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Abstract: This study investigates the dynamics of cochlear hair cell populations under environmental stressors such
as prolonged exposure to loud noise from earphones. To understand potential temporary hearing loss dynamics due to
earphones, a mathematical model is developed in this investigation to capture the behavior of healthy, fatigued, and
impaired hair cells in response to varying sound intensities, described by differential equations incorporating sound
intensity and its regulation. Themodel is scaled and analysis of the system’s steady states show that two endemic equilibria
exist, with local asymptotic stability investigated using the Jacobian matrix. Results show that there is a critical level of
sound exposure above which the auditory system can no longer maintain a healthy state, leading to long-term hearing
impairment. Simulation results show that for a given intensity level, hearing loss is inevitable for certain for specific
Temporary Threshold Shift (TTS). We are able to quantify healthy and acceptable TTS levels, beyond which there are
no healthy, fatigued or impaired hair cells. The results can be used to predict hearing impairment outcomes and guide
evidence-based interventions to mitigate the adverse effects of prolonged low-pressure sound exposure on auditory health.
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Abbreviation
TTS Temporary Threshold Shift
NIHL Noise-Induced Hearing Loss

1. Introduction
Hearing loss is a significant health issue worldwide, influenced by multiple factors that lead to its development and

worsening. While the impact of loud noises on hearing is well-known, there is growing interest in understanding the
effects of long-term exposure to low-level sounds [1]. Unlike high-volume sounds that can cause immediate harm to the
auditory system, continuous exposure to lower sound levels poses a different but noteworthy threat to hearing [2, 3]. This
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situation emphasizes the intricate relationship between sound stimuli and the auditory system’s physiological responses.
To devise effective prevention and intervention strategies, it is essential to comprehend how prolonged exposure to low-
pressure sounds causes hearing damage, with particular focus on the hair cells. A fundamental concept in this area is
Temporary Threshold Shift (TTS) [4], where hair cells become overworked and swollen, resulting in diminished auditory
function and a sensation of muffled hearing [5]. Although TTS can often reverse, repeated exposure can lead to long-term
hearing issues such as tinnitus (hearing sounds that are not being generated by an external environmental source [6]) have
and challenges in understanding speech in noisy settings [7]. Figure 1 that follows illustrates the different noise exposures
and their effects.

Figure 1. Noise-Induced Hearing Loss (NIHL) depiction courtesy of [1]

The use of earphones has become ubiquitous in modern society, raising concerns about its potential impact on hearing
health. Studies have shown that prolonged use of earphones at high volumes can lead to Noise-Induced Hearing Loss
(NIHL). A study in [8] highlights that listening to music through earphones at levels exceeding 85 decibels for extended
periods can damage hair cells in the cochlea, leading to permanent hearing loss. Earphones contribute to TTS and the risk
is further compounded by the use of earphones in noisy environments, where users may increase the volume to overcome
background noise (masking), thereby exceeding safe listening levels [9].

Other studies have shown that the type of earphones used can influence the degree of hearing risk. For instance,
circumaural headphones, which cover the entire ear, generally pose less risk compared to in-ear models because they can
provide better sound isolation, reducing the need for higher volumes [10]. Many users of portable music players tend to set
the volume at levels that pose a risk for NIHL, especially when using earphones that insert directly into the ear canal [11].
Nonetheless, regardless of the type, it is crucial for users to adopt safe listening practices, such as following the 60/60 rule
—listening at no more than 60% of maximum volume for no longer than 60 minutes at a time [12]. Implementing these
precautions can help mitigate the adverse effects of earphone use on hearing health and ensure a safer listening experience.
To gain further understanding of the hearing loss dynamics, we formulate mathematical formalization of how the process
of hearing loss unfolds due to exposure to toxic sounds, as time progresses using ordinary differential equations.

This paper presents a mathematical overview of the impact of prolonged low-pressure sound exposure on hearing
health, incorporating insights from acoustics, physiology, and mathematical studies. The main drive of this study is the
foundational understanding that damage to hair cells due to exposure to loud sounds (see also [13]) is pivotal in inducing
hearing loss. The study seeks to predict and quantify how hearing loss propagates by determining tolerable persistent
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sound intensity thresholds by considering the hair cells as population in various states depending on the nature of the
exposure to provide a framework for predicting hearing impairment outcomes, understanding the hearing loss dynamics,
and guiding evidence-based interventions to mitigate the adverse effects of prolonged low-pressure sound exposure on
auditory health.

The paper is structured as follows: In Section 1we have the introduction followed by themodel formulation in Section
2 where stability analysis of steady states, positivity and boundedness of solutions among other analysis are undertaken.
The model results and simulations are in Section 3 and the discussion and conclusion in Section 4.

2. The model
The model describes how cochlear hair cells, crucial for auditory function, respond to environmental stressors like

prolonged exposure to loud noise from earphones. It considers three main populations of hair cells: healthy cells, which
guarantee effective hearing (X); fatigued, which are still functional but have undergone some stress (Y ); and impaired
cells that have reversibly lost their function (Z). The hair cell populations behave dynamically under the influence of
sound intensity represented as I, which captures the detrimental effect of earphone use. The environment noise gives the
baseline sound intensity and is denoted by Ib, and sound intensity adjusts towards the baseline at a rate α . Recovery rate
of healthy cells from the fatigued and impaired state is represented by Λ. Healthy cells become impaired (skipping fatigue
state) at a rate γ , reflecting instant temporary but harmful damage. Conversion of healthy cells to fatigued cells happens at
a rate β1. Fatigued cells Y can arise from two main sources: they can either directly result from the conversion of healthy
cells under the influence of I, or they can revert from an impaired cells state Z back to fatigued due to the inconsistent
prevalence of sound intensity at a rate β2. The rate of change in the sound intensity is also driven by the source’s sound
intensity capabilities, with a maximum intensity Imax, and this is represented by the Holling Type 2 response function

λ I
1+ εI

, where ε quantifies the intensity distribution. Fatigued cells decay over time and transition further to an impaired
state Z at a rate σ . In each state, hair cells decrease naturally over time due to decay rate δ as a result of failure by some
hair cells to regenerate or persistent stress. Thus, we get the model system:

dX
dt

= Λ−β1XI − (γ +δ )X ,

dY
dt

= β1XI +β2Y I − (δ +σ)Y,

dZ
dt

= γX +σY −β2Y I −δZ,

dI
dt

= α(Ib − I)+
λ I

1+ εI

(1)

We assume that all the parameters are non-negative, and that the system is governed by the initial conditions X(0)≥
0, Y (0)≥ 0, Z(0)≥ 0, and I(0)≥ 0. The scaled system for the model system (1) is obtained by setting

u =
X
N
, v =

Y
N
, w =

Z
N
, r =

I
Imax

and τ = αt,

and without loss of generality, we set τ = t to get the model system:
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du
dt

= α1 −α2ur−α0u−α3u,

dv
dt

= α2ur+α4wr− (α3 +α5)v,

dw
dt

= α0u+α5v−α4rw−α3w,

dr
dt

= α6 − r+
α7r

1+α8r
.

(2)

We define the non-negative parameters α0 =
γ
α
, α1 =

Λ
Nα

, α2 =
β1N
α

, α3 =
δ
α
, α4 =

β2N
α

, α5 =
σ
α
, α6 =

σ
α
, α6 =

Ib

Imax
, α7 =

λ
γ
and α8 = εImax. We proceed to show that the scaled model system (2) has positive and bounded solutions.

We define the parameter groups α3, 5, 7 as follows:
• The first level (from X to Y ) Impairment-Incidence Ratio (IIR1) represents the lethality of the sound intensity that

leads to hair cell fatigue, and is denoted by α3.
• The second level (from Y to Z) Impairment-Incidence Ratio (IIR2) represents the lethality of the sound intensity

that leads to hair cells impairment, and is denoted by α5.
• The Temporary Threshold Shift (TTS) factor is denoted by α7.

2.1 Model properties

The key attributes of the model such as positivity and boundedness of solutions are discussed in the sequel.

2.1.1Positivity and boundedness of solutions

Theorem 1 For all t ≥ 0, the model system (2) equipped with a solution set ∆ and initial values u ≥ 0, v ≥ 0, w ≥ 0,
and r ≥ 0, then we have that the solution components of ∆ are non-negative and have complete boundedness.

Proof. Given that all of the initial conditions are positive, the first differential equation of (2) yields

du
dt

+(α0 +α2r+α3)u ≥ 0, (3)

where after calculus of integration, we get that

u(t)≥ u(0)e−
(

α2(α0+α3)t+
∫ t

0 r(τ)dτ
)
> 0, ∀t > 0.

The solution s(t) is guaranteed to remain positive for all t ≥ 0 since the exponential function is always positive since
the initial value u(0)≥ 0. Considering the second equation of model system (2) we have that:

dv
dt

+(α3 +α5)v ≥ 0,
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from which we get the solution

v(t)≥ v(0)e−(α3+α5)t > 0, ∀t > 0.

The solution v(t) is guaranteed to remain positive for all t ≥ 0 since the exponential function is always positive since
the initial value v(0)≥ 0. From the third differential equation, we get that

dw
dt

+(α4r+α3)w ≥ 0,

from which we get the solution

w(t)≥ w(0)e−(α3t+α4
∫ t

0 r(τ)dτ)t > 0, ∀t > 0.

The solution w(t) is guaranteed to remain positive for all t ≥ 0 since the exponential function is always positive since
the initial value w(0)≥ 0. The fourth differential equation gives

dr
dt

+ r ≥ 0,

from which we get the solution

r(t)≥ r(0)e−t > 0, ∀t > 0.

Similarly, the solution r(t) is guaranteed to remain positive for all t ≥ 0 since the exponential function is always
positive since the initial value r(0)≥ 0.

2.2 Invariant region

The system (2) is examined within the biologically relevant domain, Ω. Since the model tracks variations in the
population of hair cells, it is crucial that all variables and parameters remain positive for all t ≥ 0.

Theorem 2With respect to system (2), the feasible region Ω defined by

Ω = {u, v, w ≥ 0 : u+ v+w = 1}

is bounded, positively invariant and attracting for all t > 0.
Proof. We observe that

n(t) = u(t)+ v(t)+w(t),

such that
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dn
dt

=
du
dt

+
dv
dt

+
dw
dt

.

We sum the differential equations:

dn
dt

=
du
dt

+
dv
dt

+
dw
dt

= α1 −α3(u+ v+w)

= α1 −α3n(t).

Grouping similar terms gives:

dn
dt

= (α1 +α8)− (α3u+α5v+α6v+α7w+α9r)+u.

Since all parameters αi ≥ 0 and all variables u, v, w, r ≥ 0, we have:

dn
dt

≤ α1 +α3n(t).

Integrating this inequality with respect to t gives:

n(t)≤ α1

α3
−
(

α1

α3
−n(0)

)
e−α3t ,

where n(0) is the initial value of the total population n(t). This shows that n(t) is bounded for all t ≥ 0. Hence, the
solutions u(t), v(t), w(t), and r(t) of the system are bounded for all t ≥ 0. We denote the feasible region by Ω such that

Ω = {u(t), v(t), w(t) ∈ R3|u(t)+ v(t)+w(t)≤ n(t)≤ 1}.

Moreover, we have that lim
x→∞

supn(t)≤ α1

α3
. Thus, for the model system (2), there exists a positively invariant region

Ω such that Ω is a well-posed region for the system given by (2).

2.3 Stability analysis

We show that the system has two endemic steady-states. We determine the conditions for the existence and local
stability of the steady-states through the Jacobian matrix.
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2.3.1The steady-states and local stability

Setting the derivatives in the model system (2) to zero, we identify the steady state solutions E1, 2 = (u∗, v∗, w∗, r∗)
such that:

E1, 2 =


α1

α3 +α2K1, 2 +1
,

α1
(
α2α4(K1, 2)

2 +α2α3K1, 2 +α4K1, 2
)

α3 (α3 +α2K1, 2 +1)(α3 +α5 +α4K1, 2)
,

α1 (α3 +α5 +α2α5K1, 2)

α3 (α3 +α2K1, 2 +1)(α3 +α5 +α4K1, 2)
, K1, 2

 , (4)

where K1, 2 represents the two solutions to the quadratic equation

α9r2 + r (1−Ri)−κ = 0 (5)

which is of the form a1r2 + a2r+ a3 = 0 with Ri = α6α8 +α7, the relative intensity, measuring how the current sound
intensity compares to the baseline and κ = α6, a constant. The quadratic equation yields the solution

K1, 2 =
−a2 ±

√
a2

2 +4a1a3

2a1
. (6)

Noting the quadratic formula above, by simple inspection of the discriminant and observing that it is greater than
zero always, we have two positive solutions for the quadratic equation (5), on condition that Ri > 1. Hence, there are two
endemic steady states if Ri > 1 and the Jacobian matrix of the model system is given as

J(E1, E2) =


−K1, 2α2 −α3 −1 0 0 −α2u

K1, 2α2 −α3 −α5 K1, 2 α4w
1 α5 −α3 −K1, 2α4 −α4w

0 0 0
−α9α8

(1+α9w)2 −α7

 (7)

We get the set of eigenvalues Λ such that

Λ(J1, J2) =

(
−α3, −α3 −α2K1, 2 −1, −α3 −α5 −α4K1, 2,

−α8α9 −α7 −α7α2
9 (K1, 2)

2 −2α7α9K1, 2

(α9K1, 2 +1) 2

)
.

Consequently, we state the following result whose proof is obvious by observing the nature of set Λ(J1, J2):
Result 1 The endemic steady states E1, 2 are locally asymptotically stable wherever they exist, that is, for all Ri > 1.
Proof. From local stability theory, a steady state is stable if it has negative eigenvalues. Since K1, 2 ≥ 0 because of

Theorem 1, the proof trivially follows from the existence condition.
We illustrate this result using a bifurcation where we arbitrarily choose α9 = 0.762 and κ = 0.011 in Figure 2.
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Figure 2. Model diagram indicative of a transcritical bifurcation

Figure 2 showed the Model diagram indicative of a transcritical bifurcation where two steady states (one stable and
one unstable) merge and annihilate or emerge as Ri crosses a critical threshold Ri = 1.

Since the steady states E1, 2 are locally asymptotically stable for Ri > 1, the curve reflects stable steady states in this
region. The shape and position of the curve help visualize how the stability changes and how the steady state evolves as
Ri increases. There is an exchange of stability.

3. Simulations and results
In this section we approximate parameter values based on literature, calculations and reasonable estimates.

3.1 Parameter estimation

Due to lack of data, we present a hypothetical scenario to validate the model’s assertions. At 85 dB, the probability
of developing a significant hearing loss after a 40-year exposure is about 8-10% [14]. Exposure to 100 dB can cause
immediate damage, with a safe exposure time of only 15 minutes (0.0104 days) to avoid permanent damage [15]. The
rate of temporary threshold shift recovery varies, but a significant threshold shift can take days to weeks to recover, and
permanent threshold shifts do not recover [16]. For temporary damage, recovery rate can be around 10-20 dB per day over
the first few days after exposure, depending on the noise level and duration [17] and permanent damage is irreversible [18].
The parameter bounds for the model are defined based on several constraints: biological or physical limits, which ensure
parameters stay within observed physiological ranges; conversion rates, which are set to non-negative values reflecting
realistic transitions between different cell states; and noise intensity parameters, which are constrained to realistic limits for
noise adjustment and response. We use the np.clip function from Python’s NumPy library to adjust these values, ensuring
that parameters do not exceed their expected ranges. We get the following hypothetical parameter values in Table 1.
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Table 1. Table of description and values of parameters in the scaled model system

Parameter Description Value Source

α0 Hearing loss recovery index 0.01 Estimated

α1 Relative recovery of hair cells given natural decay rate 0.01 Estimated

α2 First level excess decay ratio 0.01 Estimated

α3 First level impairment-incidence ratio 0.01 Estimated

α4 Second level excess decay ratio 0.92 Estimated

α5 Second level impairment-incidence ratio 0.75 Estimated

α6 Maximum TTS factor due to maximum relative intensity 0.17 Estimated

α7 Temporary Threshold factor 1 Estimated

α8 TTS per level of intensity 0.762 Estimated

We use these values to simulate three baseline scenarios dependent on the level of sound intensity. This is followed
by a sensitivity analysis of parameters on the state variable r.

3.2 The baseline simulations

We illustrate the baseline scenario in Figures 3-5. We show the dynamic behavior of the system described by the
differential equations over time given high, medium and low sound intensities respectively, are all driven by α8, the TTS
per level of intensity. The graphs plot the values of the four variables u, v, w, and r against 200 time units starting from
initial conditions u(0) = 0.9, v(0) = 0.06, w(0) = 0.04, r(0) = 0, showing the interplay and dynamic changes of these
variables.

Figure 3 showed the time evolution of variables u, v, w, and r when α6 = 0. Healthy cells decrease to a steady state,
but do not vanish. There are no fatigued or impaired hair cells as time increases.

Figure 3. Time evolution of variables u, v, w, and r when α6 = 0
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Figure 4 showed the time evolution of variables u, v, w, and r when α6 = 0.17. Healthy cells further decrease to a
steady state, but do not vanish. There are fatigued and impaired hair cells as time increases.

Figure 4. Time evolution of variables u, v, w, and r when α6 = 0.17

Figure 5. The number of fatigued hair cells and the number of damaged hair cells when α6 = 0.49

Figure 5 showed there is a level of intensity where the fatigued hair cells population increases more than the impaired
high intensity with α6 = 0.49.

We start by establishing the effect of varying sound intensity in an environment. The baseline simulation in Figure
3 reveals that in the absence of sound intensity, that is r = 0, the healthy hair cells concentration u declines steadily to
a steady state, and there are no unhealthy (fatigued or impaired) hair cells as times increases. The healthy hair cells
population decreases further as r increases, and in Figure 4, the impaired hair cells population is greater than that of the
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fatigued. A further increase in r shows no significant decline of the health hair cells concentration, and the fatigued hair
cells population becomes greater than that of the impaired population as demonstrated in Figure 5.

3.3 Sensitivity analysis with respect to sound intensity

We conduct sensitivity analysis through Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficient
(PRCC) to identify key parameters influencing r. Parameters with the highest absolute PRCC values, whether positive or
negative, are deemed critical and are the focus of subsequent simulations.

Figure 6 showed the plot illustrates how parameters are sensitive to the variable r using the initial values u(0) = 0.9,
v(0) = 0.06, w(0) = 0.04, and r(0) = 0.03.

Figure 6. Sensitivity of the parameter to the variable r

Figure 7. Time evolution of variables u, v, w, and r starting from initial conditions u(0) = 0.9, v(0) = 0.06, w(0) = 0.04, and r(0) = 0.03 when α3 = 1
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Figure 8. Time evolution of variables u, v, w, and r starting from initial conditions u(0) = 0.9, v(0) = 0.06, w(0) = 0.04, and r(0) = 0.03 when
α3 = 0.01

Figure 9. Time evolution of variables u, v, w, and r starting from initial conditions u(0) = 0.9, v(0) = 0.06, w(0) = 0.04, and r(0) = 0.03 when α0 = 0.5

The parameter α3 has the highest negative PRCC values and the strongest negative influence on r. This means that
as it decreases, r is likely to increase. The parameter α0 has the highest positive PRCC values and the strongest positive
influence on r. This means that as it increases, r is likely to increase as well. Equipped with these observations, in Figures
7-9, we vary α3 over low-intensity levels. In Figure 7, given a high level of intensity (r = 1), if there is a high relative
recovery of hair cells given a natural decay rate α3 = 1, then as much as the rate of return to baseline intensity is equal to
the natural decay rate, the healthy population decreases to vanishing levels, just as the impaired population does. This is
an indication of hearing loss thresholds. In Figure 8, we observe that if the sound intensity is at its maximum as in Figure
7, and there is a low relative recovery of hair cells given a natural decay rate α3 = 0.01, meaning that if the rate of return
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to baseline intensity is greater than the natural decay rate, the healthy population decreases due to fatigue and the fatigued
and impaired hair cell populations increase relative to the decline of the healthy hair cell population.

In Figures 9 and 10, we demonstrate the effect of varying the hearing loss recovery index α0. At high intensity, as
in the previous simulations, we observe that from the initial stages, there are more fatigued than impaired hair cells if
α0 = 0.5. However, the healthy cell population vanishes, as is the case in Figure 10, because of a high rate of transition
from the healthy cells to the impaired class. Hence, we observe more impaired hair cells than fatigued hair cells at high
α0 values and the notable vanishing of healthy cells.

Figure 10. Time evolution of variables u, v, w, and r starting from initial conditions u(0) = 0.9, v(0) = 0.06, w(0) = 0.04, and r(0) = 0.03 when
α0 = 0.9

3.3.1Summary of results

We summarise the hearing loss dynamics focusing on both TTS and PTS in Table 2.

Table 2. Table of description and values of parameters in the scaled model system

Case Influence on TTS or PTS

1. Low α0, Low α3, Low α6 Extremely low TTS probability

2. Low α0, Low α3, High α6 Moderately low TTS probability

3. Low α0, High α3, High α6 High TTS probability

4. Low α0, Highα3, Low α6 Low PTS probability

5. High α0, Low α3, Low α6 High TTS probability

6. High α0, Low α3, High α6 High TTS probability

7. High α0, High α3, Low α6 Extremely high TTS probability

8. High α0, High α3, High α6 Extremely high PTS probability
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The drivers are α0, which is good if it is low because intensity is forced to decrease to its baseline level; α3, which
is good if low because the number of hair cells lost from the hair cell population gets reduced (low chances of PTS); and
α6, which is good if low as well due to a reduced baseline intensity. From the hypothetical simulation in Figure 11, the
green color shows safe levels, the yellow color denotes levels of exposure at which one must be cautious, and the red color
represents dangerous levels that can lead to either TTS or PTS.

Figure 11. Illustrative heatmaps for different values of α6 to visualize the possible outcomes (TTS or PTS) based on parameters α0 and α3

4. Discussion and conclusion
This study presents a mathematical modeling approach to quantifying the dynamics of cochlear hair cell populations

under the influence of prolonged exposure to low-pressure sound, such as that encountered from the use of earphones.
The aim of the study is to predict intervention points (at personal and global levels) to prevent hearing loss, as shown in
Figure 11. The other purpose of this study is to establish instances of hearing loss, which are revealed through simulations.
Scaling the model was essential since were dealing with two different quantities (hair cell population and intensity). It
also enabled us to identify meaningful parameter groups used in the analysis.

The analysis of the system’s steady states revealed the existence of two endemic equilibria, with local asymptotic
stability dependent on surpassing a critical threshold of sound intensity. This suggests that there is a critical level of
sound exposure above which the auditory system can no longer maintain a healthy state, leading to long-term hearing
impairment. These findings are consistent with previous studies that have highlighted the adverse effects of chronic low-
level noise exposure on auditory health [19, 20]. The identification of this critical threshold has important implications
for public health policies, as it underscores the need for regulatory measures to mitigate the impact of high sound intensity
on cochlear health and prevent long-term auditory damage.

The Jacobian matrix analysis of the system revealed the presence of a transcritical bifurcation, indicating transitions
between stable and unstable states. This highlights the complex and nonlinear dynamics governing the response of hair
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cells to sound exposure, and suggests that small changes in sound intensity can lead to dramatic shifts in the auditory
system’s state (see work in [21]). These insights contribute to a deeper understanding of the physiological mechanisms
underlying Temporary Threshold Shift (TTS) and its potential progression to permanent hearing loss [22–24]. Simulation
results in Figures 7, 8 and 9 show that for a given intensity level, hearing loss is inevitable for certain for specific Temporary
Threshold Shift (TTS). Thus, we are able to quantify healthy and acceptable TTS levels, beyond which there are no healthy,
fatigued or impaired hair cells. This creates a platform to measure the transition from healthy to unhealthy earphones uses.

Another key objective of this study answered by this undertaking is that of identifying or predicting instances of
potential hearing loss. In Figures 3-5, we see that at high intensity the fatigued population exceeds the impaired population,
which is reversed for mid-level intensity. This is an indication of a threshold shift facilitated by increasing the maximum
TTS factor α6, and evidenced by the slight decline in the healthy cells population when one compares Figures 4 and 5.
Instances of potential hearing loss are further highlighted in Figure 11.

A key limitation of the current model is its assumption of uniform cochlear dynamics across all frequencies. The
cochlea, however, has a tonotopic organization where different regions process different frequencies, with the base being
more sensitive to high frequencies and the apex to low frequencies. This variation in sensitivity may affect the progression
of Temporary Threshold Shifts (TTS) and permanent hearing loss differently across frequency ranges. Earphone-induced
damage to cochlear hair cells is primarily driven by intensity but also has a frequency-dependent component. Loudness,
measured in decibels, is the main factor contributing to hair cell damage. Sounds above 85 dB, particularly with prolonged
exposure, can lead to temporary or permanent threshold shifts due to metabolic stress and eventual cell death in the
cochlea [25]. Earphones pose a particular risk because they deliver sound directly into the ear canal, reducing natural
dissipation and making it easier to exceed safe listening levels [11]. Frequency also plays a role, as the cochlea’s tonotopic
organization makes certain regions more vulnerable. High-frequency sounds are processed near the cochlear base, which
is more susceptible to noise-induced damage. Since most music and speech fall within the mid-to-high frequency range
(1-6 kHz), prolonged exposure to these frequencies at high intensity increases the risk of hearing loss [26]. High-frequency
sounds at high intensity are particularly damaging because they exert greater mechanical stress on the cochlear base [27].
Since the model does not account for this frequency-dependent variation, it may limit its ability to accurately predict how
noise exposure at different frequencies influences cochlear cell damage.

Other limitations include the simplifying assumptions made in the mathematical model, such as the lack of
consideration for individual variability in hair cell regeneration and the influence of other factors like age and genetic
predisposition. Additionally, the model does not account for the potential adaptive mechanisms the auditory system may
employ to mitigate the effects of chronic low-level sound exposure. Despite these limitations, the results of this study
have significant implications for researchers, clinicians, and the general public. For researchers in the field of auditory
neuroscience and hearing health, the proposed mathematical framework offers a tool for predicting hearing impairment
outcomes and guiding the development of evidence-based interventions. Clinicians can use the findings from this study to
inform their understanding of the physiological processes underlying hearing loss and develop more effective prevention
and treatment strategies. The general public, particularly those who frequently use earphones, can benefit from the study’s
findings by adopting safe listening practices and being more aware of the potential long-term consequences of prolonged
exposure to low-pressure sounds.

Future work in the mathematical study of cochlear hair cell dynamics should incorporate individual variability,
adaptive mechanisms, and stochastic elements to improve model accuracy and personalization. Integrating longitudinal
data and optimizing intervention strategies can enhance predictive power and real-world applicability. While the current
model provides valuable perspectives into the overall dynamics of cochlear health under sound exposure, the incorporation
of tonotopic variation across frequencies would greatly enhance its realism and applicability to real-world auditory
environments. Collaborative efforts with interdisciplinary experts and the development of educational tools will further
support the prevention of hearing loss and promote safe listening practices.
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