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Abstract: This paper examines the importance of generalised (k, g) fractional integral operators within the framework
of mathematical inequalities. We introduce innovative generalised fractional integral Hermite-Hadamard inequalities,
which, to our knowledge, constitute a new advancement in the area. These inequalities are formulated using contemporary
generalised fractional integral operators and underscore the complex interconnections among convexity, symmetry, and
fractional calculus. align, we present fractional integral Hermite-Hadamard-type inequalities that utilise these generalised
operators, offering an expanded framework for comprehending the characteristics of convex and symmetric functions. Our
discoveries enhance theoretical understanding and possess prospective applications in optimisation, numerical analysis,
and diverse areas of applied mathematics. Furthermore, we enhance this work by discussing several special cases pertinent
to this paper.
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1. Introduction

Throughout the last two centuries, several mathematicians have proposed important and helpful mathematical
inequalities. Among mathematical inequalities, one inequality holds a significant position within the theory of inequalities.
This is the esteemed Hermite-Hadamard inequality. This disparity was originally proposed by Hermite in 1881.
Nevertheless, before 1893, this result was unrecognised in the literature and not widely accepted as Hermite’s inequality
[1]. He wrote that the inequality:

y(£22) < 1 /CZV(Z)dZSM,ChQEK 1 < M
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The property applicable to convex functions y was established by Hadamard in 1893 and is known as the
Hermite-Hadamard inequality. Since then, it has undergone numerous generalisations and expansions for univariable,
bivariable, and multivariable convex functions [2]. This inequality has attracted substantial interest from academics and
mathematicians because of its significant applicability in several fields. Accordingly, a lot of research has appeared to
contain generalisations and extensions of this inequality (see [3—5]). Sarikaya et al. [6] were able, by using the fractional
operator Riemann-Liouville, to present the fractional the integral formula of this inequality for the convex functions as
follows:

ve) +v(e) o T(r+1)
2 - 2(C1+C2)T

re)+ v <7(952). @

where 7: [c1, ¢2] — R be a positive convex function on [c|, ¢3] with 0 < ¢; < ¢3, and T > 0, and the .# 7 represents the
Riemann-Liouville, which has been subsequently extended and referred to as Hermite-Hadamard-Mercer type inequalities.
Chen [7], established the following Riemann-Liouville fractional integral Hermite-Hadamard type inequalities. Numerous
researchers have extensively employed various operators on convex functions (see [8—12]), resulting in the derivation of
different types of convex functions. The matter will not stop at this point, as different types of convex functions have
appeared, and sometimes the convexity condition has been dispensed with. In an application of the Hermite-Hadamard
type, Nowicka and Witkowski [13], showed how certain improvements may be employed for certain planar figures and
three-dimensional bodies that meet specified regularity constraints, regardless of convexity. Dahmani [14], employed
concave functions to establish Hermite-Hadamard-type inequalities using the Riemann-Liouville fractional integral. Set
[15], examined the Hermite-Hadamard type for the second kind of s-convex functions, as established by Dragomir
[16], and m-convex functions utilising fractional integrals. Noor [17], utilised g-differentiable convex and quasi-convex
functions to formulate quantum estimates of the Hermite-Hadamard variety. Garwal et al. [18], employed the (k, s)-
R-L fractional integrals to establish certain Hermite-Hadamard-type inequalities for convex functions. New Hermite-
Hadamard-type inequalities were created using convex functions, s-convex functions, and coordinate convex functions
through the conformable fractional integral [19]. Mohammed and Brevik [20] proposed a novel variant of the Hermite-
Hadamard type for R-L fractional integrals. Awan et al. [21] established novel Hermite-Hadamard type inequalities for n-
polynomial harmonically convex functions in the same year. Furthermore, Chudziak and Zotdak [22] proposed a concept
for a coordinated (F, G)-convex function defined on an interval in R?. Recently, Khan et al. [23] examined the Hermite-
Hadamard inequality concerning the coordinates of convex fuzzy interval-valued functions. Numerous writers have
examined the Hermite-Hadamard inequalities across various forms of convexity in functions, utilising diverse fractional
integral and derivative operators, for further information (see [24-28]).

This study aims to resolve notable gaps in the literature on fractional calculus, specifically on Hermite-Hadamard
inequalities. While much of the existing research has focused on traditional fractional operators, like Riemann-Liouville
and Caputo, there has been limited exploration of generalised fractional operators that could enhance both applicability and
theoretical insights. This lack of generalisation limits the potential for broader applications in various fields. Moreover,
most studies concentrate on standard convex functions, overlooking the rich landscape of generalised convexity concepts,
such as S-convexity and coordinate convexity. This oversight limits the depth of understanding and the potential for new
mathematical developments. The current body of work often repeats classical results without extending them to new
contexts, resulting in a scarcity of novel inequalities derived from generalised fractional integral operators. Additionally,
while theoretical advancements in fractional calculus are noteworthy, they frequently do not translate into practical
applications. This disconnect highlights the need for research that connects mathematical developments with real-world
problems, ensuring that the findings are relevant and useful in various domains. Furthermore, the field tends to remain
isolated within specific mathematical domains, with limited interdisciplinary collaboration. This lack of connection
between different fields restricts the potential for innovative applications of fractional calculus. In response to these
gaps, this study aims to introduce new generalised fractional integral Hermite-Hadamard inequalities and demonstrate
their applicability across various contexts.
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Fractional calculus is a vital domain of mathematical analysis, offering crucial instruments for modelling intricate
systems. The generalisation to (k, g)-fractional integral operators introduces a complexity that requires careful
consideration of the conditions for validity. The derived inequalities typically depend on properties like continuity,
convexity, and bounding. If these conditions are not met-such as with discontinuous or non-convex functions, the
inequalities may fail or become less effective. Additionally, the choice of parameters k and g can affect the results,
potentially leading to overly broad or inapplicable outcomes. Talking about these conditions and restrictions would help
people understand better and direct future research towards finding valid situations and creating modified inequalities for
a wider range of functions.

Discontinuities may result in undefined or divergent integrals, thus rendering the inequalities invalid. Likewise,
nonconvex functions may contravene the requisite criteria for the inequalities to be valid, leading to erroneous limits. By
looking into these cases, we might learn more about how strong the established inequalities are. This could lead to the
creation of new mathematical tools or different inequalities that cover more complex function classes, which would make
fractional calculus more useful.

The impetus for generalising classical operators originates from the necessity for more adaptable mathematical
instruments capable of tackling complex systems and phenomena. Generalised operators expand application by including
a broader spectrum of functions and behaviours, especially in fractional calculus, where systems frequently display non-
integer dynamics. This generalisation yields fresh insights, including the formulation of innovative inequalities and the
expansion of classical conclusions, thus augmenting our comprehension of mathematical properties and their interrelations.
Moreover, generalised operators enhance numerical techniques for resolving differential equations, allowing more precise
modelling across many domains. They offer adaptability in customising strategies for particular issues and stimulate
more study, promoting multidisciplinary cooperation. These breakthroughs empower mathematicians to address intricate
difficulties more efficiently and foster discoveries in scientific and technical fields.

The organisation of this paper is, as follows: In the first subsection, we present the reverse Hermite-Hadamard
inequality for convex functions. The second paragraph presents supplementary results relating to Hermite-Hadamard-
type inequalities that incorporate the (k, g)-fractional integral operator. The second part delineates our discoveries about
Hermite-Hadamard inequalities and Hermite-Hadamard-type inequalities by utilising the generalised k-fractional integral
operator, which encompasses symmetric functions.

2. Essential preliminaries

The definitions provided in this part are essential for building a robust foundation for the next debates and outcomes
related to fractional calculus and its applications. Comprehending these notions is crucial for understanding the intricacies
of generalised fractional integral operators and their ramifications in mathematical inequalities, especially the Hermite-
Hadamard inequalities. The Riemann-Liouville fractional integral operator generalises conventional integration to non-
integer orders, whereas the gamma function offers crucial resources for managing these fractionals. The g-Riemann-
Liouville fractional integrals are flexible because they can integrate an increasing function g, which is important for
studying a lot of different kinds of convexity and symmetry. Also, the idea of function composition is important for
looking at how fractional integrals and derivatives affect each other. These concepts collectively facilitate the advancement
of generalised proportional fractional integrals, essential for formulating new inequalities, connecting fractional calculus
with classical inequality theory, and enhancing the mathematical framework.

Definition 1 [29] Let y € Li[ci, ¢z]. The Riemann-Liouville fractional integral operator of order 7 (t > 0) is defined
as
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Y= [ a0 v e <p<en 3

where I'(7) is the gamma function (4).
Definition 2 [30] The gamma function, represented by I'(z), is a function defined by the Euler’s integral [31], i.e.,

I['(z)= /szz_le_‘dt, 4)

for any (z € C) such that (R(z) > 0). It is clear that from (4) we have, I'(1) = 1 and it satisfies the following recurrent
formulas:

I'(1+z) =(2),
I'(l1—z)=—z(—2),

for all z € C with R(z) > 1. The gamma function (4) reduces to the factorial function when the argument is a positive real
integer n, that is,

I'(n)=m-1)

The generalization of (4) is called k-gamma function. This interesting special function was introduced by [32] and
has been given as,

(o} k
I (2) :/0 “lexp <—tk) dt, R(z) >0, k>0,

is referred to as the k-Gamma function when z, k > 0. The k-Gamma function exhibits the following relationships: We
observe that I';(z) converges to I'(z) as k approaches to 1, T(z) = (K) '’ (2) and I’y (z+ k) = z['k(z). Also, obviously,

we have I'y (k) = 1.
Definition 3 [29] For the integrable function ¥ on the interval f and for the increasing function g, where g(z) €
C'(F, R) such that g’ (z) #0, z € F. We have forall T > 0

(727) @ =g [ W) le@ 80 vl d )

and
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where (g BN }/) (z) and (g I y) (z) denotes the left and right-sided g Riemann-Liouville fractional integrals of the
€1 )
function 7, respectively.

Definition 4 [33] For the integrable function 7y on the interval f and for the increasing function g, where g(z) €
C'(F, R) such that g’ (z) # 0, z € F . We have for all T > 0

(“9757) @ = gy [ ¢ W@ =) v(wan ™)
and

k, g) 77 _ 1 2 _ T

(“9527) @ = gy | & W)~ @1 v an, ®)

where ((k* g>fcf+ Y) (z) and ((k’ 8) I }/) (z) denotes the left and right-sided (k, g) Riemann-Liouville fractional integrals
1 2
of the function 7, respectively.
Definition 5 [34] If y: X — Y and ¢ : Y — Z are mapping , we denote by ¢ o ¥ their composition

Qoy:X—Z poy=0(y(x)), VxeX. 9)

2.1 Some preliminary result

Lemma1Lety:[c), c2] — R, with 0 < ¢] < ¢; be a positive and twice differentiable function on (¢, ¢;) satisfying
7 be an integrable function on [c1, ¢]. If ¥’ is bounded in [c1, ¢3]. Then, the following inequalities are holds,

el [ (5 ) (e

. M{ ng(cm%’zﬂcﬂ}y{w}

2(ca—c1)* 2
< e U (e ) (e e (10
= 2(cr—c1)" Jg 2 ? 1 7

where the .#7 is the Riemann-Liouville fractional integral .
Lemma2Lety:[c, c;] — R, with0 < ¢ < ¢; be a positive and twice differentiable function on (¢, ¢;) satisfying
7 be an integrable function on [cy, ¢;]. If ¥’ is bounded in [cy, c¢3]. Then, the following inequalities are holds,
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D et g
- ”:‘le)r/vl(’ 2 )[(62_“)(“_61)]{(62_“)T1+(“_Cl)rl}dﬂa (1n)

where the .#° is the Riemann-Liouville fractional integral.

In the same work [7] also demonstrated the fractional integral Hermite-Hadamard inequality (2) with relaxation of
the convexity property of the function 7.

Liu et al. [35], presented the inequality (2) with respect to another positive increasing monotone function as follows:

Lemma 3 Suppose that y: [¢1, ¢2] — R with 0 < ¢; < ¢; be a positive and convex function on [c1, ¢3], and g (1), be
an increasing monotone and positive function having a continuous derivative on (cy, ¢z). Then, the following inequalities
are holds,

05)=

{gj{rg‘(cl)}+ (vog) (g7 (e2)) + gﬂ{rgﬂ(Cz)}f (vog) (¢ (Cl))}

e vier) )

IN

3. Main results
3.1 (k, g)-fractional integral Hermite-Hadamard type inequalities involving convex functions

The Hermite-Hadamard inequalities are very important in mathematical analysis because they give limits for integrals
of convex functions and make fractional calculus a lot easier to understand. They help us understand non-integer order
integrals and derivatives better, especially through the properties of convex functions, which proves that these differences
are real. This section presents the Hermite-Hadamard inequality related to convex functions for (k, g)-fractional integral
operators, obtained via function composition. This methodology seeks to extend classical findings and enhance our
comprehension of the connection between fractional calculus and convexity.

Theorem 1 Let g: f — [c1, 2] C R, be a continuous and strictly increasing function satisfies 0 < ¢; < ¢; and the
differentiable convex function ¥ : [¢|, ¢;] — R on (cy, ¢z) such that the composition (Yo g) : / — R be an integrable
mapping on F , then the following inequalities hold for all k € R™
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y<61+62> < 5%Fk(7+’i)
2 2(cp—cy)*

< )
- 2

(13)

where <(k= 8) JCT_; 53/) (z) and <<k‘ 8 )f;j 57) (z) are the left and right-sided proportional k-fractional integrals, respectively.
1 2

Proof. Using the convexity of v, and for each g, ¢ € [c1, ¢2], we can have
YAg+(1-2)a) <Ar(e)+(1-2)7(x). (14)

. 1
By putting A = 5» We get

y(€1+€2> LY +rie) (15)
2 2
Taking
sgi=ver+(l—y)er (16)
and
o=(1-vy)c1+ve. 17)
Substituting (16) and (17) in (15), we have
Jr
27<C‘2C2> <y{yar+(1 -y}t +r{(1-y)e +ya}. (18)

. o—1 1 . . . . .
Taking product by exp [6l]/(cz — cl)] wt~! on both sides of the inequality (18), then integrate the resulting

inequality with respect to y from O to 1, we can have
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+ 'l o—1 T_
(552) el

1 571 T
< /0 exp [6W(C2—Cl)] vily{ye +(1-y) e} dy

! o—1 T

+/0 exp {5111(62—01)} vy {(1—y)er+yertdy. (19)

To the left-hand side of the inequality (19), applying the substitution y = 02—78(#) and employing the fact that
2—C
((k, 8750 [1]) (0) = (g (f) —g(c1))* , we get
Sy (T+k)
27/{ c1+ce
T 4 2

l -1 .
< /0 exp [51//(@—01)] v lyfyer+ (1-y) e} dy

! 51 -
+/0 exp [51//(62—61)} vimr{l—y)c+yer tdy. (20)

Next,

SET k . _ , -
LJFT) (Uﬂ g)j{éiw}* (vog) (g (c2)) + g)j{é—éwcz)}’ (vog)(e 1(61))>
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Putting g (1) = w1+ (1 —y)cp and g (u) = (1 — W) c1 + Yea, we obtain

8Ly (T+k) {(k, §) g8

o - (k g) g7, 8 ° ~1(e
2(02_61)% {e e} (vog) (g (2))‘1‘ 54 ) (vog) (g ( 1))}

{e7"(e2
T 1 5_1 1_1

= /eXP —V(e—ca)| vyt y{ya+{1-y)eldy
2k | Jo )

+ /01 exp {(Sé_lw(cz _Cl)} yi oy {(1=y)er+ wcz}dlﬂ}

> y(“*f) @1

Which proves the first inequality in (13). To prove the second inequality and by using the convexity of ¥, we can
certain

Y(yer+(1=vy)e2) <yy(er)+(1-y)y(c2) (22)

and

Y(I=y)er+yer) <(1=y)y(er) +yy(c). (23)

Adding both inequalities (22) and (23), we have

Y(yer+(1=y)e) +7((1—y)er + yea)
< v(e)+7v(c2). (24)

o0—1
o

inequality with respect to Y from O to 1, we can get

Taking product by exp [ V(e —c )] l//%’l on both sides of the inequality (24), then integrate the resulting

1 -1 z
/0 exp {6‘//(02 —01)} iy (e +(1-y)er)dy

1 5—1 .
+/O exp [SW(CZ_CI)] v ly(L=y)cr + yer)dy

[v(e1) +r(e2)]k
T

<
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So, it follows that

(kaIk(c) ((k g) g% 0
D E— 8 g
{8 l(Cl)}

o -1 c (k, g) g7 8 o -1 c
o)k i (r08) (87 () + B 87 . (yog) (g (1>))

{s7 (2

[y(en) +y(elk
T

<
Which yields

STy (r+k) <(k, W (vo8) (87" (c2)) + &) sT N (vog) (s~ (01)))

2(6‘2—6‘1)% {g71(61>}+ {871(02
< 7(01)‘1‘7’(62). 25)
2
Therefore, based on the inequalities (21) and (25), we may deduce the desired inequality (13). O

Remark 1

(1): If we put 8 = 1, k = 1, then Theorem 1 will reduce to the Lemma 3 which is the result proved by Liu et al. [35]
for g-R-L fractional integral.

(ii): Takingd =1,k=1, g(61) = 61, Y61 € [c1, ¢2], so that Theorem 1 will reduce to Theorem 2 which is the result
proved by Sarikaya et al. [6] for classical R-L fractional integral.

(iii): If we apply the inequalities (13) for g (g1) = 61, Vg1 € [c1, ¢2] and § = 1, k =1, T = 1, we get the classical
Hermite-Hadamard inequalities for a classical integral (1).

Theorem 2 Let g: F — [cy, ¢2] C R, be a continuous and strictly increasing function satisfies 0 < ¢; < ¢, and the
differentiable convex function y: [¢|, ¢2] — R on (ci, ¢2) such that the composition (Yo g) : F — R be an integrable
mapping on f , then the following inequalities hold for all k € R™

(Cl+02) 26185 (T+k)
Y T
2 (c2—c1)*

x(®agme L (veg) (¢ (en) + RIS L (vog) Wc>>
< {g*'<%)} 8 (g 1 ) {g’l(sz)} 8 (g 2 )

Y(c1) +y(e2)
— s

IN

(26)

where (“‘7 8 )f:; 8)/) (z) and ((k* 8 )f:; 53/) (z) are the left and right-sided proportional k-fractional integrals, respectively.
1 2

Proof. Using the convexity of the function ¥, for each |, & € [c1, ¢2], we can have

S+ v(61)+7(s)
y(lz >< 12 '
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Putting ¢| = %cz + _chl and ¢ = _chz + gcl, it follows that for all ¢, & € [c1, 2], W € [0, 1],
c1te 1 174 2—y 2—-vy 174
<z AN A .
7( > >_2{}’<202+ 5 )Y et Sa (27)
. S—1y AN 2 . . . . .
Taking product by exp 5 2 (ca—cy) (E) , on both sides of the inequality (27), then integrate the resulting

inequality with respect to ¥ from y =0 to y = 1, we obtain

P o [o-1y vyl oy 2y
< /0 eXP|:62(C2_C1>:| (E) 7(202+ 7 C1>dllf (28)

Next,

26185y (T+k)

(c2—c1)*

R R (T I PR )
(407 gy o

(k, 8) g%, O o 1o
+ gy{gfl(¥>}+ (rog) (s (2)))

T_
2% 17

k(cy—ci)k

~a

. </: (52) [551@(“)_01)} ) en 1 (yo) ()¢ () di

=1 (c1)

+ /<H) exp| 25+ (2~ £(0)] (e~ 20 (rog) (¢ 1) du)

_ zz:f (Lgl(“lzcz)exp [661 (g(u)_q)} (W)i—l(yog)(u) AN

er) c2—C ¢ —Cq

+ /gg,;?;z)eXp [(Sgl (cz—g(u))] (Cz_g(u)y_l (vog) (u) AU d“)-

€2 —C1 2 —Cy
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9_
Putting g (i) = %cz + 5 wcl and g (u) = 5 Wcz + %cl, we obtain

267181 (T4k)

(ca—c1)F

7,68 o -1 ¢
j{87'<¥)}+ (vog) (s (2)))

x| lagrl o (rog) (g7 () + B
( (g o8 8 )

fe

_2f2g -1y v\l (y 2—y
I (/0 eXp[az(Cz—Cl)] (5) 7(202+ > Cl>dW

Lo [6-1y yyil (2-y oy
+/0 exp[az(q‘“)} (3) Y( 7 et pa)dy

>y<cl;cz),

This produces the initial inequality in (26). To demonstrate the alternative inequality and consider the convexity of

(29)

the function 7, we ascertain:

_ 2
Y(Ing+ . q) < gy(czHTWY(CI), (30)
Y(zwcﬁ-lpc]) < (MY(62)+WY(61)>- &)
2 2 - 2 2

Adding the inequalities (30), (31), we get

(32)

v o 2y 2-y vy
+ + + < + .
}/<2c2 2 Cl) }’( 2 = 261) svle)+y(e)

§—
Taki ductb —_—
aking produc yexp{ ) >
inequality with respect to ¥ from y =0to v = 1, we get

1 i1
v (ca—cy )} ( ‘l/) ! , on both sides of the inequality (32), then integrate the resulting
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Which yields

2127 /1 o 51
k 0 p )

: §—1 y\TL 2y oy
a5 b () o5 )}

< Y(Cl);LY(Cz). (33)

(SIRS
~
(3o}

\

o
i
N
STES
N——

5}
L
s<
VR
SRS
(%)
+
o |
<
AR
N——
1Ny
<

[

By comparing the left-hand side of inequality (29) with that of inequality (33), we may deduce that

287181 (T4k)

(c2—e)f
(k, g) g7 8 ( -1 k, g) 4T, 8 .
X qie- (ro8) (g7 (c) + 8700 (Yeg) (87 ()
A AT
< 7(01)+Y(02)’
- 2
It represents the requisite second inequality in (26). The proof is, therefore, complete. O

3.2 (k, g)-fractional integral Hermite-Hadamard type inequalities involving symmetric functions

The current section involves a new generalisation for some types of Hermite-Hadamard inequalities, which were
introduced using the R-L integral by Chinchane and Pachpatte [36]. To achieve our results here, we use the fractional
integral established by Jarad et al. [37] , which was later generalized to (k, g)-fractional integral version by Aljaaidi et al.
[33].

Theorem 3 For the continuous and strictly increasing function g : [c1, c2] — F € R on [c], ¢3], satisfying
0 < ¢ < ¢; and the twice differentiable positive and symmetric function ¥ : F — R on F ° such that the composition
(yog):[c1, c2] — R be an integrable mapping on [c1, ¢;], provided that y” is bounded in [c;, ¢3]. Then, the following
inequalities hold for all k € R*
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701 /gl((qyz) <61+cz )2
2

2/(((:2—()1)z 4 1(C1>

+ep| 25 e e (el - e) ) ¢ oy

| /\

AT (T+k) ((k Dm0 (yog) (g7 ()

2(2—6‘1)% {e! Cl}

eaEd L eg) (e @) -r{ 252}

g% (52) e+ :
T /‘7 2 7g(IJ')
2k (cy —c1)k JemHer)

(o] 55 @ e 2 et

IN

+exp| 5 () )] (e —e) ) o (e 64)

with T > 0, where Q1 = inf,cie, ) f"(1), Q2 = sup,cie,, ) £ and (("‘ g)fci’ 6)/) (z) and (UC’ g)]:,’ '5}/) (z) are the left
) : 1 2
and right-sided proportional k-fractional integrals, respectively.
Proof. Using the definition 4, we can write

SET(T+k)
2(62761)%

7,6 — 7,8 —
(B o0 @)+ O ren (7 )

g (e2) _ .
et </ exp | 5+ (2 00)] 2~ £ 00D Ve ()
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- 2k<czr—c]>l /<(>) (e"P [531 (c2 g(u))] (c2—g(u))!
o [5 e _c')} (¢ (k) _C')Z_1> et —g(w}s (1)dp.
So, we have
5%r(r+k2
2(cr—c)t

— T gil(éz) N 571 o o %_1
- 4’k<C2—C1)% ‘/871(51) (e p|: 5 ( 2 g('u)):l ( 2 g(nu)) (35)
+ exp [65_1 (g(m) _Cl>:| (g(m) —cl)Zl>
< (r{g(w)}+r{ci+ea—g ()} g (u)du,
which we can rewrite as
5%F(T—|—k> (k g) g% 8 5 L
2(6‘2—61)% ( ’ tﬂ{gfl(cl)}+ (’y g) (g ( 2))
+ ¢ g)j{z,i(q)}f (vog) (s (a))) }/{cl ;cz}
_ T s (ea) . S—1 o . .
- 4’<(02—C1)"/& e ( p[ 5 g<u>>} (c2—g ()

Contemporary Mathematics

Volume 6 Issue 2|2025| 1565



< (e )+ i) -2r{ “52 ). (6)

« (et +rle) -2 “52 ) ¢ (wan

« (e a0+ vt —2r{ “52 1) ¢ (wan

which yields
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2(ea cl)% {g
T, 8 c1+c
slngs | rog) (et ) -r{ 252}

+exp [‘Sgl (elu) )| (elu) ~ ) ) 67

(et -+ rte) -2 { C52 ) ¢ (wan

Since

rera—swi-r{52 = [y gonateon,

and

952 rtewr= [ @ ateo)

Therefore, we can have

P} +rler+er-s)-2{ 252}

c1+cr—g(u

Y (s0))d (s(0 }/ /e s(6))

|+2 o)

Joze
/g” Y{ci+e2—g(6)}d{g(6)} - /IZV{g (0)}d{s(6)}

A . Y fer+er—s(8)} 7 {2(8)}] d{g(8)) (38)

Since

Volume 6 Issue 2|2025| 1567 Contemporary Mathematics



c1+c2—g(6)
Vierte—g@)=71g@) = [ 7/ g0} ls (),

1+

therefore, for g (6) € [cl, } , Where 6 € [, we have

Q1 (c1+c2-2g(0)) <7 {er+c2—g(0)} 7V {2(0)} < Q2 (c1 +c2-22(0)),

which leads to

That is,

2
0/ (952 -5w) < rlehria+a-sw)-2r{52}

2
<0 (”2“2 g(u)) . (39)

In the view of both inequalities (39) and (37), we can conclude the required (34), which completes our proof. O

Theorem 4 For the continuous and strictly increasing function g : [c1, c2] — F CRon [c, ¢3], satisfies 0 < ¢] <
¢ and the twice differentiable positive and symmetric function y: f — R on [ ° such that the composition (yog) :
[c1, c2] — R be an integrable mapping on [c1, ¢z, provided that ¥’ is bounded in [c1, ¢;]. Then, for all k € R* the
following inequalities hold,

. / ) o) (e) )]

2k(c2—c1)% “er)

< (o0 |25 (-8 0)] @ eun T
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< Ok F(r+k)(

L (k, 8) g% é o -1
© 2(ca—cp)* (e}’ + (reg) (g7 ()

{g!

hagEd L (og) (¢ (o) ) - T

IA

[(c2—g (1)) (g () —cy)]

T

2/((6‘2—6‘1)z

—10; /gl(q?)
K

cr)

-1

e

x (exp [5; ! (c2 —g(u))} (c2—g(u))

exp | 25 (el —en)| (el — e ¢ (wa (o)

where ((k= 8 )fci’ 57) (z) and (<k’ 8 )f:,’ 5}/) (z) are the left and right-sided proportional k-fractional integrals, respectively.
1 2

Proof. In view of Theorem 3, using the inequality (35), we have

SkF(TJrk) ( jfg

[0} -1 C
2er—en)t {eten}” « (rog) (¢7 (e2)

0D (ron) (67 ) ) - L)

) 4k<21—1> /<<>) (e"p [55 : <cz—g<u>>} (g ()

+ e | 25 60 - )] (0 - e

x (Y{er+ea—gu)}+r{e )} —[v(cr) +v(en)]) g (n)du.

Now, the form

(ex0 | 25 (2] - 0) "+ x| 25 ) - o) ety - )

x (Y{ar+ea—gl+r{e()} —lrle)+r(e))),
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c1+¢;
2

is symmetric about u = g~ ! ( ), SO we write

M( D758 L (vog) (8 (e2))

2(C2 Cl)% {g Cl}

Q) o7, . Y(e) +7(c2)
(k )'ﬂ{gé C2} (Yog) (g (Cl))> _%

-1

B Zk(CZT—cl)Z/ggl(c(:m (eXp {5 5 o ‘g(“”] (c2—g(m))

-1

e

e | 25 (00 1) (6 ) ) (41)

X (Y{er+e—gu)}+r{e ()} —[v(c) +v(c2)]) ¢ (n)du.

Since

2

rie)—rleta—swi= [ 7{z0)}d{z(0)

1+e2—g(u

and

(1)
e} -vie)= [ 7{e(0)als(0)).

It follows that
v{g(w)}t+r{ci+ea—g(u)}t—[v{c}+r{c}

- [Mreonaon- [0 vic@ao)

[ vis@ratson- [ iera-sodee)

- _/Clg(m [V {ci+c2—5(8)} =7 {g(8)}]d{g(0)}. 42)

Again, according to
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c1+c2—g(6)
Vierte—g@)=71g@) = [ 7/ g0} ls (),

1+

therefore, for g (6) € [cl, } , Where 6 € [, we have

Q1 (c1+c2-2g(0)) <7 {er+c2—g(0)} 7V {2(0)} < Q2 (c1 +c2-22(0)),

which leads to
— 2 [(c2—g(u)) (g (1) —c1)]

[ et -g(0) 7 (s(0)]als (0))

C1

< —Qillea—g(w) (g (1) —c1)l,

that is
— Q2 (c2—g () (g (1) —c1)]
< v{gw}+r{a+ea—g)}t—[r{c}t+r{c}
< —0Oil(e2—g(p) (g (1) —c1)l. (43)
In view of (43) and (41), we can conclude (40), which completes our proof. O

Remark 2 Putting 6 =1, k=1, g(¢1) = ¢1, V61 € [c1, ¢2], then both Theorems (3) and (4) reduce to the Lemma 1
and the Lemma 2 respectively, which was proved by Chen [7] for classical R-L fractional integral.

The next result re-introduces the inequality (15) without the function y being convex on its defined interval employing
the view of Theorem 3 and Theorem 4.

Theorem 5 For the continuous and strictly increasing function g : [c1, ¢2] — F CRon [c}, ¢;], satisfies 0 < ) < ¢
and the differentiable positive and symmetric function y: / — R on / ° such that the composition (Yo g) : [c1, ¢2] — R

a —|—cz] . Then, forallk e R™

be an integrable mapping on [c1, ¢p] . If Y {c1 +ca —g (1)} > 7 {g ()} forall g (u) € {cl, 7

the following inequalities hold,
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(c1+cz)<<6ir(r+k)
2 72(C2—C1)%

(Ug DI oy e (87 @)+ “OTn s (reg) (g7 (cﬂ))

< Ylen+vy(e)
—_— 2 9

where (<k 8.7t 87/) (z) and ((k 8 7" 57/) (z) are the left and right-sided proportional k-fractional integrals, respectively

ot
Proof. Applying the assumptions of the Theorem 3, (37) and (38), we have

(T+k) ( j‘r, 8 . ('}/Og) (871 (02))

2(02*c1)% {g*'(c])}
o j‘ggﬁ ()} (rog) (g_l (cl))> ,y{cl -;cz}

R CONE o

= 2k(C2—Cl)% /g er) <-/g(ﬂ) [7/{014—02 g(0)} V{g(e)}}d{g(g)}>

- (44)

y (exp [56‘1 <C2g<u>>] (c2—2(w))

rewp | 25 o) —en| (et~ e ) ¢ ) 0

Similarly, employing the assumption of the Theorem 4, then from (41) and (42), we obtain

(T+k) ( f‘r 1) ('}’Og) (g_l(CZ))

2(02—01)% {s7'en}”
R (ol o) T T
T g"(#) g(1)
vt S L P eras@) v as©))
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(o] 55 @ e 2 et ! (45)

rexp | 5 ) )] ()~ )1 ()

<0.

This completes the proof. O

4. Application

This section provides an example to confirm the validity and conditions of Theorem 1.

Example 1 Let g(z) =z, y(z) =z and z € [c1, ¢2] = [1, 2]. Clearly, g is strictly increasing and continuous function
on [1, 2], and y is a differentiable convex function. Thus (Yo g)(z) = ¥(g(z)) = y(z) = Z? is an integrable function over
the interval [1, 2] .

Now, we compute the first inequality in (13) for § = 0.6 € (0, 1], k=2 € R" and T =5 > 0, we obtain

7(c1 ;Q) = 7/(1;2> — (1.5) = (1.5)> = 2.25,

and

SILu(+k) _ (06)302(5) _ (093(230(G) )
2er—e)t  22-1)3 2 |

where Iy (w) = k¥~ (Y)
Since 2.25 < 2.62. Then the first inequality of Theorem 1 is verified.
1
Next, we compute the fractional integral with § = 7 T =1 and k = 2 for the left-hand side of inequality (13), we

have

(%97 e rog)ls ) + (9 - (rog) (e ).

{g (e

In this case: where g7'(c1) =g (1) =1, g7 '(c2) =g !(2) =2, because g(z) = z is its own inverse. This is true
forany z € [1, 2].

Also, (yog)(g!(c2)) = (v08)(2) = ¥(8(2)) = 7(2) =4, and (yog) (g~ ' (c1)) = (vog)(1) = ¥(g(1)) = ¥(1) = L.
Thus
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(%975 oy rog)s™ ) + (M98 ) (o)l )

— (kg g7 8 (k, g) 77,0
B ( fﬂ{g’l(cl)}+ (4)) + ( ]{g*I(CZ)}*(l)) .

From (7) and (8) we have

(4975 50) @)= s [eww| 5 et0) - o0 (o)~ (0 ¢ )w)an.

T AT, (1)

1

1
Hence, for § = 7’ k=2and T =1, we obtain

(U{" g)j{Z—%mc.m (4>> (2) = \/T;Fz(l)/lzexp [~ (e = )] (e~ 1)~ 2 (4)d.
2

Atz=1,

<<k’ g>f{;%(61>}+(4)> ()= ﬂé(l)/llexp [ (1= )] (1 - )~ 2dp =0,
and

<<k, 9.0 <1>) 0=~ [ expl- (2] (a2 H(1)an
{g7 ()}~ \/;21—*2(1) z .

Atz=1,

The right-hand side of inequality (13),
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Yie)+v(e)  y()+v(2)  1+4

25.
2 2 2

So, the second inequality becomes:
(“0753 e oo e () + (“ 0078 L (reg)(g™ ()

— (kg g7 o (k, g) g7 O
= (M9 ey @) + (R0 )

=0+0.843=0.843

Therefore, all postulates of Theorem 1 are satisfied.

5. Conclusion

A multitude of scholars have generalised several fractional operators employing classical approaches and operators
inside fractional calculus. One of these operators is the generalised (k, g)-proportional fractional integral. This paper
presents innovative approaches for fractional integral Hermite-Hadamard inequalities associated with the generalised
proportional k-fractional integral concerning another strictly increasing continuous function g. We have employed the
current fractional integral to establish several new fractional integral Hermite-Hadamard-type inequalities. We used
convex and symmetric functions to articulate our generalisation of the Hermite-Hadamard inequality. Furthermore, our
discussion of this study has clearly clarified numerous particular examples related to the main conclusions.

Future research could focus on exploring generalised fractional operators like Atangana-Baleanu and Caputo-
Fabrizio to establish new inequalities and their applications in fractional differential equations. You can also find new
things by using numbers to find close solutions to fractional integrals, applying results to functions that are not convex,
and looking into multivariable extensions.
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