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Abstract: A public-key cryptosystem using orthogonal product states is presented. It is based on the non-locality of
some orthogonal product states in an untangled two-particle quantum system. Every user creates a group of two-particle
quantum systems and shares them with a key management center (KMC) in which the first particle of the two-particle
systems are held by the user and the second particle of the two-particle systems are held by KMC. This is the user’s
(private key, public key) pair. Two users can exchange secret message by this cryptosystem. The laws of quantum
physics guarantees that this cryptosystem has unconditional security. There are no entangled states needed in this
public-key cryptosystem. Moreover both users and KMC needn’t perform complex quantum operations except quantum
measurements on a particle or a two-particle system. So the public-key cryptosystem is feasible to implement by today’s
technology. One orthogonal product quantum system contributes three bits to the key. So the cryptosystem has a high
channel capacity.

Keywords: quantum public-key cryptosystem, orthogonal product states, message authentication, measurement, channel
capacity
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Abbreviation
KMC Key Management Center
XOR Exclusive OR
QKD Quantum Key Distribution

1. Introduction
Quantum cryptography is a very active research field of quantum information technology. In quantum cryptography

people use quantum particles or composed quantum sysytems as the information media to construct cryptographic
protocols and cryptographic systems. The properties of quantum systems guarantee that quantum cryptographic protocols
can achieve unconditional security, which is a big advantage in relative to classical cryptographic protocols based on
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computation complexity. Bennett and Brassard presented the first quantum key distribution protocol in 1984 [1]. It is
called BB84 protocol. Afterwards many QKD schemes were presented [2–10]. Experiments for QKD have also been
realized. The first QKD experiment was finished by Bennett et al. in which they carried out BB84 protocl in laboratory
[11]. Now people have realized QKD in optical fibred with a distance more than 400 km [12]. QKD in free space was
also achieved beyond 1 kilometer [13]. In 2017 experimentalists completed QKD between Micius statelite and the earth
station which the distance is over 1,200 kilometers [14].

It’s known that key management is a complex and difficult problem in traditional classical cryptosystems. To
slove this difficulity people developed public-key cryptographic algotirhms which can greatly reduce the complexity
and expense of key mangement. In 1978 Rivest, Shamir and Adleman issued a public-key algorithm which is based on
the large number decomposition problem [15]. It is the first public-key algorithm which is called RSA algorithm. Now
public-key algorithms are applied widely in business affairs, military affairs, government affairs, personal privacy and
so on. But in 1984 Peter Shor showed that RSA algorithm is crashed by a quantum alorithm which is known as Shor
algorithm [16]. Later researchers found that most of classical public-key algorithms are unsafe if they are attacked by
some quantum algorithms, too. Gottesman provided a quantum one-way function. He showed that it may be used to
build a quantum message authentication scheme [17]. He also advised that we can use it to build a quantum public-key
algorithm. Nikolopoulos proposed that the first quantum public-key cryptosystem [18] in 2008. In Nikolopoulos’ scheme
a user Alice creates a group of quantum particles which differ from each other by a angle in Bloch sphere of the state
space of the particle. Then she saves the particle sequence in a key management center which is abbreviated KMC as her
public-key while the state sequence of the particle sequence is her private key. Another user can send secret message to
Alice by the help of KMC. After that researchers have developed many quantum public-key cryptosystems. Nikolopoulos
and Ioannou presented a quantum cryptosystem in 2009 [19]. Then Ioannou and Mosca gave a extended version with
reusable key based on it [20]. Luo et al. built a quantum public-key algorithm based on parameterized unitary groups
[21]. Seyfarth et al. gave a discussion of the security of Ioannou’s scheme [22]. Li et al. provided a quantum public-key
cryptosystem using a set of non-orthogonal quantum states [23]. Vlachou et al. presented a scheme based on the special
property of quantum walk [24]. A quantum public-key cryptosystem is issued by wang et al. in which the Bell states
and generalized Pauli operations are appplied to realize a secure communication scheme [25]. Liu et al. gave a quantum
public-key encryption scheme in which a user uses a four-state key to accomplish encryption and decryption [26]. Zhang
et al. presented a quantum public-key crtptosystem which uses quantum teleportation to transmit secret message [27]. Li
and Chen issued a quantum public-key cryptosystem with the Bell states [28]. A ternary quantum public-key crtptosystem
utilising qubit rotation is provided by wang et al. [29].

In this paper we present a quantum public-key cryptosystem with high channel capacity. It uses the property of a set
of orthogonal product states in a two-particle quantum system. Users creates a group of two-particle systems as the (public
key, private key) pair. Every two-particle system is in one of nine orthogonal product states at random. Then user keeps
the private key while KMC keeps the public key. N users can accomplish secret communications with each other in virtue
of of KMC. Furthermore users can perform message authentication on the message exchanged. There are no entangled
states used in secret communication or message authentication. Users and KMC needn’t perform complex operations
except quantum measurement on a single particle or a tow-particle composed system. So it’s feasible to implement by
today’s technology in laboratory. User can accomplish message authentication to guarantee the truth and the integrity of
the message. The cryptosystem is proved to be secure. One two-particle system can contribute three bits to the binary
string which is actually used to encrypt the message. So the cryptosystem has a high channel capacity.

2. Main idea
In quantum science people often call a 3-level quantum system “a qutrit”. We denote the three eigenstate states of

a qutrit as |0 >, |1 >, |2 >. In 1999 Bennett et al. [30] issued that there are nine states of a composed system which
contains two qutrits
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|ϕ1 >= |1 > |1 > |ϕ2 >= |0 >
1√
2
(|0 >+|1 >) |ϕ3 >= |0 >

1√
2
(|0 >−|1 >)

|ϕ4 >= |2 >
1√
2
(|1 >+|2 >) |ϕ5 >= |2 >

1√
2
(|1 >−|2 >) |ϕ6 >=

1√
2
(|1 >+|2 >)|0 >

|ϕ7 >=
1√
2
(|1 >−|2 >)|0 > |ϕ8 >=

1√
2
(|0 >+|1 >)|2 > |ϕ9 >=

1√
2
(|0 >−|1 >)|2 > . (1)

They compose a complete orthogonal state set denoted as

Bϕ = {|ϕ1 >, |ϕ2 >, ..., |ϕ9 >} (2)

which form a orthogonal measurement basis for a two-qutrit system. So a person can do measurement on a two-qutrit
system in Bϕ . On the other hand if a person wants to measure one qutrit in the two-qutrit system, he or she can measure
it in any one the following three base

B0 = {|0 >, |1 >, |2 >} (3)

B1 =

{
1√
2
(|0 >+|1 >),

1√
2
(|0 >−|1 >), |2 >

}
(4)

B2 =

{
|0 >,

1√
2
(|1 >+|2 >),

1√
2
(|1 >−|2 >)

}
. (5)

Bennett et al. proposed that such a two-qutrit system can show non-locality to a certain extent. Considering two
persons, they can only do local operations on one qutrit of the two-qutrit system respectively. On the other hand they can’t
exchange qutrits. Only classical information can be exchaged between them by a classical channel. If a qutrit’s state is
one of the nine states, the two persons can’t determine in which state the two-qutrit system is for sure. Since then many
cryptographic schemes based on these orthogonal product states have been developed [31–39]. In this paper we present
a quantum public-key cryptosystem based on the non-locality of the orthogonal product states.

We assume that there are two users who are named as Alice and Bob. Just like that in classical public-key
cryotosystem, a key management center (KMC) help the users to complete the secret communications. Then Alice
produces M two-qutrit systems. Each two-qutrit system is randomly in one state of the state set {|ϕ1 >, |ϕ2 >, ..., |ϕ9 >}.
Alice records the state of each two-qutrit system. Finally she gets a state sequence

φ = (ψ1ψ2...ψ i...ψM), ψ i ∈ {|ϕ1 >, |ϕ2 >, ..., |ϕ9 >} (6)

Now the following coding rule is given which both Alice and Bob consent to.
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Coding Rule

|ϕ1 >→ null, |ϕ2 >→ 001, |ϕ3 >→ 010,

|ϕ4 >→ 011, |ϕ5 >→ 100, |ϕ6 >→ 101,

|ϕ7 >→ 110, |ϕ8 >→ 111, |ϕ9 >→ 000 (7)

The code word “null” means that if the state is |ϕ1 >, it will be ignored. Alice takes out the second qutrit (denoted as
qutrit 2) of every two-qutrit system and gives them to KMC. She keeps the first qutrit (denoted as qutrit 1) at her hands.
Now Alice holds an M-qutrit sequence denoted as d while KMC holds an M-qutrit sequence denoted as e. So we define
e as Alice’s public key. Accordingly, < d, φ > is defined as Alice’s private key.

Now Bob can sends a secret message to Alice by the help of KMC. First he contacts KMC to get the public key e of
Alice. When Bob receives e, he asks Alice to perform an error-checking with him. They mutually select m qutrits from e
at random. Then Bob measures these qutrits in B0, B1 or B2 at random and writes down his measurement results. If Bob
chooses the correct measurement basis, he will get the correct measurements result which is just the same as the original
state of the qutrit. The correct measurement basis is showed as follows

Correct Basis Rule
If the state is |ϕ1 >, |ϕ6 >, |ϕ7 >, |ϕ8 > or |ϕ9 >, the correct basis is B0; if the state is |ϕ2 > or |ϕ3 >, the correct

basis is B1; if the state is |ϕ4 > or |ϕ5 >, the correct basis is B2.
Then Bob declares his measurement base and measurement results in the classical channel. To each qutrit which Bob

has chosen the correct measurement basis, Aliice compares the state of qutrit 2 in φ and Bob’s measurement result. They
should be exactly identical if no eavesdroppers exist. It can be shown in Table 1.

Table 1. error-checking

State of two-qutrit system State of qutrit 2 Correct measurement basis for Bob Bob’s result

|ϕ1 > |1 > B0 |1 >

|ϕ2 >
1√
2
(|0 >+|1 >) B1

1√
2
(|0 >+|1 >)

|ϕ3 >
1√
2
(|0 >−|1 >) B1

1√
2
(|0 >−|1 >)

|ϕ4 >
1√
2
(|1 >+|2 >) B2

1√
2
(|1 >+|2 >)

|ϕ5 >
1√
2
(|1 >−|2 >) B2

1√
2
(|1 >−|2 >)

|ϕ6 > |0 > B0 |0 >

|ϕ7 > |0 > B0 |0 >

|ϕ8 > |2 > B0 |2 >

|ϕ9 > |2 > B0 |2 >

If Alice and Bob gets too many different results, they come to a conclusion that eavesdroppers exist. They abandon
the communication process. Or the error-checking passes. Alice and Bob go into the next step.

Alice sends Bob the left M-m qutrits in e using the quantum channel. When Bob gets them, he puts each qutrit
together with the corresponding qutrit in d at his hands. At last Bob gets M-m two-qutrit systems. Bob performs collective
measurements on every two-qutrit system in basis Bϕ and writes down all the measurement results he gets. So he gets a
state sequence φ ′ with a length M-m.
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Then Alice and Bob perform the second error-checking. Considering that the state |ϕ1 > doesn’t contribute code
word in accordance with the Coding Rule, so all the two-qutrit systems in |ϕ1 > should be used in the error-checking.
So at first Bob chooses m1 two-qutrit systems. They include all the two-qutrit systems which is in the state |ϕ1 > and
some two-qutrit systems which is in one of {|ϕ2 >, |ϕ2 >, ..., |ϕ9 >} at random. Then Bob declares the m1 states in φ ′

through the classical channel. Next Alice compares them with the corresponding states in φ of her private key < d, φ >.
If Alice and Bob find many disagreements, they confirm that some eavesdroppers have intervened. So they abandon the
communication process. Or the second error-checking succeeds. They can continue.

To the left M-m-m1 states in φ , Alice records in accordance with the coding rule while to the left M-m-m1 states
in φ ′, Bob records in accordance with the coding rule. Finally Alice will get a string Ka and Bob will get a string Kb.
Obviously Ka should be equal to Kb if no eavesdroppers exist. So Bob can send Alice a n-bit secret message denoted P in
which n = 3(M-m-m1). Bob does an XOR operation on P and Kb. Then he gets PS = P⊕Kb. Next Bob transmits PS to
Alice. When Alice receives PS, she does an XOR operation on PS and Ka. It’s obvious that Alice gets

P′ = PS⊕Ka = P⊕Kb ⊕Ka = P (8)

because Ka = Kb. Now Alice obtains the original secret message P. It will be proved in section 4.1 that no third party
can get P. So Bob successfully makes Alice to receive a secret message. On the contrary, if Alice needs to send secret
information to Bob, what they should do is to exchange their roles.

Finally we have to sovle the last problem. Alice’s (public key, private key) pair is spent after Bob transmits her a
secret message. It impossible for another user to implement secret communication with Alice just as Bob does. To solve
this problem Alice should create many (public key, private key) pairs. All Alice’s public keys are saved in KMC’s storage.

3. The public-key cryptosystem using othogonal product states
In the cryptosystem N users want to perform secret communications with each other. Every user creates a sequence

consisting of M two-qutrit systems. This is his or her (public key, private key) pair in which every two-qutrit system is
in one state in {|ϕ1 >, |ϕ2 >, ..., |ϕ9 >} at random. A user has L (public key, private key) pairs. For example, Alice’s
private key set is

(Kd)Alice = {< di, φi >, i = 1, 2, ..., L} (9)

in which

φi = (ψ1ψ2...ψ j...ψM), ψ j ∈ {|ϕ1 >, |ϕ2 >, ..., |ϕ9 >} (10)

Alice keeps her public key set

(Ke)Alice = {ei, i = 1, 2, ..., L} (11)

in KMC. Everyone can send and receive classical information through a public classical channel. On the other hand the
classical channel is authenticated, or in other words, everyone can affirm who is exchanging classical information with
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him. There is an public quantum channel needed. Two persons can can exchange qutrits through the quantum channel.
But the quantum channel is insecure. It’s open to all persons.

3.1 Secret communication process

Without losing generality, we assume that two users Alice and Bob wants to perform secret communication. Bob
decides to send Alice a binary string P which can’t be obtained by any other one except Alice. Alice and Bob execute the
process.

Step 1: Bob contacts KMC asking for one of Alice’s public keys, for example e j. Then KMC sends e j to Bob through
the quantum channel

Step 2: Bob tells Alice and asks Alice to perform the first error-checking process together with him.
Step 3 (the first error-checking): Alice and Bob mutually choose m qutrits in e j at random. Then Bob measures

them in B0, B1 or B2 at random and records his (measure basis, measurement result) for each qutrit. Bob declares his
(measure basis, measurement result) sequence through the classical channel. Alice chooses the corresponding states in
φ j of her private key < d j, φ j > and compares with Bob’s (measure basis, measurement result) sequence in accordance
with the Correct Basis Rule in section 2. To each qutrit if Bob has just chosen the correct basis, his measurement result
must be identical to the corresponding state in φ j at Alice’s hands. If Alice and Bob find that they gets too many different
results, they stop the communication and go back to step 1. Or they continue to perform the next step.

Step 4: Bob throws the m checking qutrits in e j while Alice throws the corresponding m qutrits in d j. Then Alice
sends the left M-m qutrits in d j to Bob.

Step 5 (the second error-checking): After Bob receives these qutrits from Alice, he puts them together with the
corresponding M-m qutrits in e j. So Bob gets M-m two-qutrit systems. Then Bob measures them in basis Bϕ . Next Bob
chooses m1 two-qutrit systems which include all the two qutrit systems which are in |ϕ1 > and some two-qutrit systems
which are in one state of the eight-state set {|ϕ2 >, |ϕ3 >, ..., |ϕ9 >}. Bob declares the measurement results of the m1
two-qutrit systems through the classical channel. Then Alice compares Bob’s measurement results of the m1 two-qutrit
systems with the corresponding states in φ j. If Alice finds two many disagreements, she tells Bob to stop communication
and go back to step 1. Or they enter the next step.

Step 6: Bob records in accordance with the coding rule to the left M-m-m1 measurement results. Finally Bob obtains
Kb which is a n-bit binary string with n = 3(M-m-m1).

Step 7: To the left M-m-m1 states in φ j, Alice records in accordance with the coding rule. So Alice obtains Ka. It is
an n-bit binary string with n = 3(M-m-m1). Obviously we have Ka = Kb.

Step 8: In order to send P to Alice, Bob implements an XOR operation on P and Kb. So he has EP = P⊕Kb. Next
Bob transmits EP to Alice.

Step 9: Alice implements an XOR operation on EP and Ka when she receives EP, So she gets

P′ = EP⊕Ka = P⊕Kb ⊕Ka = P.

Now Alice obtains P. It is just what Bob hope to transmit to Alice. It’s easy to find out that every two-qutrit system
contribute three bit for Ka or Kb. So the cryptosystem has a high channel capacity.

On the contrary, if Alice decides to transmit Bob a message secretly, what they should do is exchanging their roles
in the above communication process.

3.2 Message authentication

To guarantee the reality and integrity of the message, Bob can apply message authentication to the message before
he sends it to Alice. After receiving the message, Alice verify it. If the verification is successfull, Alice can assure that
the message is really sent by Bob. Moreover it hasn’t been tampered before arriving to Alice.
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3.2.1Authentication process

First every user agrees to the authentication rule.
Authentication Rule

1√
2
(|0 >+|1 >)→ 0,

1√
2
(|0 >−|1 >)→ 1,

1√
2
(|1 >+|2 >)→ 0,

1√
2
(|1 >−|2 >)→ 1,

|1 >→ 1, |0 >→ 0, |2 >→ 1 (12)

Before Bob sends the message to Alice, he performs message authentication on it. To produce the authentication
token, Bob does as follows.

Step 1: Bob applies SHA-1 algorithm to P. At last he gets a n1-bit string AP which is the abstract of P.
Step 2: Bob randomly selects < dk, φk > from his private key set and takes out the first n1 states in φk.
Step 3: To every one of the n1 states, Bob gets the state of the second qutrit and records in accordance with the

authentication rule. At last he obtain SB which is a n1-bit binary string.
Step 4: Bob apply an XOR operation to AP with SB. So he has PS = AP⊕SB.
Step 5: Bob puts k and PS together with P. Then he gets a string PDS.
Now Bob sends PDS to Alice in accordance with the communication process in section 3.1. It must be pointed that

the length of the string PDS is n in order to guarantee it to be sent as the communication process asks. It’s easy to be
realized by dividing the origin message into several parts with appropriate length.

3.2.2Verification process

When Alice receives PDS after the communication process, she performs as follows.
Step 1: Alice divides PDS into k, P and PS. Then Alice gets the public key ek of Bob from KMC.
Step 2: Alice takes out the first n1 qutrits in ek. Then Alice informs Bob to declare the correct measurement basis

sequence for these qutrits.
Step 3: Bob declares the correct measurement basis sequence

BV = (B1B2...Bi...Bn1), Bi ∈ {B0, B1, B2} (13)

in accordance with the correct basis rule in section 2.
Step 4: Alice measures each qutrit in accordance with BV . She writes down all the measurement results in accordance

with the authentication rule. So Alice has an n1-bit binary string SA.
Step 5: Alice apply an XOR operation to PS with SA. As a result, she obtains AP′ = PS⊕SA.
Step 6: Alice applies SHA-1 algorithm to P. Then she obtains an n1-bit string AP. As known AP is the abstract of P.
Step 7: Alice compares AP and AP′. If AP′ = AP, the verification is valid. Alice comes to a conclusion that it’s Bob

for sure who sends the message to her and the message is complete with out being distorted.
Obviously we have SB = SA if no eavesdroppers exist. It’s summarized in the following Table 2.
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Table 2. Relations of SB and SA

The state in φk The bit in SB The state of qutrit in ek Alice’s measurement basis The bit in SA

|ϕ1 > 1 |1 > B0 1

|ϕ2 > 0
1√
2
(|0 >+|1 >) B1 0

|ϕ3 > 1
1√
2
(|0 >−|1 >) B1 1

|ϕ4 > 0
1√
2
(|1 >+|2 >) B2 0

|ϕ5 > 1
1√
2
(|1 >−|2 >) B2 1

|ϕ6 > 0 |0 > B0 0
|ϕ7 > 0 |0 > B0 0
|ϕ8 > 1 |2 > B0 1
|ϕ9 > 1 |2 > B0 1

So we have

AP′ = PS⊕SA = AP⊕SB ⊕SA = AP (14)

It will be proved in Section 4 that eavesdroppers can’t falsify the authentication token or distort the message. So we
have showed users can realize the message authentication successfully.

4. Security of the quantum public-key cryptosystem
The communication process and the authentication process are secure. We prove it as follows.

4.1 Secret communication process

Tow users can exchage message secretly. No third party can acquire the message.
When Bob wants to send a secret message to Alice, an eavaedrooper, Eve, tries to obtain it. First Eve may catche

the qutrits in e j when they are being transfered from KMC to Bob in step 2 of the communication process in section 3.1.
Eve may measures these qutrits to draw certain information which is helpful to her in getting Bob’s message. But it’s
infeasible because the qutrits are in some non-orthogonal states at random. There are three base B0, B1, B2. Eve doesn’t
know the correct measurement basis for any qutrit. If she chooses a wrong basis to measure a qutrit, the state of the qutrit
will collapse to the basic vector of the basis. Obviously the probability for Eve to just select the correct basis for one qutrit
is

p1 =
1
3
. (15)

In step 3 of the communication process, Bob and Alice do the first error-checking. To qutrit if Eve selects the right
basis, her measurement doesn’t change the state of the qutrit. So Alice and Bob will get the same results without finding
anything wrong. In general, the probability which Alice and Bob obtains identical results is

1
3
. If Eve selects a wrong

basis, the state of the qutrit will be changed. In general, the probability for them to obtain identical results is

Contemporary Mathematics 1462 | Xiaoyu Li, et al.



p2 =
1
9
×
(

1
3
×
(

1
2
× 1

2
+

1
2
× 1

2

)
×2

)
×9 =

1
3

(16)

Then the whole probability which they obtain identical results is

ps = p1 + p2 =
2
3

(17)

For all the m qutrits in error-checking, the probability is

Perror = (ps)
m =

(
2
3

)m

(18)

If m = 100,

Perror =

(
2
3

)100

≈ (10)−18 (19)

It’s a very, very small number. As a result, Alice and Bob will get many disagreements in the first error-checking and
abandon the communication process. At last Eve gets nothing. So Eve can’t succeed in getting the message by measuring
the qutrits from KMC to Bob.

Second in the step 4 of the communication process when Alice sends the qutrits of d j to Bob, Eve may catches them
trying to get some information about the message. She won’t succeed because Alice and Bob perform the second error-
checking in the step 5. If Eve measures the qutrits, she face the same situation discussed above. Obviously the probability
which Alice and Bob don’t detect Eve’s existence is

Perror =

(
2
3

)m1

(20)

in which m1 is the number of two-qutrit systems which are used for error-checking in step 5 (the second error-checking)
of the communication process in section 3.1. If m1 = 100,

Perror =

(
2
3

)100

≈ (10)−18 (21)

That is to say, Eve is destined to be detected. This attack method can’t succeed.
Third in step 8 of the communication process Eve may obtain the string EP when Bob sends it to Alice. But Eve

can’t obtain the message P from EP. The reason is that EP = P⊕Ka. Though Eve has EP, she can’t obtain P because
she has no chance of getting Ka or Kb which is equal to Ka at all.

Fourth Eve may perform a collective attack. That is to say, she may catch both the qutrits in e j which KMC sends
Bob and the qutrits in d j which Alice sends Bob. To every qutrit in e j and the corresponding one in d j Eve put them
together to form a two-qutrit system. Then she does collective measurements on these two-qutrit systems. To do this Eve
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must catch the qutrits in e j and keep them until she gets the qutrits in d j to perform collective measurements. But once
Eve does as above, Bob won’t receive e j in step 2. So Alice and Bob can’t performs communication process any more.
They terminate communication at once. As a result, Eve gets nothing. On the other hand Eve may try to make a copy of
each qutrit in e j and a copy of each qutrit in d j. Then to ecah copy of qutrit in e j and the corresponding copy of qutrit in
d j Alice puts them together to form acomposed system. So she can implement collective measurement on the two-qutrit
systems with intention to get something about the message. But quantum non-cloning theorem forbids her to copy an
unknown state. Eve isn’t able to do such collective attack.

Finally can KMC obtain the secret message exchanged between Alice and Bob by its special position? In the quantum
public-key cryptosystem, KMC knonw nothing about the state of any qutrit in e j though it keeps e j. As a result, KMC
can do nothing more that Eve can do. That is to say, KMC can’t obtain the secret message, too.

Now it has been proved that no third party can get the secret message which Bob want to give Alice. So the
communication process is secure.

4.2 Message authentication process

It can be proved that the message authentication on Bob’s message is secure. No one can fake the authentication
token of Bob’s message. If the message is distorted when it is transfered from Bob to Alice, the verification of message
authentication is sure to fail. So Alice will find that the message is incredible. We give the proof as follows.

It’s easy to notice that the verification passes if and only if SB = SA. If an eavesdropper Eve wants sends a faked
message pretending to be from Bob, she has to make Alice to get a string SA which is equal to a string SE at her hands.
According the step 3 and step 4 of the verification process, Alice gets SA by measuring Bob’ public key ek in the correct
measurement basis sequence BV which Bob gives her. Bob can deduce Alice’s measurement results because he has his
private key < dk, φk > so that Bob can get SB which is equal to SA. But Bob keeps his private key absolutely secret. Eve
has no way to get it. Moreover Eve has no way to get the correct measurement basis sequence BV . What ever does Eve
do, the probability that she make Alice to get a string SA with SA = SE is no more than

PEve =

(
1
2

)n1

. (22)

If n1 = 100,

PEve =

(
1
2

)100

≈ 10−30. (23)

So any faked message produced by Eve can’t pass the verification.
On the other hand we assume that the message is distorted when it is transfered from Bob to Alice. That is to say, in

step 1 of the verification process P turns into another string Pe. Then Alice produces the abstract of Pe to get a string APe
in step 6 of the verification process. On the other hand Alice get AP′ = PS⊕SA from the authentication token PS in step
5 of the verification process. Alice compares Ape and AP′. Obvious Alice will find APe ̸= AP′. So Alice finds that the
message has been distorted.

5. Feasibility and advantages
In the public-key cryptosystem users and KMC need to perform some operations as follows. They need creat a group

of two-qutrit systems, perform single-particle measurement on one qutrit and do collective measurement on a composed
system containing two qutrits. All these operations have been fulfilled in practice for decades of years. So there are
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no serious technical difficulities for this public-key cryptosystem. But there is still a problem left. As known quantum
systems will occur decoherence inevitably over time. It may cause quantum states collapse and quantum cryptographical
protocols fail. In QKD protocols the key distribution process is always excuted very fast so that it has been completed
befor decoherence happens. But to a public key cryptosystem KMC need keep every user’s the public key which consists
of quantum particles for a long time waiting for a user to ask for it. This is an obstacle to all quantum public-key
cryptographical systems. A possible solution is to rebuild users’ public keys peroidicaly before decoherence occurs.
But building a large-scale quantum cryptographic networks is still very difficult. Biham, Hunter and Tor a quantum
cryptographical network based quantum memories [40]. It may be possible to construct wide-range quantum public key
cryptosystems in practice using their method. We will discuss it in our future work.

In this cryptosystem the (public key, private key) pair is build from two-qutrit system. No entangled states are needed.
As known manipulating and keeping entangled states are much more difficult than manipulating and keeping unentangled
states. Moreover both users and KMC needn’t perform complex quantum operations. As a result realizing this quantum
public-key cryptosystem has less technical difficulties. Obviously this is an advantage over many other schemes.

Another advantage is that in this cryptosystem one two-qutrit system can produce three bits of Ka which is used to
do an XOR operation with the plaint text. It means that users can use a smaller amount of two-qutrit systems to encrypt a
longer plain text. So this cryptosystem can gain a high channel capacity.

6. Conclusion
This paper provides a quantum public-key cryptosystem using orthogonal product states with high channel capacity.

Every uses a group of two-qutrit systems as his or her (public key, private key) pair. The private key is kept by user himself
while the public key is kept by KMC. Users can accomplish secure communications with the help of KMC. Moreover
user can apply message authentication to the secret message. No entangled states are needed. Meanwhile people needn’t
perform complex quantum operations except quantummeasurements. So it’s easier for people to realize this cryptosystem
than many previous schemes. One two-qutrit quantum system can contribute three bits to the string which is actually used
to encrypt the message. So the cryptosystem can gain a high capacity.
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