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1. Introduction

Calculus has seen several phases of evolution because it can be hard to understand in some situations, mathematicians
have employed inequalities to derive solutions for differential and integral equations by establishing upper bounds for
particular parameters. This reasoning led to the concept of differential and integral inequality. In the field of integration,
the inequality (1) that Griiss established in 1935 [1] also (see [2, 3]) is one of the most important.
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p<v@) <P q<@(x)<0, z€c1, 2], p,P g, QER. ()

This inequality has garnered substantial importance due to its extensive applications across various domains within
mathematical sciences, such as difference equations, integral arithmetic mean, and h-integral arithmetic mean, which
are associated with numerous current and applied sciences (see [4, 5]). Dahmani [6] introduced the fractional variant of
inequality (1) utilising the Riemann-Liouville fractional integral as follows:

T 2
‘F(TZH) o {re} (2) — Ao (2) Hhv (@)
1 7t 2
<i(fem) te-ae-n. ®

where ¥, ¢ : [0, +o0) — R be an integrable functions on [0, 40) satisfying (2), and 7 > 0, z > 0.

The identical author, inside the identical paper, proposed the subsequent inequality:

Theorem 1.1 Let v, ¢ : [0, +o0) — R be an integrable functions on [0, +oo) satisfying (2). Then,V 7,6 >0,z >0,
the following inequality is holds
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In 2014, Tariboon et al. [7] introduced a novel fractional integral formulation of inequality (1). This was
accomplished by substituting the constants p, P, g, Q with four positive integrable functions, thereby extending the
scope and applicability of the original inequality. Their contribution represents a significant advancement in the field
of fractional integral inequalities.

Theorem 1.2 Let ¥, ¢ : [0, +0) — R be an integrable functions on [0, +<0) satisfying
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Vi(2) <7(@) <va(z), w(x)<eiE)<w(z), z>0, Q)
for the integrable functions Y, Wa, uj, up on [0, +oo0). Then, for all T > 0 the following inequality holds,

T 2

L (I 0Y) ()~ (FE9) ) (IEY) ()| <T (9, w1, )T (v, w1, wa), (6)

C(t+1)

where T (g, ¢, 1) is defined by
T(g, 0, 77) = [(foﬁn) (Z) - (foﬁg) (Z)] [(ﬂoig) (Z) - (j()T«#(P) (Z)]

e (680 O~ (S @) (470) ©

gy (e O - (45:9) @ (F5n) (@

ZT

“Egn oo @+ (4510) @) (Ain) ).

In 2012, Dragomir [8] introduced novel Griiss-type inequalities applicable to functions of bounded variation,
exploring their applications within Hilbert spaces equipped with self-adjoint operators. Subsequently, Alomari [9]
developed advanced Griiss inequalities incorporating double integrals, establishing precise bounds for these formulations.
Concurrently, Chinchane and Pachpatte [10] proposed innovative Griiss inequalities by employing the Hadamard
fractional integral operator. In 2015, Liu and Tuna [11] conducted a comprehensive investigation on time scales, deriving
numerous weighted Griiss and Ostrowski-type inequalities through the framework of combined dynamic derivatives.
Further advancements were made by Sousa et al. [12], who utilized the Katugampola fractional integral to derive a
generalized form of the Griiss inequality. Rashid et al. [13] extended this work by establishing Griiss-type inequalities
using generalized proportional fractional integrals. In the same year, Zhou et al. [14] provided a detailed exposition of the
Griiss inequality and introduced several related inequalities based on the generalized proportional Hadamard fractional
integral. In2021, Naz et al. [15] conducted a study employing the generalized Hilfer-Katugampola k-fractional derivative
to address various Griiss-type problems. Simultaneously, Al Qurashi et al. [16] investigated h-discrete frameworks,
uncovering discrete dynamical Griiss inequalities associated with the Atangana-Baleanu fractional operator. For further
significant contributions to the Griiss inequality, refer to [17, 18]. Most recently, in 2024, Radwan et al. [19] (see also
[20]) introduced new Griiss-type inequalities utilizing ¢-fractional integrals further expand these inequalities’ theoretical
and applicative scope.

2. Analytic kernel Riemann-Liouville fractional integral

Here, we drop the definition and basic concepts of the fractional integral operators uesd to present our new generalized
results.
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Definition 2.1 [21] For the function ¥ € L' [c1, ¢;], and for 7, § € (0, +o0), the left fractional integral involving
analytic kernel function A with parameters 7, § of y(z) can be defined as

(L) @ = [ =0 a0 y(x)dx, ™

€1

which provided that A : D (0, K) — C be a complex analytic function with power series
A=Y (1), 2", ®)

where the coefficients (ci), = (c1), (7, 6) are permitted to depend on the parameters 7, 6 if desired, and K > (¢ — ¢ )5.

Remark 2.1

(1) As originally written in [21], the parameters T and 6 may be complex, but according to the purposes of this work
we restrict them to be real, since we cannot do inequalities in the complex plane.

(2) Asin [21], the generalized fractional integral operator (7) can be written as an infinite series of Riemann-Liouville
fractional integrals

oo

(47597) @) = ¥ (@), T (e+n8) (E-5507) ()

n=0
o - (Cl)nZTJrn5 T )
—n;oiwns _zB(Z>, )

where

Now, we are ready to introduce our main results in this paper. The Griiss-type inequalities in the case of constant
bounds are given and discussed throughout the following sections.

Theorem 2.1 (Cauchy-Schwartz Inequality) [22] Let (i, k) and @(u, k) be measurable functions defined on a
product measure space D = [c], ¢2] X [by, b2]. Then, the Cauchy-Schwartz inequality states that:

(//D Y(z1, 22)9 (21, Zz)dZ]dzz)z < (//D Y(z1, 12)2dz1d12) (//D(p(zl, ZZ)2dz1dzZ> , (10)

where ¢, ¢z, by, by are real numbers and measurable set D C R2.
Theorem 2.2 (Young’s Inequality) [23, 24] Let ¥, ¢ be continuous, strictly increasing, and mutually inverse for
non-negative argument, with y(0) = ¢(0) = 0. Then
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cd < /OCY(Z)dz+/Od(p(z)dz, (11)

1 1
equality is satisfied if and only if d equals ¥(c). In from (11), if ¢, d are non-negative and p, g > 1 such that — + — =1
p 9
is satisfied, then the holds,

P q
d< <+ (12)
P q

We are now prepared to present our primary findings in this paper. The Griiss-type inequalities in the case of constant
bounds are given and discussed throughout the following sections.

3. Analytic kernel fractional integral Griiss inequalities involving constant bounds

The following result is valid for another strictly growing and continuous function. It also gives us a new way to look
at the Griiss-type inequality using the newly created proportional fractional integral operator. Inspired by the work of
Dahmani et al. [6].

To support our findings, we need the following lemmas.
Lemma 3.1 Let A (z) be an analytic function and 7y : [0, +) — R be a positive integrable function, which satisfy
p<y(z) <P,z>0,p, P€R. Then, forall 7, § € R*, the following identity holds,

B (2) (A7) @ -2(455%) @
= [(?1 «f’zf"sy) (z) — p<°B (Z‘s)} [szﬁ (za) - (?1 ff"s?’) (Z)}
(7)) Py (1) - ), (13)

where (?1 I 6) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7).
Proof. Consider i, k € [0, «), we have

(P—7v(x)(y(1) = p)+(P—7y(u))(y(x)—p)
—(P—y(w)(y(u)—p)—(P—7v(x)) (v(x)—p)
=7 (W) +7 (k) =2y (u) y(k). (14)

Taking the product by the positive factor (z— i) 'A ((z—l.t)5>, u € (ci, z) on the both sides of (14), then
integrating the estimating identity concerning the variable i over (cy, z), we get
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(P=v() [(4-7%7) (0) - p"B ()]
+[PB () = (L7707) @] (00— )
~4IE Py (@) - p)
~ZB () (P=1(0) (v(x) )
= (47P) @+ 2B () P (0 ~21(0) (4 27%7) ).

where (?1 AR 5) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7).

Again, multiplying with the positive factor (z— k)" 'A ((Z* K’)5)

integrating the estimating identity concerning the variable x over (cy, z), we have

(Ao @B (2)] [ 0 4 () (P v(x)ax

B () = (42 27) @] [ =074 (= 00°) (r(x) - pax

APy (@ - p)} [ (@07 A (1)) dx
~B(P) [ 0 A (1)) (P (k) (1)~ P
= (47) @ [ oA 0®)ax

+7*B (z5> /CZ (z—x)"'A ((z— K)5> Y (k) dx

235 ) @ [ @07 A (=007 v dx,

1

which leads to
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, K € (c1, z) on the both sides of (15), then
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() @-B ()] [peoB () - (7))
lrep (@) - (o) @ (B r) @ B ()
—B (L) LI P=7() (1) - p)}
—2B () 47 H{(P=1(2) (r()) — )
=B () (A7) @+ () (477°7) )
2 (47 @, (7

where (‘31 AR 5) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7).
Clearly, by (17), it yields the desired result (13). This concludes the proof. O
The subsequent lemma is necessary to establish the forthcoming result:
Lemma 3.2 Let A (z), be a positive analytic function and ¥, @ : [0, +0) — R, be positive integrable functions that
satisfy (22). Then, for all z > 0, 7, &, § € R™, the following inequality holds,

2B () (47 °70) ()= (4,.77%7) () (£,77%9) (2

B () (4.77%10) - (4.77%0) @) (4.55%) )]

IN

B () (L) @+ () (A7) @)

“2(457%) @ (4 57%7) @)

[ () () 8 (4) (1 20507)

~2(47799) (@) (4-7709) (2)] (18)

where (f] I 6) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7).
Proof. Taking multiplication in both sides of the (26) by (z— k)% 'A ((z - K)5) , K € (c1, z), then integrating the

estimating identity concerning the variable k over (cy, z), we get
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[ [ ewa(c-w?) e (e x)°) H i x)dudx
=B () (475%79) () + 2B () (477 %79) (2
~ (87727 ) (57%) = (4.7799) () (4,75°7) ). (19)

where (?1 A 5) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7).
Applying the Cauchy-Schwarz (10) on the right-hand-side of the equation (27), we obtain the desired (18). O
Lemma 3.3 Let A (z), z > 0, be an analytic function and 7 : [0, +0) — R, be a positive integrable function, which
satisfies the condition (22). Then, for all 7, &, § € R™, the following equations holds,

(477°7) @B () +2B () (497°7) ()
—2(475%) (@) (4,72%7) ()
- [en() - ) [ ) 0 ()
+lpp () - (rrtr) @] (80 o) @ -8 (=)
—27B (L) 475 H{(P=7(2) (Y()) — )}
=~ () A2 P -1 @) (1@ - P} (20)

where (?1 I 5) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7).

Proof. Considering Lemma 3.1, multiplying both sides of (15) by (z— K)° 1A ((z— K)‘s), K over (cy, z) then
integrating the estimating identity concerning the variable k, we get
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(Eo=2r)@-pB ()] [ =074 (e~ 00°) (P=v(x)) ax

1

(P () = (4757) @) [ =7 4 (= 10%) (r(x) - p)ax

€1

LI P @) [ 07 A ()

2B (2) [ =07 A (= 1)%) (P -y () (v(0) - p)dx

v €1

- (‘Z_‘l /zf*‘syz) (2) /Z (z—x)°'A ((zf K)5> dx+7*8 (15>

€1

x /z =174 (1)) P () dx

C1

~2(459) @) [ =074 (= 0)%) () ax, e

€1

where (?1 I 8) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7). This yields the required result
(20). O

The following results are devoted to the R-L fractional integral Griiss-type inequalities, which concern the constant
bounds in a single and distinct order. These results provide some generalizations of the R-L fractional integral Griiss-type
inequalities proposed by Dahmani et al. [6].

First, we establish the following result on utilizing Lemma 3.1.

Theorem 3.1 Let A (z), z > 0 be an analytic function and ¥, ¢ : [0, +e0) — R, be positive and integrable functions
which satisfy the condition

P<v@) <P q<0(z)<0, p,P.qg,QcR. (22)

Then, for all 7, § € R*, the following inequality holds,

B () (4 0r0) @ - (477%0) @) (897 °7) )
<2 (&) (@-a)(Pp). @3

where (?1 I 5) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7). This yields the required result
(20).
Proof. Define the function H (u, k) as follows
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H(u, k)= (y(n)—v(x) (o) —e(k)), u,ke(r,z), z>0. (24)

So, we have
H, k) =yW) o) -y (k) —y(x) ew) +v(x) o (x), (25)

multiplying (25) by (z—u)* ' A ((z - ,LL)S) , where U € (cy, z) then integrating the estimating identity concerning u over,

(c1, z), we obtain

/IZ (=) A (=) ) H (1, %) dp
= (2‘1 VA pr) (x)—o(x) (2‘1 I 57) (2)

—7(1) (475%0) () + 2B () v() 9 (x). (26)

Then, multiplying (26) by (z— k) ' A ((z — K‘)5> , (26), where k € (cy, z) then integrating the estimating identity
with regard to k yields

[ [ emta(mm®) w4 (e ) o, )
=2 [Z""ﬁ (ZS) (?1 ﬂ;"swp) (Z) _ (?1 ﬂ;’a(p) (2) (?1 t];,é,y) (Z)] ) @7

where (?1 I 5) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7). This yields the required result

(20).
Now, applying the Cauchy-Schwarz (10) on the right-hand-side of the (27), we have

8 () (477%70) - (4.77%0) (@) (4.55%7) )]
< [ () (o) 0 (L 57) )
|8 () (Aooe) @ (2 %0) ) e8)
Also, according o the hypothesis condition, e have that
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(P—7(2)(¥(z) —p) 20,

and

for all z € [0, +o0), which leads to

B () 4550 (P-7(0) (r(D) - p) 20,

and

B () 4550 (00 () (0(0) —q) 20.

Therefore, by Lemma 3.1, we obtain from (28) that
7B () (4207) @ () )
< [ren(#)- (17%7) ]
<[ (475%7) ) - pB ()]
and
7B () (47°07) @ (457%) @)
< 0B (2) - (4o7%9) )]

x [(i-‘l J’f"sfp) (z) — g B (Z‘S)} :

In the view of the (28), (29) and (30), we obtain

(29)

(30)
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#8(2) (477%10) - (A7 %0) 0 (Aor3r) @]
< [PB () = (4.7207) @) [ (475 %7) @) - pB ()]
x[0B ()~ (4.77%0) )] [(4-77%0) () - () ]. (31)
Now, applying the inequality property that 4cd < (c+d)?, ¢, d € R, that is
spp () = (o) @] (600 n) -8 ()
< [on () oo o
and
4]0 B () - (4-77%) ] [(4#5%0) () - az"B ()]
<[#8 ()09 (33)

Thus, via (31), (32), and (33), we promptly obtain the required result (23). We can, therefore, conclude the proof. [J
Remark 3.1

1
1. If we choose A (z) = ) and 8 = 0, in Theorem 3.1, then we recapture the inequality involving R-L fractional
integral version obtained proved by Dahmani et al. [6].
2. When we apply for A (z) = m, 0 =0and 7 = 1, in Theorem 3.1, then we obtain the Griiss inequality (1).

Further, we present the inequality related to fractional integral Griiss-type for content bounds distinct order. This
result is obtained by utilizing Lemma 3.3. The following lemma is required to prove the next result.

Theorem 3.2 Let A (z), z > 0 be an analytic function and ¥, @ : [0, +00) — R, be a positive and integrable function,
which satisfyies the condition (22). Then, for all 7, 6, § € R™, the following inequality holds,
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B () (475 %70) () - (475%7) () (4,75%9) (@

2B (2) (4.77%10) @ - (4.77%0) @) (4.57%) )]

< [pzoﬁ (Z5) — (;‘1 JZ""W) (z)] {(?1 f;’a)’) (z) —pz*B (25)]

+

+

:PZTB (Za) — (?1 ff"s?’) (Z)} [(?1 ff‘s}’) (z)—p°B (za)}

:ch’ﬁ (Z‘s) — (2‘1 ff’%) (Z)} KZ‘I ff’%) (z) —qz"B (Z‘s)]

0B ()~ (457%0) @) [(4 77 %) () -0 (7). (34)

where (‘31 AR 5) is the Analytic kernel Riemann-Liouville fractional integral (AKR-L) (7).
Proof. According to the condition (22), we have

and

It follows that
and
C porary Math

(P—7()(v(z)—p) 20,

~B () APy (1) - )}

—B () 470 {(P—1() (r(2) - p)} <O, (39)

~B (L) AT 20D () - 0)

— () 4770 {(Q- 9 () (0(2) )} <0 (36)
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In view of (35). (36), and Lemma 3.3, we write
2B (2) (4.7797) @ +2B (&) (4.77°7) (@
~2(475%) (@) (475%7) @)

< [P () = (477%7) @] [(425%7) @ - pB ()]

+ [PzTﬁ (Z‘s) — (?1 Al 57’) (Z)} [(?1 Al 57’) (z) — pz°B (zé)] : (37)

and
2B (15) (?] fi’%z) (2)+2"B (Z‘S) (?1 ff"sfpz) (2)
—2(47509) (@) (4-75%9) (@

< 078 () - (477%0) @] [ (477 %0) (0) - 4B ()]

+ 0B (2) - (477%) @] [(477%) @) -8 () ]. (38)
again, by the inequalities (37), (38), and Lemma 3.2, we achieve the desired outcome (34). Consequently, the proof is
concluded. O

Remark 3.2 1
1. If we consider A (z) = NE) and T = o, in Theorem 3.2, then we get Theorem 3.1.
1
2. If we apply Theorem 3.2 for A (z) = T’ 6 =0and 7 =1, 0 = 1, then we get the classical Griiss (1).

More inequalities have been investigated which are related to analytic kernel fractional integral Griiss-type involving
constant bounds.
Theorem 3.3 Let A (z), z > 0 be an analytic function and ¥, @ : [0, +00) — R, be a positive and integrable function,

1 1
which is satisfying P + ) =1,P, Q> 1. Then, for all 7, § € R™, the following inequalities holds,

6rr)o (@700
P 0 T 7B (z

5) (?1 I 57) (2) (?1 I 5‘P) (2), (39)
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(47°7) @) (A5%07) ) (A57°P) () (4.57992) 2

2) P + 0

> (47%19) ), (40)
) (477) @ P( 7200) @ (450 <z>Q(?1 09" (2)

> (475070 ) () (455707 ) (), (4D
9 (Arm) @ (A77002) ()= (4.77070) () (4755719971 (2). “2)

Proof. Utilising Young’s inequality (12), we obtain:

Y (u) , 99 (x)
T

o 2o, mKela). (43)

Taking the product in both sides of (43) by (z—u)* 'A ((z— ,Lt)a), U € (c1, z), then integrating the resulting
inequality concerning u over (cy, z), we get

1 Z
.,

<z—u>f‘A(<z—u>5)f<u>du+"’z<” / IZ(z—u)“A (c=w)°)dn

> ¢ (k) /: (z—p)'A ((z—u)a) y(u)duy.
It follows that

7,8
(?1 % PYP) (2) + (PQQ(K) B (Z5> > (k) (?1 %1’670 (z). (44)

Now, multiplying both sides of the (44) by (z—x)"'A ((z— K)5>, K € (c1, z), then integrate the estimating
inequality concerning K over (cy, z), we get

4 7,8 A 7,6 0
(“jz ny’) & + (wﬂz Q(p )(Z) > zfﬂl(z5) <?1 fz“s(P> (2) <?1 j;:sy) @,

Co iporary Math tics 2018 | Majid K. Neamah, ef al.



The first (39) is thus proved. We once more utilise Young’s inequality (12), by taking C = y(u) ¢ (k) and D =
v(x) @ (1), where i, x € (c1, z), we get

>y(p)e(k)y(x)e(u). (45)

Clearly, we get the inequality (40) by employing the same rationale demonstrated in the proof of (39). Now, utilising

v(R) ,and D = M, U, kK € (c1, 2), where, @ (1), @ (k) # 0, hence we have

¢ (1) ¢ (K)

Young’s inequality (12) taking C =

>y(w) " (1) y(x) 92! (). (46)

We get (41). Finally, putting C =

, where, U, k € (c1, z) in (12), such that y(x) # 0 and
¢ (k) # 0, we have

>y(w) o)y " (k) e (k). (47)

Multiplying in each side of (47) by both factors (z—u)* ' A ((z— ,u)a), (z—x)"'A ((z— K)‘S), U, x € (c1, z),
then taking the double integrating of the estimating inequality concerning i, k over (c1, z), we get

/1Z : w (z—p)'A ((z—u)‘s) (z—x)"'A ((z— K)5) dudx
+/: :YP(K)Q(’% (Z—IJ)PIA ((Z—/J)E) (z— K‘)PIA ((z— K)5> dudx
> /IZ :y(u)fp(u)f‘l(KﬂpQ‘l(K) (z—u)HA((z—u)s)

x(z—x)"'A ((zf K‘)S) dudxk, (43)

which is yields the required (42). O
The next result is as follows:
Theorem 3.4 Let A (z), z > 0 be an analytic function and ¥, ¢ : [0, +0) — R, be a non-negative integrable functions,

1 1
satisfy P + 0= 1,P,Q > 1. Then,V 7, § € R™, the following inequalities holds,
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> (477 %79) 8,55 {0F (72 ()} (49)

2) P Q
2 2
> (472 {v @90 }) (4722 (" (902 (9)}). (50)
Proof. Putting C = y( )(p% (x)and D = }/é (k)@ (u), when u, x € (c1, z) in Young’s inequality (12), we obtain

S 2 (W) e () o ()7 (x). (51)

Multiplying each side of (51) by both factors (z— )" ' A ((z - u)5) and (z—x)"'A ((Z - K)é), then taking the
double integrating of the estimating inequality concerning U, Kk over (cy, z), we get

<72 (k) 2 (1)

1 Ja

+ (z—u)”lA((z—u)é) (z—K)T"A((z—K)5> dudx

> /:/:y(u)qo(u)fp%(@yé(@ (== p)°)

X (z—K)T*IA((z—K)5> dudx. (52)

It follows that inequality (49).
2

2
Next, by substituting C = 14

which can be rewritten as
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+ > (vF(wed () (X ()92 (). (53)

Multiplying sides of the (53) by both factors (z — )" ' A ((zf /.1)5) and (z— k)" 'A ((zf K)B), U, x € (c1,2),
then taking ¢ double integrating of the estimating inequality concerning u, k over (ci, z), we obtain

/CIZ : i’ (”);’PQ () (z—p)'A ((z—u)s) (z—x)"'A ((z— K)é) dudk

+/lz lz . (”)QYP(K) = A (=) G0 A (1)) dudx
> // (v et ) (" (092 (0) =™ A (- )?)

X(Z—K)TilA((z—K)(s) dudx. (54)

Clearly, the (54) leads to the desired (50). O
Theorem 3.5 Let A (z), z > 0 be an analytic function and ¥, ¢ : [0, +o2) — R, be a positive and integrable functions.
Suppose that

R 40)) _ v(n)
P O o) O ) 4
Then, for all 7, § € R", the following inequalities holds,
D0 (A5 @) (4509 )
(©@+P) (4 o5, \2
<o (7019) @), (56)
) 0< \/ (477°7) @ (477°0%) () - (4770 ()
<\/Q7\/T))2 A 47,0
< T 2JP0 (clf]z Y‘P) (2), (7
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3 0= (400P) @) (42 00%) (- (47 7) ()

(427%7) ).

Proof. Considering the assumption (55), we have

<3’;((":L))P>( ;;((i)))(pz(u)zO, 0<p<z

which is equivalent to

(y(n) —Po () (Qo(n)—y(n)) > 0.

It follows that

(Q+P)y( ) =7 (1) + P> (1).

(58)

(59

Where u € (cy, z), multiplying in both sides of (59) by (z— ,u)rflA ((z— ,u)5>, then integrating the estimating

inequality concerning u over (cj, z), we obtain

(0+P) (4.77070) () = (4757 ) () + P2 (4,.77%07) (2).

2
Since PQ > 0, therefore <\/(,:x] AL 572> (z) - \/PQ (?1 VA 6(p2) (Z)) > 0. It follows that

(87207) 4o (357%0%) (122 (455 77) (0P (4,55 002) 0

Employing the both (60) and (61), we get

(fl ﬂzf’ayz) (2) (?1 fzf"sfpz) (2) < (Q4—;£)2 (/3] ﬂf"sy(p)z ().

The required (56) is thus obtained. Now, from (62), we have

2 R) @ (00 0 < 222 (155700 01

(60)

(61)

(62)

(63)
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Adding [— (A WA 59/(p> (z)} to each side of (63), we get

€1

V@) 0 (455 50) @) - (452 10)

Q+P
2P0

<

CPARTIGE CRARTIICE

which yields

\/ (47727) @ (455°9%) () - (4,77 079) (2

2
< (\Fg\}? (475270) ().

2
Finally, taking the square of each side of (63), then subtracting the factor K?l WA 67/(p> (z)} from each side of the
estimating inequality, we obtain the required (58). Thus, the proof is completed. O

4. Application

In this part, we provide an example to confirm the validity and conditions of Theorem 3.1.

Example 4.1 Consider two integrable functions 7(z) =z+ 1, ¢(z) = 22 + | such that satisfying the conditions (2).
Case 1: For finite z range, itz € [0, Z] implies p=1,P=Z+1,q=1,0=Z>+1.

Case 2: For unbounded z requires p =1, P — o0, g =1, Q — co.

These conditions (2) will ensure that the inequalities ¥(z), ¢(z) hold for all z > 0.

n
LetA(z) =€ =Y, Z—' Clearly, A(z) is an analytic function and positive for all z > 0.
n!
Using Definition 2.1, the fractional integral of a function ¥(z) involving the analytic kernel function A(z) with
parameters T and § is given by:

(?1 ‘]ZT’(Sy) (Z) - ./:(z— K)‘FIA ((Z_ K)6> HOLS

Now, for A(z) = €%, y(z) =z+1, 9(z) =z +1, T =2, and § = I, the fractional integrals become:

o= e

Atz=1, we get
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1
(g‘f}‘y)(l)zfo e K1 — k) dx =4 —e~1.2817,
g4
(85790) ()= [ (=07 el (o 4 1)
At z = 1, this becomes:

1
(g‘ﬂfv%p) (1) :/0 (1 —k+ K> — k%) dk = —4e+12 ~ 1.1296

(475%79) @) = [ = w0 e (4 1)+ 1.

c
Atz =1, we obtain
(72 ve) (2) = /(;1(1 —x)e! (k3 + k2 + x4 1)dk = 10e — 24 ~ 3.1828.
Finally, we apply the inequality from Theorem 3.1:

ZBE) (455 070) ()= (4,55 %0) () (4 7507) ()| < 2B )@ —9) (P p).

Case 1: If we restrict the domain of z to z € [1, 2], i.e. Z =2, which implies that p =2, P =3, ¢ =2, 0 = 5. Using
B(1) ~ 1.083 and substituting the values we have computed:

#BE) (475079) () (475%0) () (475%7) ()

= [1.083-3.1828 — 1.1296 - 1.2817| = 1.9992
<3.5187 ~ 1.083%(5—2)(3—2) =2>*B2(°)(Q — q)(P— p).

This satisfies the Theorem 3.1.
Case 2: For unbounded z: p =1, P — o0, ¢ = 1, Q — oo. This case makes the right side of the inequality (23) tend
to infinity. Thus, the conditions of the inequality (23) are satisfied, which leads to the Theorem 3.1 being true.

5. Conclusion

In the initial half of this study, we have re-examined and articulated Griiss inequality inside a novel framework using
constant bounds. We employ the recently generalised fractional integral operator that incorporates an analytic kernel.
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We derived novel Griiss-type inequalities with constant limits using generalised fractional integral operators of single
and different orders. The results acquired are more generalised in character. Additionally, we established several novel
associated inequalities utilising the contemporary fractional integral operator. Certain specific instances of the reported
findings have been examined.
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