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Abstract: The improved synchronization of complex dynamical networks under passivity performance is the main topic
of this paper. To distinguish between simple and complex dynamics in real-world scenarios, the effect of randomly
occurring time-varying delays is specifically considered. The study is based on the development of a feedback controller
and a Lyapunov-Krasovskii functional (LKF) with novel integral terms. Finally, a useful example is provided to illustrate
the effectiveness of the proposed approach.
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1. Introduction
Complex systems are prevalent in nature and everyday life, with most of them frequently modeled as complex

networks [1–4]. Such networks can effectively represent real-world systems, including communication networks, which
comprise interconnected and interdependent components designed for transmitting and receiving signals.

Among the various topics in complex network research, synchronization has received significant attention [5–
7]. The synchronization of dynamical components is widely regarded as one of the most fundamental properties of
complex networks, leading to extensive investigations in the literature [8–10]. Moreover, numerous synchronization-
related challenges have substantial practical implications [11].

Passivity plays a crucial role in understanding and analyzing dynamic behaviors. It has been extensively studied
by researchers and is considered a powerful tool for assessing system stability. Passivity-based approaches have found
applications in diverse fields, including signal processing, complexity analysis, stability assessment, and fuzzy control
(see, for example, references [12–15]). Ren et al. [16] introduced various passivity concepts, significantly contributing
to the advancement of passive control in dynamical systems [17, 18].

Synchronization of stochastic complex networks with time delays are recently investigated in [19–22].

Copyright ©2025 D. Ajay, et al.
DOI: https://doi.org/10.37256/cm.6220256315
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 6 Issue 2|2025| 2159 Contemporary Mathematics

https://ojs.wiserpub.com/index.php/CM/
https://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://doi.org/10.37256/cm.6220256315
https://creativecommons.org/licenses/by/4.0/


However, to the simplest of the authors’ knowledge, the passivity synchronization of complex networks subject to
randomly occurring coupling time-varying delays still remains challenging. Building on these insights, this study explores
state feedback control for achieving passivity in complex networks with delays.

The main contribution of this paper is listed below:
1. State feedback control with randomly occurring distributed coupling time-varying delays are considered for

complex dynamical networks.
2. The application of stochastic analysis often leads to the derivation of delay-dependent conditions necessary for

ensuring synchronization while maintaining sufficient passivity performance, such as disturbance attenuation.
3. Synchronization controllers are developed using linear matrix inequalities (LMIs) to achieve the tolerable

condition for the complex dynamical networks.
4. At terminally, numerical example is displayed to emphasize the efficacy of the derived theoretical results.
Notations: Throughout this paper, ✠ denotes the elements below the main diagonal of a symmetric of a symmetric

block matrix, I denotes the identity matrix with appropriate dimensions. Rn represents the n dimensional Euclidean space
and Rn×m is the set of all n×m real matrices. P> 0 means P is real symmetric and positive definite, Pr{β} means the
occurrence probability of the event β, and diag{a, b, ...., z} indicates the block-diagonal matrix with a, b, ...., z in the
diagonal entries. E{x} means the expectation of the stochastic variable x. The notation A⊗B stands for the Kronecker
product of matrices A andB.

2. Problem description
Consider the class networks with O nodes that contain delays and randomly appearing nodes:



þ̇η(ı) = Aþη(ı)+Bf(ı, þη(ı))+C
∫ t

ı−ℑ(ı) f(þ(s))ds+(1−Φ(ı))∑O
ψ=1bηψ Γþψ(ı)

+Φ(ı)∑O
ψ=1bηψ Γþψ(ı−℘(ı))+uη(ı)+wη(ı),

þη(ı) = ηı, η= 1, 2, ...., O, ı ∈ [−max(℘̂, ℑ̂), 0],

(1)

where A be a constant matrix and B, C are the weight matrices, þη(ı) = (þη1(ı), þη2(ı), ...., þηn(ı))
T ∈ Rn be the state

vector associated ηth node, uη(ı) ∈ Rn the control input, wη(ı) is the disturbance ℑ(ı) and ℘(ı) represent delays that
satisfies

0 ≤℘(ı)≤℘̂, 0 ≤ ℑ(ı)≤ ℑ̂, (2)

where ℘̂, μ and ℑ̂ are known constants. Γ ∈ Rn×n is coupling matrix and B = (bηψ)O×O ∈ RO×O represents an outer-
coupling configuration matrix. If easy to implement η and ψ (η ̸= ψ), then bηψ ̸= 0; otherwise, bηψ = 0, bηη are given
by bηη =−∑O

ψ=1, ψ ̸=ηbηψ , η= 1, 2, ...., O.
Φ(ı) is the Bernoulli random variable convenient randomly occurring coupling delay and satisfying:

Φ(t) =

{
1, coupling delay happens,
0, coupling delay does not happens,

(3)

with
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Prob{Φ(ı) = 1}= Φ̂,

Prob{Φ(ı) = 0}= 1− Φ̂,

where Φ̂ ∈ [0, 1] is a known constant.
According to the expectation of Bernoulli function, we have:

E{Φ(ı)− Φ̂}= 0,

E{(Φ(ı)− Φ̂)2}= Φ̂(1− Φ̂),

Assumption 1: For given matrices R1 and S1 and f

[f(x)− f(y)−R1(x−y)]T [f(x)− f(y)−S1(x−y)]≤ 0, ∀x, y ∈Rn. (4)

The system unforced isolate node is given by

ṡ(ı) = As(ı)+Bf(ı, s(ı)), (5)

we define the synchronization error ρη(ı) = þ(ı)− s(ı). Then, (1) is

ρ̇η(ı) = Aρη(ı)+Bf̃(ı, ρη(ı))+C

∫ ı

ı−ℑ(ı)
f̃(ρ(s))ds+(1−Φ(ı))

O

∑
ψ=1

bηψ Γρψ(ı)

+Φ(ı)
O

∑
ψ=1

bηψ Γρψ(ı−℘(ı))+uη(ı)+wη(ı), η= 1, 2, ...., O, (6)

where f̃(ı, ρη(ı)) = f(ı, þ)− f(ı, s(ı)).
The controllers are made in the following manner:

uη(ı) = Kη(ı)ρη(ı), η= 1, 2, ...., O. (7)

Then by using (6) and (7),
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ρ̇η(ı) = (A+Kη)ρη(ı)+Bf̃(ı, ρη(ı))+C

∫ ı

ı−ℑ(ı)
f̃(ρ(s))ds+(1−Φ(ı))

O

∑
ψ=1

bηψ Γρψ(ı)

+Φ(ı)
O

∑
ψ=1

bηψ Γρψ(ı−℘(ı))+wη(ı), η= 1, 2, ...., O, (8)

Then system (8) is

ρ̇(ı) = (I⊗A+K)ρ(ı)+BF̃(ρ(ı))+C

∫ ı

ı−ℑ(ı)
F̃(ρ(s))ds+(1−Φ(ı))(B⊗Γ)ρ(ı)

+Φ(ı)(B⊗Γ)ρ(ı−℘(ı))+w(ı), (9)

Definition 1 [23] If there is a scalar ɣ> 0 then (9) is stochastically passive, that ıπ ≥ 0

2
∫ ıπ

0
E
{
ℓT (s)w(θ)

}
dθ ≥−ɣ

∫ ıπ

0
E
{
wT (θ)w(θ)

}
dθ (10)

Lemma 1 [24] For any matrix

[
M T

✠ M

]
≥ 0, scalars ℘̂> 0, ℘(ı) > 0, 0 ≤℘(ı) ≤ ℘̂, vector function ρ̇(ı+

·) : [−℘̂, 0]→Rn then the concerned integrations are

−℘̂
∫ ı

ı−℘̂
ρ̇T (α)Mρ̇(α)dα ≤ ϖT (ı)Ωϖ(ı), (11)

where

ϖ(ı) =
[
ρT (ı) ρT (ı−℘(ı)) ρT (ı−℘̂)

]T
,

Ω =


−M M−T T

✠ −2M+T+TT −T+M

✠ ✠ −M

 .

Lemma 2 [25] The matrices are Z, W and Y such that Y > 0,

 W Z

ZT −Y

 < 0, holds if and only if, W+

ZTY−1Z< 0.
Lemma 3 [26] Any constant matrixW∈Rn×n,WT =W> 0, scalars δ and ε with δ > ε and vector ρ : [ε, δ ]→Rn,

then,
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−(δ − ε)
∫ δ

ε
ρT (s)Wρ(s)ds≤−

(∫ δ

ε
ρ(s)ds

)T
W

(∫ δ

ε
ρ(s)ds

)
. (12)

3. Main results
Theorem 1 Assumption 1 is true, scalars Φ,℘̂, h and ε are positive, matricesR1,S1 the system (9) is stochastically

passive, ∃ matrices P> 0, Q> 0, H> 0, U> 0, matrixM and a constant ɣ> 0 hence, the subsequent LMIs are true:

χ : =

[
χ1 χ2

✠ χ3

]
,

χ1 : =


χ11 ΦP(B⊗Γ)+H−M M BP− εSΛ1

✠ −2H+M −MH 0

✠ ✠ −Q−H 0

✠ ✠ ✠ −εI+ℑ2U

 ,

χ11 : = 2P((I⊗A)+K+(1−Φ)(B⊗Γ))+Q−H− εRΛ1 ,

χ2 : =



P−I CP χ21 χ22

0 0 ℘̂Φ(B⊗Γ)TP χ23

0 0 0 0

0 0 ℘̂B 0

−ɣI 0 ℘̂I 0


,

χ21 : =℘̂((I⊗A)+K+(1−Φ)(B⊗Γ))TP,

χ22 : =℘̂
√

Φ(1−Φ)(B⊗Γ)TP,

χ23 : =−℘̂
√

Φ(1−Φ)(B⊗Γ)TP,

χ3 : =


−U 0 0

✠ H−2P 0

✠ ✠ H−2P

 ,

with
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RΛ1 =
RT

Λ1
+ST

Λ1
+ST

Λ1
+RΛ1

2
, SΛ1 =−

RT
Λ1

+ST
Λ1

2
, RΛ1 = diagO(R1), SΛ1 = diagO(S1)

Proof. Define the L-K functional

V(ρ(ı), ı) =V1(ρ(ı), ı)+V2(ρ(ı), ı)+V3(ρ(ı), ı)+V4(ρ(ı), ı), (13)

where

V1(ρ(ı), ı) = ρT (ı)Pρ(ı), (14)

V2(ρ(ı), ı) =
∫ ı

ı−℘̂
ρT (s)Qρ(s)ds, (15)

V3(ρ(ı), ı) =℘̂
∫ 0

−℘̂

∫ ı

ı+s
ρ̇T (θ)Hρ̇(θ)dθds, (16)

V4(ρ(ı), ı) = ℑ
∫ 0

−ℑ

∫ ı

ı+s
F̃T (ρ(θ))UF̃(ρ(θ))dθds. (17)

Applying L, then

LV(ρ(ı), ı) = LV1(ρ(ı), ı)+LV2(ρ(ı), ı)+LV3(ρ(ı), ı)+LV4(ρ(ı), ı), (18)

where

LV1(ρ(ı), ı) = 2ρT (ı)P
[
(I⊗A+K+(1−Φ)(B⊗Γ))ρ(ı)+BF̃(ρ(ı))+C

∫ ı

ı−ℑ(ı)
F̃(ρ(s))ds

+Φ(B⊗Γ)ρ(ı−℘(ı))+w(ı)
]
, (19)

LV2(ρ(ı), ı) = ρT (ı)Qρ(ı)−ρT (ı−℘̂)Qρ(ı−℘̂), (20)

LV3(ρ(ı), ı) =℘̂2ρ̇T (ı)Hρ̇(ı)−℘̂
∫ ı

ı−℘̂
ρ̇T (s)Hρ̇(s)ds, (21)

LV4(ρ(ı), ı) = ℑ2F̃T (ρ(ı))UF̃(ρ(ı))−ℑ
∫ ı

−ℑ
F̃T (ρ(s))UF̃(ρ(s))ds. (22)
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By using Lemma 2.2

−℘̂
∫ ı

ı−℘̂
ρ̇T (s)dsHρ̇(s)ds≤


ρ(ı)

ρ(ı−℘(ı))

ρ(ı−℘̂)


T 

−H H−M M

✠ −2H+M+MT −M+H

✠ ✠ −H




ρ(ı)

ρ(ı−℘(ı))

ρ(ı−℘̂)

 . (23)

By using Lemma 2.4 the above integral terms will become

−ℑ
∫ ı

−ℑ
F̃T (ρ(s))UF̃(ρ(s))ds≤−

(∫ ı

ı−ℑ(ı)
F̃T (ρ(s))ds

)T
U
(∫ ı

ı−ℑ(ı)
F̃(ρ(s))ds

)
. (24)

Moreover, one has

L{℘̂2ρ̇T (ı)Hρ̇(ı)}=℘̂2ςT (ı)
{

ζ T
1 Hζ1 +Φ(1−Φ)ζ T

2 Hζ2

}
, (25)

where

ζ1 =
[
℘̂(I⊗A)+K+(1−Φ)(B⊗Γ) ℘̂Φ(B⊗Γ) 0 ℘̂B ℘̂I 0

]
,

ζ2 =
[
℘̂(B⊗Γ) −℘̂(B⊗Γ) 0 0 0 0

]
,

ς(ı) =
[
ρT (ı) ρT (ı−℘(ı)) ρT (ı−℘̂) F̃(ρ(ı)) w(ı)

(∫ ı

ı−ℑ(ı)
F̃(ρ(s))ds

)T ]T
.

From (4), for any ε the nonlinear functions F̂(ℓ(ı)) satisfy

−ε

[
ρ(ı)

F̂(ρ(ı))

]T [
RΛ1 SΛ1

✠ I

][
ρ(ı)

F̂(ρ(ı))

]
≥ 0, (26)

where RΛ1 , SΛ1 are also defined in.
The following expression is supplied after recalling the last target to demonstrate nonattendance of the passivity

property:
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J(ıπ) : = 2E
{∫ ıπ

0
ρT (ı)w(ı)dı

}
≥−ɣE

{∫ ıπ

0
wT (ı)w(ı)dı

}
,

⇒−2E
{∫ tπ

0
ρT (ı)w(t)dt

}
−ɣE

{∫ ıπ

0
wT (ı)w(t)dı

}
≤ 0,

J(ıπ) : = E
{∫ ıπ

0
−2ρT (ı)w(ı)−ɣwT (t)w(ı)

}
. (27)

Additionally, observe that it is true for the matricesP and H.

−PH−1P< H−2P (28)

Finally, using Lemma 2.3 and equivalent transformations, combining (27) and (36), it is possible to deduce that

E
{
LV(ρ(ı), ı)−2ρT (ı)w(ı)−ɣwT (ı)w(ı)

}
≤ E

{
ςT (ı)χς(ı)

}
< 0. (29)

where ς(ı) is defined in Equ. (33).
If we integrate the two sides of (37) with regard to t across the range of 0 to tπ , we have

2E
{∫ ıπ

0
ρT (ı)ρ(ı)dı

}
≥ E

{∫ ıπ

0
LV(ρ(ı), ı)−ɣρT (ı)w(ı)dı

}
≥−ɣE

{∫ ıπ

0
wT (ı)w(ı)dı

}
. (30)

Thus, according to Definition 2.1, the ensuing synchronization of CDNs (9) is stochastically passive, concluding the
argument.

Theorem 2 Assumption 1 true, for given scalars Φ, ℘̂, ℑ and ε are positive, matrices R1, S1 the system
(9) is stochastically passive, ∃ matrices P = diag{P1, P2, ..., PO} > 0, Q = diag{Q1, Q2, ..., QO} > 0, H =

diag{H1, H2, ..., HO} > 0, U = diag{U1, U2, ..., UO} > 0, matrix D = diag{D1, D2, ..., DO} > 0, M and a constant
ɣ> 0 then following LMIs holds:
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χ : =

 χ1 χ2

✠ χ3

 ,

χ1 : =



χ11 βP(B⊗Γ)+H−M M BP− εSΛ1

✠ −2H+M −M+H 0

✠ ✠ −Q−H 0

✠ ✠ ✠ −εI+h2U

 ,

χ11 : = 2P(I⊗A)+2D+(1−Φ)(B⊗Γ)+Q−H− εRΛ1 ,

χ2 : =



P−I CP χ21 χ22

0 0 ℘̂Φ(B⊗Γ)TP χ23

0 0 0 0

0 0 ℘̂B 0

−ɣI 0 ℘̂I 0


,

χ21 : =℘̂(I⊗A)TP+℘̂KTP+P(1−Φ)(B⊗Γ)TP,

χ22 : =℘̂
√

Φ(1−Φ)(B⊗Γ)TP,

χ23 : =−℘̂
√

Φ(1−Φ)(B⊗Γ)TP,

χ3 : =


−U 0 0

✠ H−2P 0

✠ ✠ H−2P

 ,

with

RΛ1 =
RT

Λ1
+ST

Λ1
+ST

Λ1
+RΛ1

2
, SΛ1 =−

RT
Λ1

+ST
Λ1

2
, RΛ1 = diagO(R1), SΛ1 = diagO(S1),

it through the desired controllers can be represented as Kη =P−1
η DΦ.

Proof. D=PK. The method of derivation approaches that used in Theorem 3.1. So it easy omitted here.
Remark 1 Additionally, if we take into consideration the delayed CDNs in (1) without distributed time-varying

delays andB= I, then
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þ̇η(ı) = Aþη(ı)+ f(ı, þη(ı))+(1−Φ(ı))∑O
ψ=1bηψ Γþψ(ı)+Φ(ı)∑O

ψ=1bηψ Γþψ(ı−℘(ı))

+uη(ı)+wη(ı),

þη(ı) = η(ı), ı ∈ [−℘̂, 0].

(31)

Then, using a similar concept to the proof of Theorem 3.2 that follows, we reach at 3.3.
Corollary 1 Under Assumption 1 holds true, the system (9) is stochastically passive considering that the given

scalars Φ, ℘̂, ℑ, and ε are positive, matrices R1, S1, if it contains matrices P = diag{P1, P2, ..., PO} > 0,
Q = diag{Q1, Q2, ..., QO} > 0, H = diag{H1, H2, ..., HO} > 0, U = diag{U1, U2, ..., UO} > 0, matrix D =

diag{D1, D2, ..., DO}> 0,M and a constant ɣ> 0 such that the resulting LMIs are true:

χ : =

 χ1 χ2

✠ χ3

 ,

χ1 : =



χ11 ΦP(B⊗Γ)+H−M M P− εSΛ1

✠ −2H+M −M+H 0

✠ ✠ −Q−H 0

✠ ✠ ✠ −εI

 ,

χ11 : = 2P(I⊗A)+2D+(1−Φ)(B⊗Γ)+Q−H− εRΛ1 ,

χ2 : =



P−I χ21 χ22

0 ℘̂Φ(B⊗Γ)TP χ23

0 0 0

0 ℘̂I 0

 ,

χ21 : =℘̂(I⊗A)TP+℘̂KTP+P(1−Φ)(B⊗Γ)TP,

χ22 : =℘̂
√

Φ(1−Φ)(B⊗Γ)TP,

χ23 : =−℘̂
√

Φ(1−Φ)(B⊗Γ)TP,

χ3 : =


−ɣI ℘̂I 0

✠ H−2P 0

✠ ✠ H−2P

 ,
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with

RΛ1 =
RT

Λ1
+ST

Λ1
+ST

Λ1
+RΛ1

2
, SΛ1 =−

RT
Λ1

+ST
Λ1

2
, RΛ1 = diagO(R1), SΛ1 = diagO(S1),

moreover, the desired gains from the controllers might be presented as Kη =P−1
η Dη, η= 1, 2, ...., O.

4. Numerical example
Example 1 Consider the (1) with 4-nodes, 2-dimensional nodes. So far, one has O= 4, n = 2.
Following are the parameters:

A=

 2.5 −0.75

1.5 −0.5

 , B=

 −3.5 −4

−2.5 −3.9

 , C=

 −3.5 −1.48

2.5 −3.9

 .

The inner-coupling Γ and the network topology B matrices are given as

Γ =

 0.2 −1.5

1.4 −1.3

 , B=



−2 2 0 0

0 −2 2 0

0 0 −2 2

2 0 0 −2

 .

The functions f(·) is

f(þη(ı)) =

 −0.5þη1(ı)+ tanh(0.2þη1(ı))+0.2þη2(ı))

0.95þη2(ı))− tanh(0.75þη2(ı))

 , η= 1, 2, 3, 4.

It is evident that f(·) is satisfied,

R1 =

 −0.3 0

0 0.2

 , S1 =

 −0.5 0

0 0.2

 .

The specified delays are used as℘(ı) = 1.95+0.05sin(10ı), ℘̂= 0.2, Φ = 0.5, ℑ = 0.1, ε = 0.9.
So that Table 1 lists the largest permissible upper limitations of℘̂ for various Φ values.
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Table 1. Maximum allowable bounds of ℘̂with different values of Φ for Example 4.1

℘̂ 0.1 0.2 0.3 0.4 0.5 0.7 0.9

Theorem 3.2 2.2220 2.7154 2.8124 2.8345 3.9212 3.9218 3.9240

The resulting controller gain matrices are

K1 =

 −625.8544 399.8733

334.1447 −223.2991

 , K2 =

 −399.3295 263.8947

232.6038 −163.0190

 , K3 =

 −399.3295 263.8947

232.6038 −163.0190

 .

5. Conclusion
In this study, we propose a novel approach for improving passive synchronization in complex dynamical networks

(CDNs) with time-varying distributed coupling delays that occur randomly. In particular, the randomly occurring coupling
delays are modeled using a Bernoulli random variable. By developing a feedback controller and utilizing a Lyapunov-
Krasovskii functional (LKF)with integral terms, we derive synchronization criteria in the form of linearmatrix inequalities
(LMIs). Finally, a numerical example is presented to demonstrate the effectiveness of the proposed solutions.
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