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Abstract: To solve a fractional boundary value problem that simulates the dynamics of the human corneal shape, we offer
a semi-analytic spectral collocation procedure. The boundary conditions are exactly satisfied by expanding the proposed
approximation solution as a finite sum of certain basis functions, namely a combination of the first kind Chebyshev
polynomials. Next, using the typical Chebyshev nodes, we use the spectral collocation method and find explicit forms of
the first- and second-order derivatives in both integer and fractional cases. At various values for orders of the fractional
derivative and model parameter values, we display a number of graphical outcomes. We study the convergence and
truncation error analysis of the proposed expansion. This paper presents a semi-analytic spectral technique to solve
a fractional boundary value problem modeling human corneal dynamics. Using the Caputo fractional derivative and
Chebyshev nodes, the solution is expanded as a finite sum of compact basis functions, with spectral collocation employed
to derive explicit first- and second-order derivatives. Numerical simulations and convergence and error analyses are
provided at various fractional orders and model parameters.
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1. Introduction
The intricate and subtle behavior of biological systems is difficult for classical calculus to capture since it takes

integer-order derivatives into account. A more dynamic tool that enables the description of memory-effect events is
fractional calculus [1–5]. Fractional derivatives are the most effective way to depict the cornea’s slow shape changes
over time [6]. The transparent dome covers the front of the human eye; the cornea; is responsible for focusing light and
maintaining good vision. Sustaining its correct shape is vital for the best possible visual experience. Nonetheless, several
variables may influence the cornea’s form, potentially resulting in visual issues [7, 8].

Recently, many researchers offered a framework for modeling the human corneal shape using fractional calculus, for
instance [9–13], this motivates us to develop a spectral semi-analytic approach to handle this model. This paves the way
for further exploration of biological phenomena using the powerful tools of fractional calculus. Significant progress has
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been made in this field by recent works like [14], which introduced a highly accurate matrix method for solving strongly
nonlinear boundary value problems in corneal modeling, and [12], which introduced an integrated neuro-evolution-based
solver for the dynamics of nonlinear corneal shape models. The properties and uses of Riemann-Liouville and Caputo
derivatives [15], fractional integrability and differentiability [16], and the behavior of fractional derivatives in complex
planes have all been extensively studied in the literature on fractional calculus [17], and various remarks on fractional
derivative definitions and interpretations [18, 19]. To justify the transition from a nonlinear integer differential model to
a fractional differential model, it is essential to recognize the capability of fractional derivatives to capture memory and
hereditary effects, which are inherent in biological systems. The work by Okrasiński and Plocińiczak [20] on nonlinear
modeling of the corneal shape highlights the need for accurate and flexible mathematical frameworks. To better describe
the intricate dynamics of the cornea, we build on their work by using fractional calculus, which offers a more robust and
generalized modeling method.

Due to their special characteristics, Chebyshev polynomials are now a useful tool for solving a variety of differential
equations. The optimality attribute of these polynomials is that they reduce error within a given interval. Because of
this, they are very helpful in describing solutions to differential equations, particularly for those defined on a closed
interval [−1, 1]. Moreover, a finite series of Chebyshev polynomials can be used to approximate solutions because of
the simplicity of computing their explicit formulas of derivatives and their completeness inside the interval. The spectral
method is a technique that greatly streamlines the solution procedure for a variety of scientific and engineering problems
by converting complex differential equations into an algebraic equation system [21–25].

This study looks at new spectral procedures to study how the cornea changes shape. We use fractional calculus,
which deals with non-whole numbers when we do differentiation and integration. We suggest a new way to model cornea
shape changes using a kind of fractional calculus called the Caputo fractional derivative. This type of modeling includes
a special part that’s good for starting conditions. To solve the differential problem we get from this, for recent studies on
numerical methods for differential problems, see [26, 27]. We use the shifted Chebyshev polynomials (SCPs) to help us
construct the solution. These polynomials have traits that help them fit into the problem’s rules easily. Also, we work
out formulas for the first and second derivatives of these polynomials, both in the integer and the fractional case. This
helps us use spectral collocation to find the desired spectral solution that’s very close to what happens in real life. We
depict graphs of the solution in different situations, with different numbers plugged in and different kinds of fractional
derivatives. Finally, we look at how well our solutions are and check howmuch our approximate solutions are far from the
unknown exact solution by controlling the residual error. For recent work on spectral methods for different mathematical
models, please see [28–32].

We think that the novelty of our contribution of this paper can be summarized in the following items:
The employment of the introduced modified sets of SCPs of the first type in numerical analysis is new.
Derivations of some new theoretical results, such as the integer and fractional derivatives of the modified sets of

SCPs of the first type.
A new study for the convergence analysis of the proposed expansion.
The remainder of the paper is structured as follows: The relevant features of first-kind Chebyshev polynomials are

briefly described in Section 2, and the collocation spectral algorithm for numerically handling the suggested biological
model is constructed in Section 3. We provide a thorough examination of the method’s convergence and error analyses in
Section 4. The results and debate are covered in Section 5, and Section 6 includes some closing thoughts.

2. An overview of the SCPs of the first type
The following three-term recurrence formula can be employed to construct the polynomials T ∗

ℓ (z):

T ∗
ℓ+1(z) = 2 (2z−1)T ∗

ℓ (z)−T ∗
ℓ−1(z),
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where T ∗
0 (z) = 1, T ∗

1 (z) = 2z−1.

The orthogonality property of T ∗
ℓ (z) with the weight function ŵ(z) =

1√
z(1− z)

is illustrated below [33, 34]:

∫ 1

0
T ∗
ℓ (z)T

∗
n (z)ŵ(z)dz = hℓδℓ, n,

where

hℓ =

{
π, if ℓ= 0,
π
2
, if ℓ > 0,

and

δℓ, n =

{
1, if ℓ= n,

0, if ℓ ̸= n.

Additionally, the power series representation of T ∗
ℓ (z) and its inversion formula are [33, 34]:

T ∗
ℓ (z) = ℓ

ℓ

∑
k=0

(−1)ℓ−k22k(ℓ+ k−1)!
(ℓ− k)!(2k)!

zk, ℓ > 0. (1)

zℓ = 21−2ℓ(2ℓ)!
ℓ

∑
p=0

εp

(ℓ− p)!(ℓ+ p)!
T ∗

p (z), ℓ≥ 0, (2)

where

εℓ =


1
2
, if ℓ= 0,

1, if ℓ > 0.
(3)

The following linearization identity and connection relation [35] are vital in simplifying the derivatives of SCPs:

T ∗
ℓ T ∗

n =
1
2

(
T ∗
ℓ+n +T ∗

|ℓ−n|

)
, ∀ℓ, n ∈ N. (4)

DT ∗
ℓ+1 = 2(ℓ+1)U∗

ℓ , ∀ℓ ∈ N. (5)

Corollary 1 [36] For any integer q > 0, the qth derivative of T ∗
ℓ (z) can be rewritten in terms of their original

polynomials as:
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DqT ∗
ℓ (z) =

ℓ−q

∑
p=0

(ℓ+p+q) even

ςℓ, p, qT ∗
p (z),

where

ςℓ, p, q =
ℓ22qεp(q) 1

2 (ℓ−p−q)(
1
2
(ℓ− p−q)

)
!
(

1
2
(ℓ+ p+q)

)
1−q

,

and εp defined in (3).

3. A matrix collocation technique for the nonlinear fractional corneal shape
equation
Herein, we analyze the following nonlinear fractional corneal shape model (NFCSM) [10]:

Dβ u(τ)−Au(τ)+
B√

1+Dα u(τ)2
= 0, α ∈]0, 1], β ∈]1, 2], τ ∈ [0, 1], (6)

subject to the Dirichlet boundary constraints:

u′(0) = 0, u(1) = 0.

Here, u(τ) is a meridian of a surface of revolution demonstrating corneal geometry, and the coefficients A, B are
positive real integers that depend intimately on a variety of physical and biological parameters, including the corneal
radius.

Remark 1 Equation (6) is solved under two specific scenarios corresponding to β = 2, α = 1, and 1 < β < 2, 0 <

α < 1.

3.1 Basis functions

Let ηi =
4

2i2 +1
, and consider the basis functions defined as:

λi(τ) = (1− τ)
(ηi

4
+ τ
)

T ∗
i (τ). (7)

Theorem 1 The following expressions hold:
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λi(τ) =
1
16
[
T ∗

i−2(τ)−ηiT ∗
i−1(τ)+2(1+ηi)T ∗

i (τ)−ηiT ∗
i+1(τ)+T ∗

i+2(τ)
]
,

Dλi(τ) =
1
8
[2(1+ηi)iUi−1(τ)−ηi ((i+1)Ui(τ)+(i−1)Ui−2(τ))− ((i+2)Ui+1(τ)+(i−2)Ui−3(τ))] ,

D2λi(τ) =
1

32τ(1− τ)
[2(1+ηi)(ξi+1Ui−2(τ)−ξiUi(τ))−ηi(6iUi−1(τ)−ξi+1Ui+1(τ)

+ξiUi−3(τ))−ξi+3Ui(τ)+ξi+2Ui+2(τ)−ξi−1Ui−4(τ)+ξi−2Ui−2(τ)],

where ξi = i(i−1).
Proof. Starting from the inversion formula (2), we have

1 =
1
2

T ∗
0 ,

τ =
1
2

T ∗
0 +

1
2

T ∗
1 ,

τ2 =
3
8

T ∗
0 +

1
2

T ∗
1 +

1
8

T ∗
2 .

Now, λi(τ) can be written in terms of T ∗
k as

λi =

[
ηi

4
T ∗

0 −
(

1
2
+

ηi

8

)
(T ∗

0 +T ∗
1 )+

3
8

T ∗
0 +

1
2

T ∗
1 +

1
8

T ∗
2

]
T ∗

i .

Based on the linearization formula (see Eq. (4)), accordingly, we can representλi(τ) in terms of T ∗
k for i−2≤ k≤ i+2

as

λi =
1
16
[
T ∗

i−2 −ηiT ∗
i−1 +2(1+ηi)T ∗

i −ηiT ∗
i+1 +T ∗

i+2
]
.

Differentiating both sides w.r.t. τ , we get

Dλi =
1
16
[
DT ∗

i−2 −ηiDT ∗
i−1 +2(1+ηi)DT ∗

i −ηiDT ∗
i+1 +DT ∗

i+2
]
.

Now, applying Eq. (5), the desired derivatives are directly obtained.
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3.2 Derivation of the collocation algorithm-classical integer derivatives

Now, we consider the following function space

∆N = span{λℓ(τ) : ℓ= 0, 1, . . . , N}.

Then, any function uN(τ) ∈ ∆N can be approximated as

uN(τ)≈
N

∑
ℓ=0

ûℓλℓ(τ). (8)

Using (8), the residual R(τ) of Eq. (6) can be written as

R(τ) =
√

1+u′N(τ)2u′′N(τ)−AuN(τ)
√

1+u′N(τ)2 +B

=

√√√√1+

(
N

∑
ℓ=0

ûℓλ ′
ℓ(τ)

)2 N

∑
ℓ=0

ûℓλ ′′
ℓ (τ)−A

N

∑
ℓ=0

ûℓλℓ(τ)

√√√√1+

(
N

∑
ℓ=0

ûℓλ ′
ℓ(τ)

)2

+B.

Using Theorem 1, one has

R(τ) =

√√√√1+

(
1
8

N

∑
ℓ=0

ûℓ

[
2(1+ηℓ)ℓUℓ−1(τ)−ηℓ ((ℓ+1)Uℓ(τ)+(ℓ−1)Uℓ−2(τ))
−((ℓ+2)Uℓ+1(τ)+(ℓ−2)Uℓ−3(τ))

])2

(
1

32τ(1− τ)

N

∑
ℓ=0

ûℓ [2(1+ηℓ)(ξℓ+1Uℓ−2(τ)−ξℓUℓ(τ))−ηℓ(6ℓUℓ−1(τ)−ξℓ+1Uℓ+1(τ)

+ξℓUℓ−3(τ))−ξℓ+3Uℓ(τ)+ξℓ+2Uℓ+2(τ)−ξℓ−1Uℓ−4(τ)+ξℓ−2Uℓ−2(τ)]

− A
16

N

∑
ℓ=0

ûℓ
[
T ∗
ℓ−2(τ)−ηℓ T ∗

ℓ−1(τ)+2(1+ηℓ)T ∗
ℓ (τ)−ηℓ T ∗

ℓ+1(τ)+T ∗
ℓ+2(τ)

])
+B.

The application of the collocation method yields (N + 1) algebraic equations system in the unknown expansion
coefficients ûℓ

R(τi) = 0, i = 1, 2, ..., N +1, (9)

where the first roots of T ∗
i (τ) are τi. Thus, the well-known Newton’s iterative method can be employed to solve the system

in (9) to find ûℓ.

Contemporary Mathematics 1228 | Y. H. Youssri, et al.



3.3 The derivation of the collocation algorithm when 1 < β < 2 and 0 < α < 1

In this section, we introduce a numerical scheme for solving the NFCSM when 1 < β < 2 and 0 < α < 1. First, we
review some fundamental properties related to fractional calculus.

Definition 1 [37] The fractional derivative in the Caputo sense of order µ is defined as:

Dµ h(τ) =
1

Γ(m−µ)

∫ τ

0
(τ −ξ )m−µ−1h(m)(ξ )dξ , µ > 0, τ > 0,

where m−1 < µ ≤ m, m ∈ N.
The following properties hold for the operator Dµ when m−1 < µ ≤ m, m ∈ N:

Dµ b = 0, b is a constant,

Dµ zm =

0, if m ∈ N0 and m < ⌈µ⌉,
Γ(m+1)

Γ(m−µ +1)
zm−µ , if m ∈ N0 and m ≥ ⌈µ⌉,

where N= {1, 2, 3, ...}, N0 = {0}∪N and ⌈µ⌉ represents the ceiling function.
Theorem 2 The following formula holds for all α ∈ (0, 1):

Dα λ j(τ) = τ−α

(
j

∑
k=1

k

∑
i=0

F 1
i, k, jT

∗
i (τ)+

j

∑
k=0

k+1

∑
i=0

F 2
i, k, jT

∗
i (τ)+

j

∑
k=0

k+2

∑
i=0

F 3
i, k, jT

∗
i (τ)

)
, (10)

where

F 1
i, k, j =

2 jεi(−1) j−kΓ(k+1)Γ( j+ k)
(2 j2 +1)Γ(−i+ k+1)Γ(i+ k+1)Γ( j− k+1)Γ(k−α +1)

,

F 2
i, k, j =

2 j3(k+1)(2k+1)εi(−1) j−kΓ(k+2)Γ( j+ k)
(2 j2 +1)Γ(−i+ k+2)Γ(i+ k+2)Γ( j− k+1)Γ(k−α +2)

,

F 3
i, k, j =

jεi(−1) j−kΓ(k+3)Γ(2k+5)Γ( j+ k)
8(2k)!( j− k)!Γ(−i+ k+3)Γ(i+ k+3)Γ(k−α +3)

.

Proof. The power form representation of λ j(τ) can be written, after using relation (1), as
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Dα
τ λ j(τ) =

1
2 j2 +1

j

∑
k=1

j22kk!(−1) j−k( j+ k−1)!
(2k)!( j− k)!(k−α)!

τk−α

+
2 j2

2 j2 +1

j

∑
k=0

j22k(k+1)!(−1) j−k( j+ k−1)!
(2k)!( j− k)!(−α + k+1)!

τ−α+k+1

−
j

∑
k=0

j22k(k+2)!(−1) j−k( j+ k−1)!
(2k)!( j− k)!(−α + k+2)!

τ−α+k+2.

By applying the inversion formula (2) and simplifying the result, we obtain the desired expression in (10).
Theorem 3 The following formula holds for all β ∈ (1, 2):

Dβ λ j(τ) = τ−β

(
j

∑
k=2

k

∑
i=0

G 1
i, k, jT

∗
i (τ)+

j

∑
k=1

k+1

∑
i=0

G 2
i, k, jT

∗
i (τ)+

j

∑
k=0

k+2

∑
i=0

G 3
i, k, jT

∗
i (τ)

)
,

where

G 1
i, k, j =

2 jεi(−1) j−kΓ(k+1)Γ( j+ k)
(2 j2 +1)Γ(−i+ k+1)Γ(i+ k+1)Γ( j− k+1)Γ(k−β +1)

,

G 2
i, k, j =

2 j3(k+1)(2k+1)εi(−1) j−kΓ(k+2)Γ( j+ k)
(2 j2 +1)Γ(−i+ k+2)Γ(i+ k+2)Γ( j− k+1)Γ(k−β +2)

,

G 3
i, k, j =

jεi(−1) j−kΓ(k+3)Γ(2k+5)Γ( j+ k)
8(2k)!( j− k)!Γ(−i+ k+3)Γ(i+ k+3)Γ(k−β +3)

.

Proof. The proof of this theorem follows the same steps as in Theorem 2, but adapted for the case where β ∈ (1, 2).
By virtue of (8) along with Theorems 2 and 3, the residual R(τ) of Eq. (6) is given by

R(τ) =
√

1+Dα uN(τ)2Dβ uN(τ)−AuN(τ)
√

1+Dα uN(τ)2 +B

=

√√√√1+

(
N

∑
ℓ=0

ûℓDα λℓ(τ)

)2 N

∑
ℓ=0

ûℓDβ λℓ(τ)−A
N

∑
ℓ=0

ûℓλℓ(τ)

√√√√1+

(
N

∑
ℓ=0

ûℓDα λℓ(τ)

)2

+B

=

√√√√1+

(
N

∑
ℓ=0

ûℓτ−α

(
ℓ

∑
k=1

k

∑
i=0

F 1
i, k, ℓT

∗
i (τ)+

ℓ

∑
k=0

k+1

∑
i=0

F 2
i, k, ℓT

∗
i (τ)+

ℓ

∑
k=0

k+2

∑
i=0

F 3
i, k, ℓT

∗
i (τ)

))2
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×
N

∑
ℓ=0

ûℓτ−β

(
ℓ

∑
k=2

k

∑
i=0

G 1
i, k, ℓT

∗
i (τ)+

ℓ

∑
k=1

k+1

∑
i=0

G 2
i, k, ℓT

∗
i (τ)+

ℓ

∑
k=0

k+2

∑
i=0

G 3
i, k, ℓT

∗
i (τ)

)

− A
16

N

∑
ℓ=0

ûℓ
(
T ∗
ℓ−2(τ)−ηℓT ∗

ℓ−1(τ)+2(1+ηℓ)T ∗
ℓ (τ)−ηℓT ∗

ℓ+1(τ)+T ∗
ℓ+2(τ)

)

×

√√√√1+

(
N

∑
ℓ=0

ûℓτ−α

(
ℓ

∑
k=1

k

∑
i=0

F 1
i, k, ℓT

∗
i (τ)+

ℓ

∑
k=0

k+1

∑
i=0

F 2
i, k, ℓT

∗
i (τ)+

ℓ

∑
k=0

k+2

∑
i=0

F 3
i, k, ℓT

∗
i (τ)

))2

+B.

Applying the collocation method at the first roots of T ∗
i (τ) {τi : i = 1, 2, ..., N +1}, we get

R(τi) = 0, i = 1, 2, ..., N +1.

Newton’s iterative method can be employed to solve a system of (N +1) nonlinear algebraic equations to obtain the
unknown expansion coefficients ûℓ.

4. Error estimate
Lemma 1 The following inequality holds for λ j(t)

|λ j(t)|< 2, ∀ j ≥ 0.

Proof. The definition of λ j(t) in (7) can be written as

λ j(t) =

( (
2 j2
)

2 j2 +1
+

1
2 j2 +1

x− x2

)
T ∗

j (t).

Now, taking the absolute value for each side and using the two identities |T ∗
j (t)| ≤ 1, and |t|< 1, we get the desired

result.
Theorem 4 [36] If g(t) ∈Cq(0, τ), τ > 0, such that g(q)(t) is bounded for some q > 3 and g(t) is approximated as

g(t)≈ gN(t) =
N

∑
i=0

aiT ∗
i (t),

then, the following bound on ai holds

|ai|= O(i−q), ∀i > 1.
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Corollary 2 The following bound on ûℓ holds if u(t) = (1− t)
(ηℓ

4
+ t
)

g(t) ∈Cq(0, 1), ℓ ≥ 0, such that u(q)(t) is
bounded for some q > 3 and u(t) is approximated as in (8).

|ûℓ|= O(ℓ−q), ∀ℓ > 1.

Proof. The assumption of this corollary along with Theorem 4 enables us to write

u(t) = (1− t)
(ηℓ

4
+ t
)

g(t) = (1− t)
(ηℓ

4
+ t
) ∞

∑
ℓ=0

aℓ T ∗
ℓ (t) =

∞

∑
ℓ=0

ûℓ λℓ(t).

Now, the application of Theorem 4 leads to

|ûℓ|= |aℓ|= O(ℓ−q), ∀ℓ > 1.

This completes the proof of this corollary.
Theorem 5 The following error estimate is true

|u(t)−uN(t)|= O(N1−q).

Proof. Based on the definition of u(t) and uN(t), one can write

u(t)−uN(t) =
∞

∑
ℓ=N+1

ûℓλℓ(t).

Now, using the following inequality |λℓ(t)|< 2, along with Corollary 2, one has

|u(t)−uN(t)|=

∣∣∣∣∣ ∞

∑
ℓ=N+1

ûℓλℓ(t)

∣∣∣∣∣
<

∞

∑
ℓ=N+1

2
ℓq = 2ζ (q, N +1) = O(N1−q).

where ζ (q, N +1) is the Hurwitz zeta function [38]. This completes the proof of this theorem.

5. Results and discussion
This section is devoted to check the applicability and accuracy of our proposed scheme.
Let’s define the following absolute residual errors norm and the maximum absolute residual errors
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REs =
∣∣∣∣√1+Dα uN(t)2Dβ uN(t)−AuN(t)

√
1+Dα uN(t)2 +B

∣∣∣∣ ,
MREs = max

t∈(0, 1)

∣∣∣∣√1+Dα uN(t)2Dβ uN(t)−AuN(t)
√

1+Dα uN(t)2 +B
∣∣∣∣ .

Now, if we consider the successive errors EN , and EN+1, then the order of convergence for the given method can be
calculated as

Order=
log

EN+1

EN

log
N +1

N

.

When β = 2 and α = 1, the MREs at various values of A, B, and N are displayed in Tables 1 and 2. This shows
how accurate our approach is. Also, they verifies that the suggested approach reduces errors consistently throughout the
domain. Table 3, shows the MREs and order of convergence at A = 1, B = 1 and β = 2, α = 1. A comparison of the REs
at β = 2 and α = A = B = 1, between current technique at N = 19 and the method in [10] at N = 15 is shown in Table 4.
This comparison reveal the superior performance of our technique over method in [10]. The approximate solution (right)
and REs (left) are shown in Figure 1 when A = 0.5, B = 0.5, α = 1 and β = 2 at N = 12. This figure verifies that the
suggested approach reduces errors consistently throughout the domain. Furthermore, when N = 6 at various values of A
and B, Figures 2-5 demonstrate that approximate solutions have smaller variations of different values of α and β around
the values α = 1, β = 2. The results demonstrate the effect of the parameters A and B, which are related to the radius
of the cornea, on the corneal geometry. The model’s capability also provides deeper insights into corneal biomechanics,
making it valuable for applications such as diagnosis and treatment of corneal disorders.

Table 1. The MREs at β = 2, α = 1

N A = 1, B = 1 A = 1.3, B = 1.6 A = 0.8, B = 1.1

3 2.4231×10−3 1.13387×10−2 1.01765×10−3

6 1.38556×10−5 4.47518×10−4 8.74918×10−6

9 1.77522×10−7 8.60545×10−6 8.73423×10−7

12 1.17822×10−9 1.44607×10−7 1.87596×10−8

15 4.96152×10−12 2.08988×10−9 2.87627×10−10

18 8.43334×10−15 2.43155×10−11 3.70726×10−12

21 1.33657×10−14 6.55032×10−15 6.6025×10−15
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Table 2. The MREs at β = 2, α = 1

N A = 1.4, B = 1.8 A = 1.5, B = 1.9 A = 1.7, B = 1.2

3 2.5606×10−2 3.06831×10−2 4.21816×10−2

6 1.27271×10−3 1.67124×10−3 2.21062×10−3

9 3.85178×10−5 5.51176×10−5 8.17376×10−5

12 1.06888×10−6 1.65986×10−6 2.72582×10−6

15 2.79866×10−8 4.70011×10−8 8.47925×10−8

18 7.17118×10−10 1.29848×10−9 2.55483×10−9

21 7.96502×10−12 1.53422×10−11 3.24917×10−11

24 2.02013×10−13 8.97893×10−14 6.21005×10−13

Table 3. The MREs and order of convergence at A = 1, B = 1 and β = 2, α = 1

N Error Order N Error Order

3 2.4231×10−3 - 11 3.6368×10−9 1.05694

4 4.17743×10−4 1.02379 12 1.17822×10−9 1.02095

5 8.30212×10−5 1.04023 13 1.63196×10−11 1.17045

6 1.38556×10−5 1.04696 14 3.76343×10−11 0.93922

7 4.84252×10−6 1.00731 15 4.96148×10−12 1.05679

8 1.75522×10−7 1.37985 16 6.51368×10−13 1.05291

9 1.47522×10−7 1.07287 17 2.40474×10−13 1.01335

10 2.1515×10−8 1.07104 18 8.54872×10−15 1.01512

Table 4. Comparison of the REs at β = 2, α = A = B = 1

t Method in [10] at N = 15 Present method at N = 19

0 0.000002052 2.22045×10−16

0.1 0.000001962 2.22045×10−16

0.2 0.000002037 2.22045×10−16

0.3 0.000002102 1.11022×10−16

0.4 0.000002127 4.44089×10−16

0.58 0.000002184 3.33067×10−16

0.6 0.000002265 3.33067×10−16

0.7 0.000002325 1.11022×10−16

0.88 0.000002388 1.11022×10−16

0.9 0.000002117 1.11022×10−16

1 0 1.68754×10−14
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Figure 1. The REs (left) and approximate solution (right) when A = 0.5, B = 0.5 at N = 12

Figure 2. The approximate solutions when A = 1, B = 1 at N = 6

Figure 3. The approximate solutions when A = 1.72, B = 1.6 at N = 6
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Figure 4. The approximate solutions when A = 1.38, B = 1.31 at N = 6

Figure 5. The approximate solutions when A = B = 0.5 at N = 6

6. Concluding remarks
Wehave constructed a spectral semi-analytic procedures in this work to spectrally solve the nonlinear fractionalmodel

of the human corneal shape. Convergence and truncation error analysies were used to show the method’s accuracy. This
work demonstrates how spectral approachesmay be applied to intricate biological systems and increases our understanding
of corneal dynamics through the use of fractional calculus. To stress on the importance of our suggested methodology,
future research could investigate adapting the concept to other biological systems with fractional dynamics, incorporate
more intricate models, and create more effective computational numerical spectral methods for large-scale differential
models. Furthermore, real-time simulations can be made possible by combining the technique with optimization problems
on the parameter of orthogonal polynomials, and applying it to 3D human eyemodels could improve predictions of changes
in corneal shape. As an expected future work, we aim to employ the developed theoretical results in this paper along with
suitable spectral methods to treat some other problems.
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