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Abstract: This paper focuses on the retrieval of quiescent optical solitons within the framework of the concatenation
model, incorporating nonlinear chromatic dispersion and the Kerr law of self-phase modulation. These solitons, which
remain stable and maintain their shape over time, are crucial for understanding the behavior of light in nonlinear optical
media. The retrieval of these solitons is achieved through two distinct techniques. Each of these integration schemes offers
a systematic way to derive analytical solutions, ensuring that the underlying dynamics of the optical solitons are accurately
captured. In addition to the analytical solutions, this study presents numerical simulations to validate the theoretical
findings. These simulations illustrate the behavior of the recovered quiescent solitons, confirming their stability and
showcasing their dynamics under the influence of self-phase modulation and nonlinear chromatic dispersion. By bridging
analytical methods with computational validation, the paper offers a thorough examination of these soliton structures and
their real-world relevance, particularly in the design of advanced optical fiber networks and nonlinear optical devices.

Copyright ©2025 Yakup Yildirim, et al.
DOI: https://doi.org/10.37256/cm.6220256388
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 6 Issue 2|2025| 1955 Contemporary Mathematics

https://ojs.wiserpub.com/index.php/CM/
https://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0002-8131-6044
https://doi.org/10.37256/cm.6220256388
https://creativecommons.org/licenses/by/4.0/


Keywords: methods, model, solitons, Riccati, dispersion

MSC: 78A60, 81V80

1. Introduction
It was exactly a decade ago when the concatenation model was conceived [1–5]. This model is formed by the

conjunction of the familiar nonlinear Schrödinger’s equation (NLSE), the Lakshmanan-Porsezian-Daniel (LPD) equation
and the Sasa-Satsuma equation (SSE). This proposed model is projected to implement performance enhancement in the
soliton transmission dynamics across transcontinental and transoceanic distances for pulse propagation [6–10]. There are
several features that were subsequently addressed for this model. A full spectrum of soliton solutions were retrieved for the
model by the aid of undetermined coefficients [11–15]. The conservation laws were derived [16–20]. This was followed
by the numerical study of optical solitons for the model by the Laplace-Adomian decomposition method (LADM) [21–25].
The Painleve analysis for the model was carried out [26–30]. Later, the model was applied to recover gap solitons with
fiber Bragg gratings [31–35].

After an exhaustive study of the concatenation model with Kerr law of self-phase modulation (SPM) in one-
dimensional case, the model was subsequently considered with polarization-mode dispersion that gave way to an
additional set of results being reported such as the implementation of the method of undetermined coefficients to retrieve
the soliton solutions. The LADM scheme was applied here as well to obtain the numerical simulation of the solitons
with impressive accuracy. Subsequently, the dispersive version of the concatenation model emerged later during the same
year where the fundamental models that were conjoined to formulate this newer version of the concatenation model were
the Schrödinger-Hirota equation, LPD model and the fifth-order NLSE. This too was later studied to recover its soliton
solutions along with several additional interesting results.

While both the models were addressed with linear chromatic dispersion (CD), it is now time to turn the page. The
current paper addresses the concatenation model with nonlinear CD and with Kerr law of SPM. It is quite well-known that
if CD is rendered to be nonlinear the solitons are stalled during its propagation and thus the concept of quiescent optical
solitons ensued. The current paper addresses just that. Two integration algorithms that recover the quiescent solitons for
the model are projective Riccati equation approach as well as the enhanced Kudryashov’s algorithm. The used methods
are special cases of the generalized Riccati Equation Mapping Method and the new extended direct algebraic method.
They yield a full spectrum of quiescent optical solitons to the concatenation model having nonlinear CD and Kerr-law of
SPM. The results are derived after a quick and succinct re-visitation of the integration algorithms. The derived results are
exhibited along with the respective parameter constraints, which are also enumerated, for the existence of such solitons.

1.1 Governing model

The concatenation model considered in this study follows a specific mathematical formulation, which has been
explored in prior works [1–5, 21–27]:

iqt +a(|q|nq)xx +b|q|2q+ c1

[
δ1qxxxx +δ2 (qx)

2 q∗+δ3|qx|2q+δ4|q|2qxx +δ5q2q∗xx +δ6|q|4q
]

+ ic2
[
δ7qxxx +δ8|q|2qx +δ9q2q∗x

]
= 0. (1)

This model serves as a framework for studying complex interactions in nonlinear optical systems by coupling
different physical effects. It incorporates nonlinear CD, which accounts for wavelength-dependent variations in refractive
index, and Kerr nonlinearity, representing the intensity-dependent refractive index that leads to self-phase modulation.
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The concatenation of these effects provides a more comprehensive representation of the dynamics in nonlinear optical
media. By using this model, researchers can describe the evolution and propagation of solitons-localized wave packets that
preserve their shape due to a balance between nonlinearity and dispersion. Themathematical structure of the concatenation
model offers a versatile platform for deriving both analytical and numerical solutions, capturing a wide range of physical
behaviors observed in experimental setups. This formulation, detailed across the cited literature, forms the backbone of
the present study, enabling the retrieval of quiescent solitons through advanced integration techniques.

To provide a detailed description of equation (1), let’s examine the effects of setting specific values for the parameters
c1 and c2, and the resulting simplified models. Setting c1 = 0 transforms equation (1) into the SSE, a well-known model
that accounts for the higher-order nonlinear effects, such as third-order dispersion, that are significant in nonlinear optics.
This equation offers insights into the behavior of ultrashort pulses in optical fibers, where high-order dispersion terms
become relevant. When we further assume c1 = c2 = 0, equation (1) reduces to the NLSE, one of the fundamental models
in nonlinear wave propagation that describes the evolution of wave envelopes in dispersive and nonlinear media. The
NLSE characterizes optical solitons, stable pulse solutions that maintain their shape due to a balance between dispersion
and nonlinearity. Additionally, setting only c2 = 0 modifies equation (1) to resemble the LPDmodel. This model captures
intermediate effects between the SSE and the NLSE by incorporating second-order dispersion along with additional
nonlinearities, thus extending its applicability in systems with non-trivial dispersion management. In equation (1), the
parameters c1 and c2 correspond to the dispersion terms and directly affect the propagation characteristics of the wave.
The wave profile is represented by the function q = q(x, t), describing the amplitude of the pulse as it evolves in both
space x and time t. The parameter a is associated with nonlinear CD, which significantly influences the pulse dynamics in
systems where the refractive index varies with wavelength. This effect leads to different spectral components of the pulse
traveling at different speeds, altering the pulse shape over time. The first term in the equation represents the linear temporal
evolution of the pulse and accounts for the rate of change of the pulse envelope with respect to the spatial variable x. It
effectively models the change in amplitude as the pulse progresses through the medium. The nonlinear CD is described
by the second term, which influences pulse broadening and temporal asymmetry, resulting from the complex interplay
of nonlinearities and dispersion. When light waves of varying frequencies propagate at different velocities, they spread
out over time, modifying the overall pulse structure. Finally, the third term embodies the Kerr nonlinearity through the
SPM effect, driven by changes in the refractive index with intensity. This nonlinearity leads to a frequency shift within
the pulse, allowing the pulse to maintain its shape and is a critical factor in soliton formation. The Kerr effect, quantified
by parameter b, ensures that high-intensity parts of the pulse experience more rapid phase changes, thereby influencing
the spectral and temporal characteristics of the pulse.

This article is structured as follows: Section 2 provides the theoretical foundation for the study, introducing the key
equations and assumptions of the concatenation model, nonlinear chromatic dispersion, and the Kerr law of self-phase
modulation. Section 3 describes the two main techniques used to retrieve quiescent optical solitons. It explains the
methodologies behind the projective Riccati equation method and the enhanced Kudryashov’s algorithm, detailing how
each approach leads to analytical soliton solutions. Section 4 focuses on the characteristics and behavior of quiescent
optical solitons within the given model. It examines their stability and dynamics, specifically in the context of nonlinear
chromatic dispersion and self-phase modulation. Section 5 presents the results from both the analytical solutions and
numerical simulations. This section analyzes the soliton behavior, confirming their stability and dynamic properties under
various conditions. It also discusses the implications of these findings for practical applications. Section 6 summarizes
the key findings of the study, emphasizing the relevance of quiescent optical solitons in nonlinear optical media. It also
offers recommendations for future research and potential applications in optical communication and nonlinear optics.

2. Mathematical analysis
The projected form of the soliton is outlined as
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q(x, t) =U(ξ )ei(ωt+θ), ξ = kx. (2)

The amplitude U(ξ ), wave width k, wave number ω , and phase shift θ characterize the quiescent soliton.
Transformation in Eq. (2) allows Eq. (1) to be split into its imaginary and real parts:

ak2n(n+1)Un (U ′)2
+ak2(n+1)U1+nU ′′+ c1k2 (δ2 +δ3)

(
U ′)2 U2 + c1k2 (δ4 +δ5)U3U ′′

+ c1δ1k4U (iv)U −ωU2 +bU4 + c1δ6U6 = 0, (3)

and

c2δ7U ′′′Uk3 + c2k (δ8 +δ9)U3U ′ = 0. (4)

Based on the imaginary part Eq. (4), we deduce:

δ7 = 0, δ8 +δ9 = 0. (5)

To comply with the integrability restriction, we take n = 2. As a result, Equation (1) can be modified to read

iqt +a
(
|q|2q

)
xx +b|q|2q+ c1

[
δ1qxxxx +δ2 (qx)

2 q∗+δ3|qx|2q+δ4|q|2qxx +δ5q2q∗xx +δ6|q|4q
]

+ ic2
[
δ8|q|2qx +δ9q2q∗x

]
= 0, (6)

and Eq. (3) can be rewritten as:

c1δ1k4U (iv)+
[
3ak2 + c1k2 (δ4 +δ5)

]
U2U ′′+

[
6ak2 + c1k2 (δ2 +δ3)

]
U
(
U ′)2 −ωU +bU3 + c1δ6U5 = 0. (7)

Eq. (7) can be simplified to the following simple ordinary differential equation (ODE).

k2U ′′′′+Ω5U2U ′′+Ω4U
(
U ′)2

+Ω1U +Ω2U3 +Ω3U5 = 0, (8)

with
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

Ω5 =
[3a+ c1 (δ4 +δ5)]

c1δ1
,

Ω4 =
[6a+ c1 (δ2 +δ3)]

c1δ1
,

Ω3 =
δ6

δ1k2 ,

Ω2 =
b

c1δ1k2 ,

Ω1 =
−ω

c1δ1k2 .

(9)

3. Methodology
Take into account the model structured as [11–20]:

F(u, ux, ut , uxt , uxx, ....) = 0. (10)

In this context, u = u(x, t) serves as the wave profile, in which x and t correspond to the space and time domains.
The substitutions:

ξ = k (x− vt) , u(x, t) =U(ξ ), (11)

reduce Eq. (10) to:

P(U, −kvU ′, kU ′, k2U ′′, ...) = 0. (12)

In this formulation, v represents the wave’s velocity, k denotes the wave width, and ξ specifies the wave variable.
Next, the basic procedures of the techniques will be outlined in the following subsections.

3.1 Projective Riccati equation algorithm

The basic procedures of the technique is outlined in the steps [11–20]:
Step-1: Eq. (10) admits:

U(ξ ) = α0 +
N

∑
i=1

f i−1(ξ )
(

αi f (ξ )+βig(ξ )
)
, (13)

where

g′(ξ ) = 1−g2(ξ )− r f (ξ ),

f ′(ξ ) =− f (ξ )g(ξ ), (14)
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with

g(ξ )2 = 1−2r f (ξ )+φ(r) f (ξ )2. (15)

Here, r, α0, αi, and βi denote constants, with N based on the balancing scheme in Eq. (12).
Step-2: Eq. (14) holds the solutions:
Case-1: φ(r) = r2 +1

g(ξ ) =
coth[ξ ]

r csch[ξ ]+1
, and f (ξ ) =

csch[ξ ]
r csch[ξ ]+1

. (16)

Case-2: φ(r) = r2 −1

g(ξ ) =
5 tanh[ξ ]+3

3 tanh[ξ ]+4r sech[ξ ]+5
, and f (ξ ) =

4 sech[ξ ]
3 tanh[ξ ]+4r sech[ξ ]+5

, (17)

or

g(ξ ) =
tanh[ξ ]

r sech[ξ ]+1
, and f (ξ ) =

sech[ξ ]
r sech[ξ ]+1

. (18)

Case-3: φ(r) =
5
9

r2

g(ξ ) =
2

2 coth[ξ ]±3 csch[ξ ]
, and f (ξ ) =

1
r

3 sech[ξ ]
3 sech[ξ ]±2

. (19)

Case-4: φ(r) =
24
25

r2

g(ξ ) =
tanh[ξ ]

1±5 sech[ξ ]
, and f (ξ ) =

1
r

5 sech[ξ ]
5 sech[ξ ]±1

. (20)

Case-5: φ(r) = 0

g(ξ ) = tanh
[

ξ
2

]
, and f (ξ ) =

1
2r
sech2

[
ξ
2

]
, (21)

or

g(ξ ) = coth
[

ξ
2

]
, and f (ξ ) =− 1

2r
csch2

[
ξ
2

]
. (22)
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Step-3: Upon inserting Eq. (13) together with (14) and (15) into Eq. (12), a polynomial is obtained. The resulting
coefficients yield the required parameters in (11) and (13).

3.2 The enhanced Kudryashov’s algorithm

The basic procedures of the technique is outlined in the steps [11–20]:
Step-1: Eq. (12) admits:

U(ξ ) = α0 +
N

∑
i=1

{
αiR(ξ )i +βi

(
R′(ξ )
R(ξ )i

)}
, (23)

where

R′(ξ )2 = R(ξ )2 (1−χR(ξ )2) . (24)

In this formulation, α0, χ , and βi are constants, where N is based on the balancing procedure outlined in Eq. (12).
Step-2: Eq. (22) satisfies:

R(ξ ) =
4d

4d2eξ +χe−ξ , (25)

where d is nonzero constant.
Step-3: Plugging Eq. (23) and Eq. (24) into Eq. (12) yields the findings necessary for Eq. (11) and Eq. (23). These

restrictions, when reinserted into Eq. (23) with Eq. (25), result in straddled solitons, reducible to bright, singular, or dark
solitons.

4. Quiescent optical solitons
4.1 The projective Riccati equations algorithm

With the homogeneous balance principle applied U5 and U (iv) in Eq. (7), N = 1 is determined, leading to:

U(ξ ) = α0 +α1 f (ξ )+β1g(ξ ). (26)

When Eq. (26), along with Eqs. (14) and (15), is substituted into Eq. (7), the resulting expressions are:
Case-1: Assuming δ [r] = 0, the result is:

α0 = 0, α1 = 0, β1 =

√
4Ω1

4Ω5 −Ω4
, k =

√
4Ω1Ω5

Ω4 −4Ω5
, Ω3 =

(Ω4 −4Ω5)
2

16Ω1
, Ω2 =

1
2
(Ω4 −4Ω5) . (27)

Accordingly, Eq. (1) admits the findings:
Dark soliton:
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q(x, t) =

√
4Ω1

4Ω5 −Ω4
tanh

[√
Ω1Ω5

Ω4 −4Ω5
x

]
ei(ωt+θ). (28)

Singular soliton:

q(x, t) =

√
4Ω1

4Ω5 −Ω4
coth

[√
Ω1Ω5

Ω4 −4Ω5
x

]
ei(ωt+θ). (29)

Case-2: When δ [r] is taken as
24
25

r2, this gives:

α0 = 0, α1 =

√
96Ω1r2

25(4Ω5 −Ω4)
, β1 =

√
4Ω1

4Ω5 −Ω4
, k =

√
4Ω1Ω5

Ω4 −4Ω5
, Ω3 =

(Ω4 −4Ω5)
2

16Ω1
,

Ω2 =
1
2
(Ω4 −4Ω5) . (30)

In turn, this yields the straddled soliton:

q(x, t) =


√

4Ω1

4Ω5 −Ω4


√

24sech
[√

4Ω1Ω5

Ω4 −4Ω5
x
]

5sech
[√

4Ω1Ω5

Ω4 −4Ω5
x
]
±1

+

tanh
[√

4Ω1Ω5

Ω4 −4Ω5
x
]

1±5sech
[√

4Ω1Ω5

Ω4 −4Ω5
x
]

ei(ωt+θ). (31)

Case-3: Assuming δ [r] =
5
9

r2, the result is:

α0 = 0, α1 =

√
20Ω1r2

9(4Ω5 −Ω4)
, β1 =

√
4Ω1

4Ω5 −Ω4
, k =

√
4Ω1Ω5

Ω4 −4Ω5
, Ω3 =

(Ω4 −4Ω5)
2

16Ω1
,

Ω2 =
1
2
(Ω4 −4Ω5) . (32)

Accordingly, Eq. (1) satisfies the straddled soliton:

q(x, t) =


√

4Ω1

4Ω5 −Ω4


√

5sech
[√

4Ω1Ω5

Ω4 −4Ω5
x
]

3sech
[√

4Ω1Ω5

Ω4 −4Ω5
x
]
±2

+
2

2coth
[√

4Ω1Ω5

Ω4 −4Ω5
x
]
±3csch

[√
4Ω1Ω5

Ω4 −4Ω5
x
]



× ei(ωt+θ). (33)
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Case-4: By defining δ [r] = r2 −1, we arrive at:

α1 = 0, β1 =

√
10Ω1 (r2 −1)

13Ω5
, k =

√
2Ω1

13
, Ω3 =−

13Ω2
5
(
5r2 −17

)
100Ω1 (r2 −1)2 , Ω4 =−

3Ω5
(
r2 +3

)
2(r2 −1)

,

Ω2 =
Ω5
(
r2 −6

)
2(r2 −1)

. (34)

In turn, this yields the straddled solitons:

q(x, t) =


√

10Ω1 (r2 −1)
13Ω5


5tanh

[√
2Ω1

13
x

]
+3

3tanh

[√
2Ω1

13
x

]
+4rsech

[√
2Ω1

13
x

]
+5


ei(ωt+θ), (35)

and

q(x, t) =


√

10Ω1 (r2 −1)
13Ω5


tanh

[√
2Ω1

13
x

]

rsech

[√
2Ω1

13
x

]
+1


ei(ωt+θ). (36)

Case-5: When δ [r] is taken as r2 +1, this gives:

α1 = 0, β1 =

√
−10Ω1 (r2 +1)

13Ω5
, k =

√
2Ω1

13
, Ω3 =

13Ω2
5
(
5r2 +17

)
100Ω1 (r2 +1)2 , Ω4 =−

3Ω5
(
r2 −3

)
2(r2 +1)

,

Ω2 =
Ω5
(
r2 +6

)
2(r2 +1)

. (37)

As a result, Eq. (1) admits the straddled soliton:

q(x, t) =


√
−10Ω1 (r2 +1)

13Ω5


coth

[√
2Ω1

13
x

]

rcsch

[√
2Ω1

13
x

]
+1


ei(ωt+θ). (38)
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4.2 The enhanced Kudryashov’s algorithm

With the homogeneous balance principle appliedU (iv) andU5 in Eq. (7), one finds N = 1, which allows us to express
Eq. (7) in the form:

U(ξ ) = α0 +α1R(ξ )+β1

(
R′(ξ )
R(ξ )

)
. (39)

Incorporating Eq. (39) along with Eq. (24) into Eq. (7) results in:
Result-1:

α0 = 0, α1 = 0, β1 =±

√
5Ω1

−2Ω2 −Ω4 +4Ω5
, k =

√
Ω1 (−Ω2 +2Ω4 +2Ω5)

16Ω2 +8Ω4 −32Ω5
,

Ω3 =
6Ω2

2 +(Ω2 −Ω4 +4Ω5)(Ω4 −4Ω5)

25Ω1
. (40)

Thus, Eq. (1) satisfies:

q(x, t) =

∓

√
5Ω1

−2Ω2 −Ω4 +4Ω5


4d2 exp

[
2
√

Ω1 (−Ω2 +2Ω4 +2Ω5)

16Ω2 +8Ω4 −32Ω5
x
]
−χ

4d2 exp
[

2
√

Ω1 (−Ω2 +2Ω4 +2Ω5)

16Ω2 +8Ω4 −32Ω5
x
]
+χ


ei(ωt+θ). (41)

Selecting χ =±4d2 to recover dark and singular solitons for
5Ω1

−2Ω2 −Ω4 +4Ω5
> 0 and

Ω1 (−Ω2 +2Ω4 +2Ω5)

16Ω2 +8Ω4 −32Ω5
>

0:

q(x, t) =

∓

√
5Ω1

−2Ω2 −Ω4 +4Ω5
tanh

√Ω1 (−Ω2 +2Ω4 +2Ω5)

16Ω2 +8Ω4 −32Ω5
x

ei(ωt+θ), (42)

and

q(x, t) =

∓

√
5Ω1

−2Ω2 −Ω4 +4Ω5
coth

√Ω1 (−Ω2 +2Ω4 +2Ω5)

16Ω2 +8Ω4 −32Ω5
x

ei(ωt+θ). (43)

Result-2:
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α0 = 0, α1 =±

√
− 20Ω1χ

Ω2 +Ω4 +Ω5
, β1 = 0, k =

√
−Ω1,

Ω3 =
6Ω2

2 +Ω2 (7Ω4 +2Ω5)+Ω2
4 −4Ω2

5 −3Ω4Ω5

100Ω1
. (44)

Accordingly, Eq. (1) holds:

q(x, t) =

{
±

√
− 20Ω1χ

Ω2 +Ω4 +Ω5

(
4dex

√
−Ω1

4d2e2x
√
−Ω1 +χ

)}
ei(ωt+θ). (45)

Selecting χ =±4d2 to recover bright and singular solitons for
20Ω1

Ω2 +Ω4 +Ω5
< 0 and Ω1 < 0:

q(x, t) =

{
±

√
− 20Ω1

Ω2 +Ω4 +Ω5
sech

[√
−Ω1x

]}
ei(ωt+θ), (46)

and

q(x, t) =

{
±

√
20Ω1

Ω2 +Ω4 +Ω5
csch

[√
−Ω1x

]}
ei(ωt+θ). (47)

5. Results and discussion
We provide an in-depth analysis of Figures 1-3, examining the modulus profiles of various solitons, namely

dark, bright-dark, and bright solitons, as described by the corresponding equations along with a = 1, c1 = 1, δ5 = 1, δ4 =

1, δ3 = 1, δ2 = 1, δ1 = 1, and ω = 1. The analysis focuses on the influence of the wave width parameter k across a range
from k = 0.5 to k = 1.4 on the soliton shape, amplitude, and width. Each figure uses 2D plots to explore how changing k
modulates each soliton’s structure and dynamics, shedding light on their distinctive characteristics and applications.

Figure 1 demonstrates the modulus of the dark soliton governed by equation (28) under various values of k. Dark
solitons are known for their characteristic dips in amplitude, where a localized dark region occurs in the center of the soliton
profile. As k increases from 0.5 to 1.4, the soliton’s width broadens, and the depth of the dip in amplitude decreases. This
broadening effect suggests that higher k values cause the dark soliton to become less localized, spreading out over a wider
region and appearing flatter in profile. This behavior aligns with the known dynamics of dark solitons, where increasing
the wave width variable k reduces the soliton’s spatial confinement. For smaller k, the soliton’s amplitude dip is more
pronounced, indicating stronger localization and a steeper transition between the low and high amplitude regions. This
response can be useful in applications where control over the soliton’s confinement and the sharpness of amplitude changes
is needed, such as in optical signal processing where the rapid transition between high and low states is advantageous.
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Figure 1. Investigating the properties of a dark soliton, with particular attention to its amplitude
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Figure 2. Investigating the properties of a bright-dark soliton, with particular attention to its amplitude
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Figure 2 examines themodulus of the dark-bright soliton, a composite soliton described by equation (31). Bright-dark
solitons display a dual characteristic, with both a peak (bright component) and a dip (dark component) within the same
profile. As k increases, the amplitude of the bright component slightly rises, while the width of the dark dip broadens. This
dual modulation effect highlights the unique nature of bright-dark solitons, where each component responds differently
to variations in k. The results suggest that larger k values cause the bright portion to become more pronounced while
the dark component spreads out. This behavior can be advantageous in applications requiring complex wave structures
with controllable bright and dark regions. For instance, bright-dark solitons could be leveraged in optical lattices or in
the modulation of light in photonic circuits, where tailored intensity profiles are desirable for different functional roles in
transmission channels.
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Figure 3. Investigating the properties of a bright soliton, with particular attention to its amplitude

Figure 3 examines the modulus of the bright soliton, as described by equation (46). Unlike other soliton types,
the bright soliton primarily shows an increase in amplitude as k rises, with its width remaining relatively stable. This
behavior indicates that bright solitons retain their shape while experiencing amplitude enhancement with higher k values,
underscoring their resilience to changes in the wave width parameter. The bright soliton’s consistent structure and
amplitude stability make it suitable for applications requiring robust wave profiles, such as data transmission in optical
fibers where the preservation of signal shape over long distances is critical. The ability to control the amplitude without
affecting the solitonwidth also suggests its potential in amplitude-sensitive applications wheremodulationwithout altering
spatial confinement is required.

In summary, Figures 1-3 provide comprehensive insights into the influence of the wave width parameter k on various
soliton types. Dark and bright solitons exhibit primarily amplitude and width adjustments. Hybrid solitons, such as dark-
bright solitons, display combined behaviors where each component responds distinctly to k variations. This analysis
highlights the tunability of solitons for applications across optical communication, photonic systems, and nonlinear
optics, where tailored soliton profiles and precise control over intensity and localization are essential.

6. Conclusions
The current study revisits and systematically derives quiescent optical solitons for the concatenation model, which is

formulated here with a Kerr law SPM framework combined with nonlinear CD. This setup is essential to understand
as it governs the propagation dynamics of optical pulses, especially under conditions where the nonlinear effects in
the medium influence the stability of the transmitted pulses. The quiescent solitons retrieved in this study are derived
through the application of two distinct integration algorithms: the projective Riccati equation approach and the enhanced
Kudryashov’s method. Each of these algorithms contributes uniquely to the retrieval process, collectively enabling a
comprehensive recovery of quiescent solitons in the concatenation model. The full range of soliton solutions, along with
the necessary parameter constraints that ensure their existence, are presented and thoroughly analyzed. These constraints
are crucial as they outline the specific conditions under which stable quiescent solitons can be sustained in this nonlinear
model.
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The implications of the results presented in this paper are particularly significant for the telecommunication
industry, as well as for engineers workingwith ground-based transmission systems. One of the critical findings highlighted
here is the adverse effect that nonlinear CD has on pulse propagation. Specifically, the study serves as a warning: it is
essential to prevent CD from becoming nonlinear during data transmission, whether intentionally or inadvertently. Any
scenario in which nonlinear CD occurs could lead to potentially catastrophic consequences, where optical pulses might
stall or freeze mid-transmission, particularly in scenarios such as transoceanic data transfer. This stalling effect would
be highly detrimental, especially given the extensive distances involved in intercontinental communication, where stable
pulse propagation is paramount for reliable data transfer. Therefore, ensuring that CD remains linear is fundamental to
maintaining optimal pulse dynamics and avoiding transmission failures over long distances.

Furthermore, the study suggests that future research will extend this model by incorporating additional forms of
SPM structures, which will provide a more versatile framework for exploring other nonlinear effects in optical fibers.
Additionally, the concatenation model will be investigated under conditions involving polarization-mode dispersion and
with the application of dispersion-flattened fibers. These fibers are particularly relevant in optical communications as they
help maintain consistent dispersion properties across a broader wavelength range. Once these advanced models and the
recovered soliton solutions align with pre-existing results in the literature, the findings will be broadly disseminated and
shared across academic and engineering communities, thereby contributing valuable insights to both theoretical research
and practical applications in fiber optics and telecommunication technologies [36–40].
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