substituting Eq. (41) into Eq. (32), we have produced a family of polynomials containing tanh(pτ) and
1

tanh(pτ)
.

When we set the coefficients of these polynomials to zero, the following result is obtained:
Cluster-I

Λ =− L1

144 p2A0κ2 (V 2b2 +b1)
,

δ =
2L2

9(V 2b2 +b1)κ2A0
,

ψ =
L3

768κ p4 (V 2b2 +b1)
,

θ =
L4

48p2A0κ2 (V 2b2 +b1)
,

ξ =− L5(
1,152V 4b2

2 +2,304V 2b1b2 +1,152b1
2)κ p4

A1 =−
6p
(
V 2b2 +b1

)
κ

, A2 =−
6p
(
V 2b2 +b1

)
κ

, (42)

along with

L1 = 2,304V 6ν p4b2
3 +6,912V 4ν p4b1b2

2 −432V 4cκ p2A0b2
2

+2,560V 2κ3 p4A0b2 +6,912V 2ν p4b1
2b2

−864V 2cκ p2A0b1b2 −80V 2κ3 p2A0a2 +2,560κ3 p4A0b1

+2,304ν p4b1
3 −15cκ3A0

3 −432cκ p2A0b1
2

−80κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0,
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L2 = 1,152V 6ν p4b2
3 +3,456V 4ν p4b1b2

2

+432V 4cκ p2A0b2
2 +512V 2κ3 p4A0b2 +3,456V 2ν p4b1

2b2

+864V 2cκ p2A0b1b2 −16V 2κ3 p2A0a2 +512κ3 p4A0b1

+1,152ν p4b1
3 −3cκ3A0

3 +432cκ p2A0b1
2

−16κ3 p2A0a1 −V 2κ3A0 + k2κ3A0,

L3 = A0
(
432V 4cp2b2

2 −256V 2κ2 p4b2 +864V 2cp2b1b2

−16V 2κ2 p2a2 −256κ2 p4b1 −3cκ2A0
2 +432cp2b1

2

+
(
−16κ2 p2a1 −V 2κ2 + k2κ2)A0,

L4 = 2,304V 6ν p4b2
3 +6,912V 4ν p4b1b2

2

+1,296V 4cκ p2A0b2
2 −1,280V 2κ3 p4A0b2 −48V 2κ2ν p2A0

2b2

+6,912V 2ν p4b1
2b2 +2,592V 2cκ p2A0b1b2

+16V 2κ3 p2A0a2 −1,280κ3 p4A0b1 −48κ2ν p2A0
2b1

+2,304ν p4b1
3 −15cκ3A0

3 +1,296cκ p2A0b1
2

+16κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0,

L5 = 2,304V 6ν p4b2
3 +6,912V 4ν p4b1b2

2 +2,160V 4cκ p2A0b2
2

+2,560V 2κ3 p4A0b2 +6,912V 2ν p4b1
2b2

+4,320V 2cκ p2A0b1b2 −80V 2κ3 p2A0a2

+2,560κ3 p4A0b1 +2,304ν p4b1
3 −15cκ3A0

3

+2,160cκ p2A0b1
2 −80κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0. (43)
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Employing the aforementioned results (42), (43) along with eq. (41) for Eq. (32), the shock wave solution is revealed
for equation (30) as follows:

q(x, t) = A0 −
6p
(
V 2b2 +b1

)
tanh(p(−Vt + x))
κ

−
6p
(
V 2b2 +b1

)
κ tanh(p(−Vt + x))

, (44)

equipped with V , c, A0, b1, b2, a1, a2, κ , p, ν as free parameters.
Cluster-II

Λ =− L6

36p2A0κ2 (V 2b2 +b1)
,

δ =
2L7

9(V 2b2 +b1)κ2A0
,

ψ =
L8

48κ p4 (V 2b2 +b1)
,

θ =
L9

p2A012κ2 (V 2b2 +b1)
,

ξ =− L10

72κ p4 (V 2b2 +b1)
2 ,

A1 = 0, A2 =−
6p
(
V 2b2 +b1

)
κ

, (45)

L6 = 144V 6ν p4b2
3 +432V 4ν p4b1b2

2 −108V 4cκ p2A0b2
2

+160V 2κ3 p4A0b2 +432V 2ν p4b1
2b2

−216V 2cκ p2A0b1b2 −20V 2κ3 p2A0a2

+160κ3 p4A0b1 +144ν p4b1
3 −15cκ3A0

3

−108cκ p2A0b1
2 −20κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0,
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L7 = 72V 6ν p4b2
3 +216V 4ν p4b1b2

2 +108V 4cκ p2A0b2
2

+32V 2κ3 p4A0b2 +216V 2ν p4b1
2b2 +216V 2cκ p2A0b1b2

−4V 2κ3 p2A0a2 +32κ3 p4A0b1 +72ν p4b1
3 −3cκ3A0

3

+108cκ p2A0b1
2 −4κ3 p2A0a1 −V 2κ3A0 + k2κ3A0,

L8 = A0
(
108V 4cp2b2

2 −16V 2κ2 p4b2 +216V 2cp2b1b2

−4V 2κ2 p2a2 −16κ2 p4b1 −3cκ2A0
2)

+
(
108cp2b1

2 −4κ2 p2a1 −V 2κ2 + k2κ2)A0,

L9 = 144V 6ν p4b2
3 +432V 4ν p4b1b2

2 +324V 4cκ p2A0b2
2

−80V 2κ3 p4A0b2 −12V 2κ2ν p2A0
2b2 +432V 2ν p4b1

2b2

+648V 2cκ p2A0b1b2 +4V 2κ3 p2A0a2 −80κ3 p4A0b1

−12κ2ν p2A0
2b1 +144ν p4b1

3 −15cκ3A0
3

+324cκ p2A0b1
2 +4κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0,

L10 = 144V 6ν p4b2
3 +432V 4ν p4b1b2

2 +540V 4cκ p2A0b2
2

+160V 2κ3 p4A0b2 +432V 2ν p4b1
2b2

+1,080V 2cκ p2A0b1b2 −20V 2κ3 p2A0a2 +160κ3 p4A0b1

+144ν p4b1
3 −15cκ3A0

3 +540cκ p2A0b1
2

−20κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0. (46)

Employing the aforementioned results (45), (46) along with eq. (41) for equation (32), the following soliton solution
is revealed for equation (30) as follows:
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q(x, t) = A0 −
6p
(
V 2b2 +b1

)
κ tanh(p(−Vt+ x))

, (47)

equipped with V , c, A0, b1, b2, a1, a2, κ , p, ν as free parameters.
Cluster-III

Λ =− L11

36p2A0κ2 (V 2b2 +b1)
,

δ =
2L12

9(V 2b2 +b1)κ2A0
,

ψ =
L13

48κ p4 (V 2b2 +b1)
,

θ =
L14

12p2A0κ2 (V 2b2 +b1)
,

ξ =− L15(
72V 4b2

2 +144V 2b1b2 +72b1
2)κ p4

,

A1 =−
6p
(
V 2b2 +b1

)
κ

, A2 = 0, (48)

L11 = 144V 6ν p4b2
3 +432V 4ν p4b1b2

2 −108V 4cκ p2A0b2
2

+160V 2κ3 p4A0b2 +432V 2ν p4b1
2b2 −216V 2cκ p2A0b1b2

−20V 2κ3 p2A0a2 +160κ3 p4A0b1 +144ν p4b1
3 −15cκ3A0

3

−108cκ p2A0b1
2 −20κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0,
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L12 = 72V 6ν p4b2
3 +216V 4ν p4b1b2

2 +108V 4cκ p2A0b2
2

+32V 2κ3 p4A0b2 +216V 2ν p4b1
2b2 +216V 2cκ p2A0b1b2

−4V 2κ3 p2A0a2 +32κ3 p4A0b1 +72ν p4b1
3 −3cκ3A0

3

+108cκ p2A0b1
2 −4κ3 p2A0a1 −V 2κ3A0 + k2κ3A0,

L13 = A0
(
108V 4cp2b2

2 −16V 2κ2 p4b2 +216V 2cp2b1b2

−4V 2κ2 p2a2 −16κ2 p4b1 −3cκ2A0
2)

+A0
(
108cp2b1

2 −4κ2 p2a1 −V 2κ2 + k2κ2) ,
L14 = 144V 6ν p4b2

3 +432V 4ν p4b1b2
2 +324V 4cκ p2A0b2

2

−80V 2κ3 p4A0b2 −12V 2κ2ν p2A0
2b2 +432V 2ν p4b1

2b2

+648V 2cκ p2A0b1b2 +4V 2κ3 p2A0a2 −80κ3 p4A0b1

−12κ2ν p2A0
2b1 +144ν p4b1

3 −15cκ3A0
3

+324cκ p2A0b1
2 +4κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0,

L15 = 144V 6ν p4b2
3 +432V 4ν p4b1b2

2 +540V 4cκ p2A0b2
2

+160V 2κ3 p4A0b2 +432V 2ν p4b1
2b2 +1,080V 2cκ p2A0b1b2

−20V 2κ3 p2A0a2 +160κ3 p4A0b1 +144ν p4b1
3 −15cκ3A0

3

+540cκ p2A0b1
2 −20κ3 p2A0a1 −5V 2κ3A0 +5k2κ3A0. (49)

Employing the aforementioned results (48), (49) along with eq. (41), shock wave solution is revealed for equation
(30):

q(x, t) = A0 −
6p
(
V 2b2 +b1

)
tanh(p(−Vt+ x))
κ

, (50)
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equipped with V , c, A0, b1, b2, a1, a2, κ , p, ν as free parameters.

5. Conclusions
The current paper is loaded up with a plethora of results from 6BE. The unperturbed version oif the model was

addressed by G′/G-expansion approach that revealed shock waves and solitary wave as well as singular solitary wave
solutions to the model. Subsequently the perturbed version of the model is considered where the same approach revealed
shock waves as well as solitary waves. Additionally the extended tanh approach yielded the shock wave solutions. The
results came with parametric restrictions that must hold for such a range of solutions to exist. Thee results are just a
starting point to various future avenues to walk on. Later the model will be considered for two-layered fluid flow with
surface tension that would give additional set of results. The results of those research activities, that are under way, will
be made available with time.
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