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Abstract: This work rigorously proves the existence of attractors of a finite collection of generalized multivalued
mappings which are generalized mapping that are defined in the setup of partial metric spaces. We hereby put forward
GeneralizedMultivalued Iterated Function Systems (GMIFS) and we obtain corresponding results under different types of
assumptions known as generalized contractive circumstances. We construct a few examples that can be used to illustrate
the results obtained in this manuscript. Additionally, this work extends several outcomes documented in prior studies
within the fields of Iterated Function Systems (IFS).
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1. Introduction
Iterated Function System (IFS) is an approach to construct iterated or self-similar fractals, which arise from the

magnificent merger of geometry of fractals and the theory of sets. By using a transformation of function system, IFS can
be generated as a finite union of multiple copies of itself. In 1981, John E. Hutchinson proved in his work [1] that for any
nonempty compact subset S ⊂ X in which X is endowed with a complete metric setting, and the IFS given by the functions
{ fi: X 7→ X , 1 ≤ i ≤ n}, n ∈N admits exactly one and only one fixed point S. This existence and uniqueness of S follows
as a result of the relevance of the Banach’s contraction principle [2]. Hutchinson’s construction as described in his work,
is crucial for the aforementioned construction; for further details, we refer to the work [1] for additional information about
this construction. An extended version of the celebrated Banach’s contraction findings are documented for instance in
the work of Michael Fielding Barsnley and Vince in [3] and Michael Fielding Barsnley [4] where subsequent progress
and development on the geometry of fractals were clearly made. In [4], the author classified the aforementioned fixed
point as an attractor for the given IFS. It is worth mentioning that IFS gained popularity after the publication of the book
“Fractals everywhere” by Michael Fielding Barnsley [4]. It should noted that the theory of fixed points heavily relies
on Banach’s contraction approach in the setup of metric spaces and several results have been extended in this direction,
including various applications such as iterative methods in the resolution of difference equations, differential equations,
or integral equations, among others. Further references and additional results can be obtained from the works of other
researchers [5–14] cited in the references.
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Partial metric spaces expand classical metric spaces through their ability to have non-zero self-distances for points
which makes them suitable for domains with natural incomplete or approximate information. The most important
application of partial metric spaces exists in computer science through domain theory and programming language
semantics because they create a natural system for studying computational process convergence and data approximation.
The mathematical theory of fixed points serves as a foundation for various optimization algorithms as well as image
processing and data analysismethods. The ability of partial metrics to represent progress or approximation beyond equality
makes them essential for modeling iterative methods and incomplete data structures and real-world systems that lack exact
measurements.

For generalized countable IFS in the metric spaces setups, Secelean’s work provides relevant results, specifically
in Secelean’s findings [15]. Nadler’s results (see for instance [16]) from 1969 also contribute to obtaining solutions to
fixed-point problems of multivalued or set-valued mappings defined in the setting of metric spaces.

For more recent applications of fixed point in the theory of neutrosophic, we refer to papers [17, 18] and for the
notion of topological spaces in the setup of b-fuzzy theory we refer for instance to the work of Al-Omeri in [19]. In the
manuscript, [17] the neutrosophic fixed point theorems and cone metric spaces have been investigated whereas in [18],
the author introduced the well-known Property (P) along with new Fixed Point Results were studied on ordered metric
spaces in the framework of neutrosophic theory. Additionally, the b-fuzzy topological spaces were studied by the authors
of the manuscript [19] .

In this work, our aim is to construct fractals using generalized forms of IFS which is a broader class of IFS for
generalized multivalued contractions in the setup of partial metric spaces. Noticing that the Hutchinson operator, which
is characterized by the action of all IFS, is commonly used operator in the mathematical study of fractals. Namely, It
defines the IFS and is a characteristic of actions on sets of contractions. By observing this, we can easily see that the
mentioned operator which is acting over a countable collection of contractions on a complete partial metric space X is
also a generalized contraction defined on a collection of compact sets in the Hausdorff metric. By iteratively applying this
technique using the generalized Hutchinson operator, then ultimately, this process produces the final fractal structure.

To the best of our knowledge, the results in the present parer are sharp and completely new.
To obtain the necessary results, we will now follow the approach used in [20]. We will then first introduce some

basic concepts which are very relevant across various sections and that may be used repeatedly here in this manuscript.
For further details in these concepts, we refer to [11, 20–22]

For definitions, remarks and examples of partial metric spaces and complete partial metric spaces we refer to [11, 20–
22].

As in [21, 22], let C Bp(Y ) denotes the class of closed and bounded subsets of Y , each of which is non-empty.
We follow the lines of [21] to introduce the result below that will be crucial for the rest of the paper.
Proposition 1 Given the pair (Y, p) of an arbitrary partial metric space made up of the non-empty set Y and the

metric p, a subset M ⊂ Y and the subsets L, K ∈ C Bp(Y ), and υ ∈ Y . Then for all K1, K2, K3 ∈ C Bp(Y ),
(1) Hp(K1, K1)≤ Hp(K1, K2),

(2) Hp(K1, K2) = Hp(K2, K1),

(3) Hp(K1, K2)≤ Hp(K1, K3)+Hp(K3, K2)− infη∈K3 p(η , η).

Here

p(υ , K) = inf{p(υ , ζ ): ζ ∈ K}, δp(K, L) = sup{p(ζ , L): ζ ∈ K},

δp(L, K) = sup{p(η , K): η ∈ L},

Hp(K1, K2) = max{δp(K1, K2), δp(K1, K2)},
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K1 = K2 whenever Hp(K1, K2) = 0. (1)

From the above two results, we note that the metric p induces another metric

Hp: C Bp(Y )×C Bp(Y )→ [0, ∞) (2)

which we casually call the partial Hausdorff distance which leads us to borrow another definition from [21].
Definition 1 Given a partial distance on a non-empty set Y . Then C p ⊂Y is compact whenever from each sequence

{vn} ⊂ C p we can extract a subsequence {vni} that converges in C p.
For a partial distance on Y 6= /0, the space C p(Y ) denotes the set of compact subsets of the set Y . Given K1, K2 ∈

C Bp(Y ), we set

Hp(K1, K2) = max{ sup
η∈K2

p(η , K1), sup
µ∈K1

p(µ, K2)}. (3)

Note that p(t, K1) = inf{p(t, µ): µ ∈ K1} denotes the map that measures the distance between the point t and the
set K1. We call Hp the Pompeiu-Hausdorff distance induced by the partial distance p and the pair (C Bp(Y ), Hp) is a
complete partial metric space, under the condition that the pair (Y, p) is a complete partial metric space as well.

We state a crucial result that is very relevant across all sections of this manuscript.
Lemma 1 [23] We consider a partial metric p on a non-empty setY , then for all K1, K2, K3, K3 ∈ C p(Y ), it hold that
(i) if K1 ⊆ K2, then sup

m∈K3

p(m, K2)≤ sup
m∈K3

p(m, K1),

(ii) sup
t∈K3∪K1

p(y, K2) = max{ sup
m∈K3

p(m, K2), sup
ℓ∈K1

p(ℓ, K2)},

(iii) Hp(K1 ∪K2, K3 ∪K4)≤ max{Hp(K1, K3), Hp(K2, K3)}.
Theorem 1 [20] Consider a complete partial metric p defined on Y 6= /0 and given a contraction map h: Y → Y .

Given λ ∈ [0, 1), we have

p(ht1, ht2)≤ λ p(t1, t2), for all t1, t2 ∈ Y. (4)

Then h admits a unique fixed point u inY and for each v0 ∈Y , the collection of iterates {v0, hv0, h2v0, . . .} converges
to the fixed point u.

We study generalized IFS applied to partial metric spaces. Detailed constructions and subsequent results on a G-IFS
for multi-valued maps in the setup of metric spaces can be found in [24]. We will introduce the concept of generalized
contraction self-map and highlight some basic results that we will need throughout the paper. As usual, we will consider a
pair (Y, d) to denote the partial metric space we are dealing with and sometimes the pair is complete whenever necessary.

Definition 2 [21] Given a pair (Y, p) as above with T : Y → C Bp (Y ) be multivalued mapping. A map T is said to
be a multivalued contraction whenever there is some λ ∈ (0, 1) which satisfies

Hp (T v1, T v2)≤ λ p(v1, v2) for all v1, v2 ∈ Y. (5)
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Lemma 2 [21] We consider a partial metric p on a non-empty set Y , K1, K2 ∈ C Bp(Y ). Then for a ∈ K1, we have
b ∈ K2 which satisfies the inequality:

p(a, b)≤ ηHp (M, N) , (6)

where η > 1.
Theorem 2 Given the partial metric space (Y, p) and we consider T : Y → C Bp (Y ) a continuous map. Assume that

the map T is a multivalued contraction with λ ∈ (0, 1
η ), where η > 1 as defined in Lemma 2. Then

(1) the operator T preserves C p(Y ), namely, it maps each of its elements back into C p(Y );
(2) provided that if for every element U in the space C p(Y ) the self-map T (C p(Y ))⊆ C p(Y ) is given by

T (U) = {t1: t1 ∈ T (U)}. (7)

then the mapping T is a multivalued contraction acting over (C p(Y ), Hp) with domain of sets.
Proof. (1) Note the map T is a continuous function by hypothesis and we also know that if a set is compact then its

image under a continuous map is also compact. Therefore, we can assert that

U ∈ C p(Y ) (8)

from which we infer that

T (U) ∈ C p(Y ). (9)

As for item (2), we note that the map T is a generalized multivalued contraction as mentioned above, we then have
for λ ∈ (0, 1

η ) that

Hp (T v1, T v2)≤ λ p(v1, v2) for all v1, v2 ∈ Y. (10)

Now

Hp (T (U) , T (V )) = max{ sup
s1∈T (U)

p(s1, T (V )), sup
s2∈T (V )

p(s2, T (U))}

≤ max{ sup
s1∈T (U)

inf
v1∈T (V )

p(s1, v1), sup
s2∈T (V )

inf
v2∈T (U)

p(s2, v2)}

≤ max{η1Hp (TU, TV ) , η2H (TV, TU)}

≤ η∗ max{sup
t1∈U

λ p(t1, V ), sup
t2∈V

λ p(t2, U)}
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= λ ∗ max{sup
t1∈U

p(t1, V ), sup
t2∈V

p(t2, U)}

= λ ∗Hp (U, V ) , (11)

where η∗ = max{η1, η2} and λ ∗ = η∗λ . Consequently, for λ ∗ ∈ (0, 1), we infer that

Hp (T (U) , T (V ))≤ λ ∗Hp (U, V ) . (12)

Hence, the mapping T is a multivalued contraction acting over the space (C p(Y ), Hp) with domain of sets.
Proposition 2 Consider the pair (Y, p) as above, i.e., a partial metric space. Assume that the continuous maps

Tk: Y → C Bp (Y ) with 1 ≤ k ≤ r satisfy the conditions

Hp (Tk (v1) , Tk (v2))≤ λk p(v1, v2) for all v1, v2 ∈ Y, (13)

with the sequence λk ∈ (0, 1
ηk
) for 1 ≤ k ≤ r, where ηk is defined as in Lemma 2. Then the mapping Φ(C p(Y ))⊆ C p(Y )

is given by

Ψ(U) = T1(U)∪T2(U)∪·· ·∪Tr(U) = ∪r
k=1Tk(U) with U ∈ C p(Y ) (14)

also satisfies

Hp (ΨU, ΨV )≤ ΘHp (U, V ) with U, V ∈ C p(Y ), (15)

where Θ = max{λk: 1 ≤ k ≤ r}. Then the mapping Ψ is a multivalued contraction on C p (Y ) with domain of sets.
Proof. We shall prove the result for k ∈ {1, 2} i.e., r = 2 in particular. Let T1, T2: Y → Y be two contractions. For

K1, K2 ∈ C p(Y ) and owing to the results in item (c) of Lemma 1, we obtain that

Hp(Ψ(K1) , Ψ(K2)) = Hp(T1(K1)∪T2(K1), T1(K2)∪T2(K2))

≤ max{Hp(T1(K1), T1(K2)), Hp(T2(K1), T2(K2))}

≤ max{λ1Hp(K1, K2), λ2Hp(K1, K2)}

≤ ΘHp(K1, K2). (16)

This completes the desired proof of Proposition 2.
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Definition 3 Given the partial metric space pair (Y, p) and a self-map Ψ: C p(Y ) → C p(Y ). The self-map Ψ is a
generalized multivalued Hutchinson contractive operator if for any pair of sets K1, K2 ∈ C p(Y ), it holds that

Hp (Ψ(K1) , Ψ(K2))≤ λZΨ(K1, K2), for some λ ∈ (0, 1) (17)

where

ZΨ(K1, K2) = max
{

Hp(K1, K2), Hp(K1, Ψ(K1)), Hp(K2, Ψ(K2)),
Hp(K1, Ψ(K2))+Hp(K2, Ψ(K1))

2

}
. (18)

Owing to the fact that the above defined map Ψ is generalized multivalued contraction acting over C p (Y ). We can
also assert that the map Ψ is a generalized multivalued Hutchinson contractive operator. We need to clearly emphasize
that in the case of the reverse implication of this assertion, the claimed results may fail.

Definition 4 Assuming that the partial metric space pair (Y, p) is complete and also assuming that Tk: Y →CBp (Y ),
with 1 ≤ k ≤ r is continuous map such that each Tk for 1 ≤ k ≤ r and k, r ∈ N, is a generalized multivalued contraction.
We call the collection, {Y ; Tk, 1 ≤ k ≤ r} a generalized multivalued IFS.

Definition 5 Given the compact set /0 6= K1 ⊆ Y , the subset K1 is an attractor of the generalized multivalued IFS
whenever the following hold true:

(a) Ψ(K1) = K1,
(b) K ⊆ V1 and lim

m→+∞
Ψm(K2) = lim

m→+∞
Φk(K2) = K1 for any compact set K2 ⊆ V1, for some open subset V1 of Y .

Here, the limit is in the sense of the partial Hausdorff metric.
As previously stated, we can again define the basin of common attraction, the maximal open set V1 satisfying item

(b) of Definition 5.
Having said that, we are now ready to introduce the statements of our principal findings discussed in the subsequent

sections.

2. Main results
The following section presents our findings about attractor existence and uniqueness for generalized multivalued

Hutchinson contractive operators within partial metric spaces. For the reminder of the manuscript, we use the complete
partial metric space (Y, p) to establish our main results.

Theorem 3 With the pair (Y, p) as stated above, let {Y ; Tk, k = 1, 2, · · · , r} be a generalized multivalued IFS and
let us define the self map, Ψ: C p(Y )→ C p(Y ) as

Ψ(L) = ∪r
k=1Tk(L) for any L ∈ C p(Y ). (19)

We assume that the operator Ψ is a generalized multivalued Hutchinson contractive mapping. Then the mapping Ψ
has exactly one and only one attractor U1 ∈ C p(Y ). Namely,

U1 = Ψ(U1) . (20)

Moreover, we can arbitrarily choose an initial guess set L0 ∈ C p(Y ), to assert that the iterate sequence
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{L0, Ψ(L0) , Ψ2 (L0) , Ψ3 (L0) , ...} (21)

of compact sets converges to U1.
We note that in the above theorem, the limit U1 is called the attractor of Ψ.
Proof. We randomly pick a constituent L0 ∈ C p(Y ) and we set the elements

L1: = Ψ(L0), L2: = Ψ(L1) , ..., Lk+1: = Ψ(Lk) for k ∈ {0, 1, 2, ...}. (22)

By hypothesis, we know that the mapping Ψ is a generalized multivalued Hutchinson contractive operator, we
therefore infer from the given hypothesis that one can find some constant λ > 0 (which does not dependent on k) yet
satisfies

Hp(Lk+1, Lk+2) = Hp(Ψ(Lk) , Ψ(Lk+1))≤ λZΨ (Lk, Lk+1) , (23)

where we express the term ZΨ (Lk, Lk+1) as:

ZΨ (Lk, Lk+1) = max
{

Hp(Lk, Lk+1), Hp (Lk, Ψ(Lk)) , Hp (Lk+1, Ψ(Lk+1)) ,
Hp (Lk, Ψ(Lk+1))+Hp (Lk+1, Ψ(Lk))

2

}

= max
{

Hp(Lk, Lk+1), Hp (Lk, Lk+1) , Hp (Lk+1, Lk+2) ,
Hp (Lk, Lk+2)+Hp (Lk+1, Lk+1)

2

}
. (24)

It now follows from the definitions of ZΨ, Hp and by identification that

ZΨ (Lk, Lk+1)≤ max
{

Hp(Lk, Lk+1), Hp (Lk+1, Lk+2) ,
Hp (Lk, Lk+1)+Hp (Lk+1, Lk+2)

2

}

= max{Hp (Lk, Lk+1) , Hp (Lk+1, Lk+2)} .

(25)

We thus deduce the relation

Hp(Lk+1, Lk+2)≤ λ max{Hp (Lk, Lk+1) , Hp (Lk+1, Lk+2)}

= λHp (Lk, Lk+1) .

(26)

Therefore, for all k ∈ {0, 1, 2, ...}, we obtain
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Hp(Lk+1, Lk+2)≤ λHp (Lk, Lk+1)

≤ λ 2Hp (Lk−1, Lk)

≤ ·· ·

≤ λ k+1Hp (L0, L1) .

(27)

Note that since l > k, for any k, l ∈ {0, 1, 2, ...}, we also get that

Hp (Lk, Ll)≤ Hp (Lk, Lk+1)+Hp (Lk+1, Lk+2)+ · · ·+Hp (Ll−1, Ll)

− inf
lk+1∈Lk+1

p(lk+1, lk+1)− inf
lk+2∈Lk+2

p(lk+2, lk+2)−

·· ·− inf
lk−1∈Lk−1

p(lk−1, lk−1),

(28)

which along with the definitions of the metrics (p, Hp) enables us to infer that

Hp (Lk, Ll)≤ [λ k +λ k+1 + · · ·+λ l−1]Hp (L0, L1)

= λ k[1+λ +λ 2 + · · ·+λ l−k−1]Hp(L0, L1)]

≤ λ k

1−λ
Hp (L0, L1) .

(29)

Along with this later estimate, we also obtain lim
k, l→+∞

Hp (Lk, Ll) = 0. This enables us to deduce that the collection

{Lk} is a Cauchy inC p(Y ).Wemust emphasize that, clearly, by hypothesis the partial metric space (C p(Y ), Hp) is thereby
complete, which enables us to assert that one can easily find some element U1 ∈ C p(Y ) satisfying

lim
k→+∞

Lk =U1.

Namely,

lim
k→+∞

Hp (Lk, U1) = lim
k→+∞

Hp (Lk, Lk+1) = Hp (U1, U1) . (30)

Along with the above, also, we obtain lim
k→+∞

Hp (Lk, U1) = 0.
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We intend in proving Ψ(U1) =U1. For this purpose, using the hypothesis and the definition of Hp, we infer that

Hp(Ψ(U1) , U1)≤ Hp(Ψ(U1) , Ψ(Lk+1))+Hp(Ψ(Lk+1) , U1)− inf
lk+1∈L2k+1

p(lk+1, lk+1),

≤ λZΨ (U1, Lk+1)+Hp (Lk+2, U1)− inf
lk+1∈Lk+1

p(lk+1, lk+1)

(31)

for any k ∈ {0, 1, 2, ...}, and as in the previous expression ZΨ (U1, Lk+1), we can evidently write it as:

ZΨ (U1, Lk+1)

=max{Hp(U1, Lk+1), Hp(U1, Ψ(U1)), Hp(Lk+1, Ψ(Lk+1)),
Hp(U1, Ψ(Lk+1))+Hp(Lk+1, Ψ(U1))

2
}

− inf
lk+1∈Lk+1

p(lk+1, lk+1)

=max
{

Hp(U1, Lk+1), Hp(U1, Ψ(U1)), Hp(Lk+1, Lk+2),
Hp(U1, Lk+2)+Hp(Lk+1, Ψ(U1))

2

}

− inf
lk+1∈Lk+1

p(lk+1, lk+1).

(32)

Now, we thoroughly inspect the alternative cases below proficiently.
(I) We assume that ZΨ (U1, Lk+1) = Hp(U1, Lk+1), from which we obtain

Hp(Ψ(U1) , U1)≤ λHp (U1, Lk+1)+Hp (Lk+2, U1)− inf
mk+1∈Lk+1

p(lk+1, lk+1)

≤ λHp (U1, Lk+1)+Hp (Lk+2, U1) .

(33)

We take the limit on both sides of relation (33) as k →+∞, we hence obtain that

Hp(Ψ(U1) , U1)≤ λHp (U1, U1)+Hp (U1, U1) , (34)

from which we deduce that Hp(Ψ(U1) ,U1) = 0. Namely, we actually showed thatU1 = Ψ(U1).Hence, this is the desired
result we are required to show.

(II) We assume also that ZΨ (U1, Lk+1) = Hp(U1, Ψ(U1)), from which we infer that
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Hp(Ψ(U1) , U1)≤ λHp(U1, Ψ(U1))+Hp (Lk+2, U1)− inf
lk+1∈Lk+1

p(lk+1, lk+1)

≤ λHp(U1, Ψ(U1))+Hp (Lk+2, U1) .

(35)

Hence it is clear from the inequality (35) that

Hp(Ψ(U1) , U1)≤
1

1−λ
Hp (Lk+2, U1) . (36)

We take the limit on both side of inequality (36) as k →+∞ we infer that Hp(Ψ(U1) ,U1)≤ 0 from which we deduce
that U1 = Ψ(U1).

(III) Particularly, for ZΨ (U1, Lk+1) = Hp(Lk+1, Lk+2), then we simply infer that

Hp(U1, Ψ(U1))≤ λHp(Lk+1, Lk+2)+Hp (Lk+2, U1)− inf
mk+1∈Lk+1

p(lk+1, lk+1)

≤ λHp(Lk+1, Lk+2)+Hp (Lk+2, U1) .

(37)

We take the limit on both sides of the relation (37) as k →+∞ to infer easily that U1 = Ψ(U1).
(IV) As for the case of

ZΨ (U1, L2k+1) =
Hp(U1, Lk+2)+Hp(Lk+1, Ψ(U1))

2
, (38)

we obtain from the above estimates that

Hp(U1, Ψ(U1))≤
λ
2
[Hp(U1, Lk+2)+Hp(Lk+1, Ψ(U1))]+Hp (Lk+2, U1)− inf

lk+1∈Lk+1
p(lk+1, lk+1)

≤ λ
2
[Hp(U1, Lk+2)+Hp(Lk+1, U1)+Hp(U1, Ψ(U1))− inf

u∈U1
p(u, u)]+Hp (Lk+2, U1)

− inf
mk+1∈Lk+1

p(lk+1, lk+1)

≤ λ
2
[Hp(U1, Lk+2)+Hp(Lk+1, U1)+Hp(U1, Ψ(U1))]+Hp (Lk+2, U1) .

(39)

Again, we take the limit on both sides of relation (39) as k tends to become very large, we obtain
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Hp(U1, Ψ(U1))≤
λ
2

Hp(U1, Ψ(U1)), (40)

from which we have Hp(U1, Ψ(U1)) vanishes along we also get that U1 = Ψ(U1) .

Thus far, combining all the above approaches (with all the particular cases), simply put,U1 is the irresistible magnet
(attractor) for Ψ, that is, U1 = Ψ(U1) .

With the aim of demonstrating the uniqueness of the attractor, we first consider a strong prevalent match attractor for
the map Ψ denoted by U2. Considering the fact that the map Ψ is a generalized multivalued function in the Hutchinson
sense, we infer that

Hp(U1, U2) = Hp(Ψ(U1) , Ψ(U2))

≤ λ max
{

Hp(U1, U2), Hp(U1, Ψ(U1)), Hp(U2, Ψ(U2)),
Hp(U1, Ψ(U2))+Hp(U2, Ψ(U1))

2

}

= λ max
{

Hp(U1, U2), Hp(U1, U1), Hp(U2, U2),
Hp(U1, U2)+Hp(U2, U1)

2

}

≤ λHp(U1, U2).

(41)

This enables us to obtain (1−λ )Hp(U1,U2)≤ 0. Therefore, Hp (U1, U2) = 0. Namely, we thus proved thatU1 =U2.

Thus U1 ∈ C p(Y ) is the unique attractor for the map Ψ.
Now that we have established the existence and uniqueness of attractor, we can proceed to another important result

known as the Generalized Collage. As previously mentioned, our spaces are considered complete partial metric space
and denoted by (Y, p). We would like to reiterate this point before presenting the statement and proof of the generalized
Collage result.

Theorem 4 For a generalizedmultivalued IFS given by {Y ; T1, T2, ..., Tr} , where λ ∈ (0, 1
ηk
) is contractive constant

as given in Proposition 2. Let ε ≥ 0 and if for any L ∈ C p(Y ), it holds that

Hp(L, Ψ(L))≤ ε, (42)

where Ψ(L) = ∪r
k=1Tk(L). Then, we infer that

Hp(L, U1)≤
ε

1−Θ
, (43)

where U1 ∈ C p(Y ) is the attractor of Ψ with Θ = max{λk: k ∈ {1, 2, ..., r}}.
Proof. Owing to the results of Proposition 2 we infer that the maps Ψ satisfies the relation

Hp(Ψ(U ) , Ψ(V ))≤ ΘHp(U , V ) for all U , V ∈ C p(Y ), (44)

Contemporary Mathematics 5378 | Ali Zakaria Idriss, et al.



where Θ = max{λk: 1 ≤ k ≤ r}.
Now by virtue of Theorem 3, we can assert that the map Ψ, admits a unique attractor U1 ∈ C p(Y ) which can be

expressed as U1 = Ψ(U1).
Now taking any initial guess N0 ∈ C p(Y ), and consider the family {Nk} defined by Nk+1 = Ψ(Nk) for any integer

k ≥ 1 we obtain

lim
k→+∞

Hp (Ψ(Nk) , U1) = 0. (45)

Since Hp(L, Ψ(L))≤ ε for any L ∈ C p(Y ), we easily obtain

Hp(L, U1)≤ Hp(L, Ψ(L))+Hp(Ψ(L), Ψ(U1))− inf
m∈Ψ(L

p(l, l)

≤ ε +ΘHp(L, U1),

(46)

from which we deduce the inequality

Hp(L, U1)≤
ε

1−Θ
. (47)

This completes the intended proof.
Example 1 Let Y = [0, 1]× [0, 1] and the partial metric p: Y ×Y → R+ defined as:

p(x, y) = max{x1, x2}+max{y1, y2} for all x = (x1, y1), y = (x2, y2) ∈ Y. (48)

Define T1, T2: Y →CBp (Y ) as

T1 (x) =
[
0,

y1

3

]
×
[
0,

x1

3

]
for x = (x1, y1) ∈ Y ,

T2 (x) =
[
0,

x1

3

]
×
[

0,
y1 +0.5

3

]
for x = (x1, y1) ∈ Y ,

T3 (x) =
[

0,
x1 +0.5

3

]
×
[

0,
y1 +0.5

3

]
for x = (x1, y1) ∈ Y ,

T4 (x) =
[

0,
y1 +0.5

3

]
×
[
0,

x1

3

]
for x = (x1, y1) ∈ Y .

(49)

First we are to show that
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Hp (Ti (x) , Ti (y))≤ λizTi(x, y), (50)

holds for each i = 1, 2, 3, 4, where

zTi(x, y) = max{p(x, y), p(x, Ti (x)), p(y, Ti (y)),
p(x, Ti (y))+ p(y, Ti (x))

2
}. (51)

Note that for x, y ∈ Y, we have

Hp (T1 (x) , T1 (y)) = max
{y1

3
,

y2

3

}
+max

{x1

3
,

x2

3

}

=
1
3

max{x1, x2}+
1
3

max{y1, y2}

=
1
3

p(x, y)

≤ λ1zT1(x, y),

(52)

where λ1 =
1
3 .

Hp (T2 (x) , T2 (y)) = max
{x1

3
,

x2

3

}
+max

{
y1 +0.5

3
,

y2 +0.5
3

}

=
1
3
[max{x1, x2}+max{y1 +0.5, y2 +0.5}]

≤ 4
9
[max{x1,

x2

3
}+max{y1,

y2 +0.5
3

}+max{x2,
x1

3
}+max{y2,

y1 +0.5
3

}]

=
8
9
[
p(x, T2 (y))+ p(y, T2 (x))

2
]

≤ λ2zT2(x, y),

(53)

where λ2 =
8
9 .
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Hp (T3 (x) , T3 (y)) = max
{

x1 +0.5
3

,
x2 +0.5

3

}
+max

{
y1 +0.5

3
,

y2 +0.5
3

}

=
1
3
[max{x1 +0.5, x2 +0.5}+max{y1 +0.5, y2 +0.5}]

≤ 4
9
[max{x1,

x2 +0.5
3

}+max{y1,
y2 +0.5

3
}+max{x2,

x1 +0.5
3

}+max{y2,
y1 +0.5

3
}]

=
8
9
[
p(x, T3 (y))+ p(y, T3 (x))

2
]

≤ λ3zT3(x, y),

(54)

where λ3 =
8
9 .

Hp (T4 (x) , T4 (y)) = max
{

y1 +0.5
3

,
y2 +0.5

3

}
+max

{x1

3
,

x2

3

}

=
1
3
[max{x1, x2}+max{y1 +0.5, y2 +0.5}]

≤ 4
9
[max{y1,

y2 +0.5
3

}+max{x1,
x2

3
}+max{y2,

y1 +0.5
3

}+max{x2,
x1

3
}]

=
8
9
[
p(x, T4 (y))+ p(y, T4 (x))

2
]

≤ λ4zT4(x, y),

(55)

where λ4 =
8
9 .

We now take the generalized multivalued IFS {Y ; T1, T2, T3, T 4} associated with the corresponding mapping Ψ
given as

Ψ(U) = T1(U)∪T2(U)∪T3(U)∪T4(U) for all U ∈ C p (Y ) . (56)

Owing to the results in Proposition 2, taking the pair L, M ∈ C p (Y ), we can infer that

Hp (Ψ(L) , Ψ(M))≤ ΘHp (L, M) , (57)

where
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ZΨ (L, M) = max{Hp (L, M) , Hp (L, Ψ(L)) , Hp (M, Ψ(M)) ,
Hp (L, Ψ(M))+Hp (M, Ψ(L))

2
} (58)

and Θ = max{λi, 1 ≤ i ≤ 4}= max
{ 1

3 ,
8
9

}
= 8

9 .

We thus deduce that the results in Theorem 2 are satisfied. Furthermore, if we consider an initial guess L0 ∈ C p(Y ),
we thus assert that the iterate family

{L0, Ψ(L0) , Ψ2 (L0) , · · ·} (59)

of compact subsets converges to the attractor of Ψ as its limit point. Figures 1, 2, 3, and 4 show the convergence process
of sequence steps at n = 1, 3, 5, and 7, respectively.

Figure 1. Iteration steps for n = 1

Figure 2. Iteration steps for n = 3
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Figure 3. Iteration steps for n = 5

Figure 4. Iteration steps for n = 7

In particular, applying the results of Theorem 3 we have the following Remark. Note that whenever we refer to the
pair (Y, d) is to denote the complete partial metric space in the following couple of results.

Remark 1 Let S p(Y ) denotes the family of all unit set emanating from Y . We infer that S p(Y ) ⊆ C p(Y ). Note
that for Tk = T for any k, where T = T1, then the operator Ψ satisfies

Ψ(y1) = T (y1). (60)

This observation of Remark 1 leads us to the fixed point result below.
Corollary 1 We first assume that {Y ; Tk, 1 ≤ k ≤ r} is a generalized multivalued IFS system acting on the pair

(Y, p) (complete) and with T : Y →Y the map as defined in Remark 1. Secondly, we suppose that there is some λ ∈ (0, 1)
satisfying the condition:
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p(Ty1, Ty2)≤ λZT (y1, y2), for any y1, y2 ∈ Y, (61)

where

ZT (y1, y2) = max{p(y1, y2), p(y1, Ty1), p(y, Ty2),
p(y1, Ty2)+ p(y, Ty1)

2
}. (62)

T admits a unique fixed point u in Y. Beside this convergences, if we consider any initial guest u0 ∈ Y , we can assert that
the sequence of iterate {u0, Tu0, T 2u0, · · ·} is convergent and its limit is the fixed point of T .

Corollary 2 Given {Y ; Tk, 1 ≤ k ≤ r} a generalized multivalued IFS acting on the pair (Y, p) and we consider Tk

for ≤ k ≤ r to denotes the generalized multivalued contractive self-map defined on Y . We then assert that the mapping
Ψ: C p(Y )→C p(Y ) as considered in Theorem 3 above admits at most one attractor which belongs toC p (Y ) . Furthermore,
considering a chosen starting set L0 ∈ C p (Y ) , the sequence of iterates {L0, Φ(L0) , Ψ2 (L0) , · · ·} of compact subsets
admits a limit point that is an attractor of Ψ as described above.

In order for us to verify the results of Corollary 2 we intend to introduce an example as below.
Example 2 We set in particular Y = [0, 10] and we endow the space Y with the function p given by

p(y1, y2) =
1
2

max{y1, y2}+
1
4
|y1 − y2| for all y1, y2 ∈ Y. (63)

Indeed p is a partial metric.
Define T1, T2: Y →CBp (Y ) as

T1 (y) =
[

0,
10− y

3

]
for any y ∈ Yand

T2 (y) =
[

0,
16− y

4

]
for each y ∈ Y.

(64)

Now, for y1, y2 ∈ Y, we have

Hp (T1 (y1) , T1 (y2)) =
1
2

max
{

10− y1

3
,

10− y2

3

}
+

1
4

∣∣∣∣10− y1

3
− 10− y2

3

∣∣∣∣
=

1
3

[
1
2

max{10− y1, 10− y2}+
1
4
|(10− y1)− (10+ y2)|

]

≤ 1
3
[
1
2

max{y1, y2}+
1
4
|y1 − y2|]

= λ1 p(y1, y2) ,

(65)
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where λ1 =
1
3
.

Also, for y1, y2 ∈ Y, we have

Hp (T2 (y1) , T2 (y2)) =
1
2

max
{

16− y1

4
,

16− y2

4

}
+

1
4

∣∣∣∣16− y1

4
− 16− y2

4

∣∣∣∣
=

1
4

[
1
2

max{16− y1, 16− y2}+
1
4
|(16− y1)− (16− y2)|

]

≤ 1
4
[
1
2

max{y1, y2}+
1
4
|y1 − y2|]

= λ2 p(y1, y2) ,

(66)

where λ2 =
1
4
.

We now take the generalized multivalued IFS {Y ; T1, T2} associated with the corresponding mapping Ψ defined by

Ψ(U) = T1(U)∪T2(U) for all U ∈ C p (Y ) . (67)

Owing to the results in Proposition 2, taking the pair L, M ∈ C p (Y ), we can infer that

Hp (Ψ(L) , Ψ(M))≤ ΘHp (L, M) , (68)

where Θ = max
{

1
3
,

1
4

}
=

1
3
.

We thus deduce that the results in Corollary 2 are satisfied. Furthermore, if we consider an initial guess L0 ∈ C p(Y ),
we thus assert that the iterate family

{L0, Ψ(L0) , Ψ2 (L0) , · · ·} (69)

of compact subsets converges to the attractor of Ψ as its limit point.

3. Conclusions
In this paper, we proved the existence of attractor of generalized IFS based on generalized multivalued mapping in

partial metric spaces. In addition, we constructed the above example to illustrate the results presented therein. Further, the
generalized collage theorem for these maps in the setup of partial metric space is demonstrated. As partial metric space
is linked with the natural way having applications in computer science and mathematics problems (see [20, 21, 23, 25]),
allowing the results in this paper to be explored in relation to partial b-metric space and more general metric spaces with
much more applications and other areas such as nonlinear analysis or differential equations.
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The study of IFS of generalized multivalued mappings in partial metric spaces could be extended in the future to
explore their applications for example in fuzzy partial metric spaces, b-fuzzy partial metric spaces and modular metric
spaces in connection with the theory of neutrosophic with various engineering applications. These systems should be
studied in relation to fractal generation, dynamical systems, and optimization problems. The theory could be extended
to stochastic or hybrid mappings which would create new research opportunities for modeling uncertainty and complex
systems in applied sciences.
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