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Abstract: This work focused on developing and analyzing semi analytical scheme that is a computer-based approach for
solving complex evolutionary partial differential equations (PDEs) of the Burger type. A novel scheme named Asymptotic
Homotopy Perturbation TransformMethod (AHPTM) is introduced for solving fractional order coupled nonlinear Burgers
PDEs. The Caputo fractional form has been considered for derivatives. Nonlinear Burgers PDEs have various applications
in fluid dynamics, traffic flow, nonlinear acoustics and signal processing. The algorithm of AHPTM is a fast convergent
approach that has been developed by combining the Laplace transformation and the asymptotic homotopy perturbation
method. Using the technique of AHPTM, three test problems of one-dimensional coupled nonlinear Burgers PDEs have
been solved. This work demonstrates the smooth and easy implementation of solving problems by using MATLAB
programming. The numerical results demonstrate that this novel approach is simple, easy and computationally capable
for the problems. An error estimate is also required to solve the problem. To demonstrate the effectiveness and accuracy
of the said solver, the solutions to the problems are tabulated and graphically displayed via using MATLAB software.
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1. Introduction
Computation mathematics with respect to computational fluid has many applications. The governing partial

differential equations PDEs for fluid flow has much importance. But, it addresses computational challenges from complex
mathematical structures and multiscale behavior. The showcase advancements in mathematical models and numerical
algorithms for solving these complex PDEs is the need of modern science.

Recently, the governing PDEs of Burger models has various applications in fluid dynamics (turbulence, shock waves,
and boundary layers), traffic flow (vehicle density and velocity in traffic systems), nonlinear acoustics (sound wave
propagation in media with nonlinear and dissipative effects) and signal processing (used in denoising and smoothing
signals/images due to its diffusion properties). In this context, various studies have been conducted. Esipov [1]
developed the one-dimensional coupled viscous Burgers equation to investigate the polydispersive sedimentation model.
Sedimentation, or the change in scaled volume concentrations of two kinds of particles under gravity, is simply described
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by the set of coupled equations in fluid suspensions or colloids. This system of equations, according to Burgers [2] and
Cole [3], describes a variety of phenomena, containing the approximate theory of flow through a shock wave flowing
in a viscous fluid, as well as a mathematical model of turbulence. The coupled Burgers equation is interesting from a
numerical perspective because there are typically no analytical solutions available. The coupled Burgers equations of one
dimension were solved exactly by Kaya [4] using the Adomian decomposition technique and Soliman [5] using a modified
extended tanh functionmethod. Many researchers and scholars haveworked out the numerical solution to one-dimensional
coupled Burgers equations. Esipov [1] presented numerical calculations and compared them with experimental data. The
one-dimensional Burgers equations and coupled Burgers equations were solved by Abdou and Soliman [6] using the
variational iteration approach. Wei and Gu [7] employed the conjugate filter methodology, while Khater et al. [8],
applied the Chebyshev spectral collocation technique. Dehghan et al. [9] used the Adomian-pade methodology to get
the numerical results of coupled viscous Burgers equations. Rashid and Ismail [10] used the Fourier pseudo-spectral
approach. To solve the coupled viscous Burgers equation, by linearizing the non-linear variables, Mittal and Arrora [11]
employed a cubic B-Spline collocation approach based on the Crank-Nicolsion version for time integration and Cubic B-
Spline functions for space integration, whereas a generalized differential quadrature method was employed byMokhtari et
al. [12]. Certain finite-difference approaches are studied for solving single one-dimensional Burgers equations as well as
two- and three-dimensional Burgers equations, see references [13–22]. Thework focused on analyzing numerical methods,
algorithms, and computer-based approaches for solving complex PDEs of the Burgers type, see references [9, 23–25]. This
study bridges mathematics, computer science, and applied fields to tackle problems that may be difficult or impossible to
solve analytically. In the field of computational mathematics, It is known fact that the development of advanced methods
for the solution of fractional order equations and their coupled systems is essential [26–28]. In this research, we study
a novel approach of the homotopy methods to the analytical solution to the one-dimensional coupled non-linear Burgers
equations. For the basic literature of this specific research work, we refer to the recent work [29–40]. The purpose of
this research study is to develop a new scheme of AHPTM, which is a very simple, rapidly convergent technique. This
approach combines the Laplace transform with the Asymptotic Homotopy Perturbation Method (AHPM) [41]. Three
significant problems of one-dimensional coupled non-linear Burgers equations are used to illustrate this approach. This
work demonstrates the rapid convergence to problem solutions.

This work is organized as follows: Section 2 provides the basic idea of the suggested strategy. Section 3 illustrates
how the proposed method can be applied to fractional problems. The final section of the work includes a conclusion.

2. Basic structure of the proposed method
This study presents a novel asymptotic homotopy perturbation transform method for one-dimensional Fractional

Coupled Nonlinear Burgers Equations.
Consider

∂ η w
∂τη +ηw

∂w
∂ℏ

+α
[

w
∂y
∂ℏ

+ y
∂w
∂ℏ

]
+σ

∂ 2w
∂ℏ2 = 0, 0 < η ≤ 1, (1)

∂ η y
∂τη +σy

∂y
∂ℏ

+β
[

w
∂y
∂ℏ

+ y
∂w
∂ℏ

]
+µ

∂ 2y
∂ℏ2 = 0, 0 < η ≤ 1. (2)

Initial conditions:
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w(ℏ, 0) = a1(ℏ),

y(ℏ, 0) = a2(ℏ).

Consider

j =
∂ η w
∂τη

and

k= ηw
∂w
∂ℏ

+α
[

w
∂y
∂ℏ

+ y
∂w
∂ℏ

]
+σ

∂ 2w
∂ℏ2 ,

M =
∂ η y
∂τη

and

N = σy
∂y
∂ℏ

+β
[

w
∂y
∂ℏ

+ y
∂w
∂ℏ

]
+µ

∂ 2y
∂ℏ2 = 0.

Where k and N denote nonlinear terms in original problem given in Equations (1) and (2).
Substituting these into equation (1) and (2), we obtain

jw(ℏ, τ)+kw(ℏ, τ) = 0, (3)

My(ℏ, τ)+Ny(ℏ, τ) = 0. (4)

By using the homotopy rule on the equations (3) and (4), as in AHPTM, we get

jw(ℏ, τ)− pkw(ℏ, τ) = 0, (5)

My(ℏ, τ)−qNy(ℏ, τ) = 0, (6)

∂ η

∂τη w(ℏ, τ)− pkw(ℏ, τ) = 0, (7)
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∂ η

∂τη y(ℏ, τ)−qNy(ℏ, τ) = 0. (8)

Applying Laplace transform to equation (7) and (8), we get

L
[

∂ η

∂τη w(ℏ, τ)
]
= L [pkw(ℏ, τ)] , (9)

L
[

∂ η

∂τη y(ℏ, τ)
]
= L [qNy(ℏ, τ)] . (10)

The Laplace transform of the Caputo fractional derivative is given by:

L
[
Dmη

τ w(ℏ, τ)
]
= Smη w(ℏ, τ)−

m−1

∑
k=0

Smη−k−1wk(ℏ, 0), m−1 < mη ≤ m. (11)

L
[
Dmη

τ y(ℏ, τ)
]
= Smη y(ℏ, τ)−

m−1

∑
k=0

Smη−k−1yk(ℏ, 0), m−1 < mη ≤ m. (12)

By substituting the expression of (11) in equation (9), we have

sη w(s, τ)− sη−1w(ℏ, 0)− sη−2wτ(ℏ, 0)...= pL [kw(ℏ, τ)] .

By substituting the expression of (12) in equation (10), we have

sη y(s, τ)− sη−1y(ℏ, 0)− sη−2yτ(ℏ, 0)...= qL [Ny(ℏ, τ)] .

Using initial conditions and solving

sη w(s, τ)− 1
s

a1(ℏ) =
1
sη pL [kw(ℏ, τ)] , (13)

sη y(s, τ)− 1
s

a2(ℏ) =
1
sη qL [Ny(ℏ, τ)] . (14)

By taking the inverse of the Laplace transform operator, we have

L−1 [w(s, τ)] = L−1
[

a1(ℏ)
s

]
+L−1

[
pL [kw(ℏ, τ)]

sη

]
, (15)
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L−1 [y(s, τ)] = L−1
[

a2(ℏ)
s

]
+L−1

[
qL [Ny(ℏ, τ)]

sη

]
. (16)

Let

L−1 [w(s, τ)] = w(ℏ, τ), (17)

L−1
[

1
s

a1(ℏ)
]
= O(ℏ, τ), (18)

L−1 [y(s, τ)] = y(ℏ, τ), (19)

L−1
[

1
s

a2(ℏ)
]
= O

′
(ℏ, τ). (20)

By substituting the expression of (17) and (18) in equation (15), we get

w(ℏ, τ) = O(ℏ, τ)+ pL−1
(

1
sη L [kw(ℏ, τ)]

)
. (21)

By substituting the expression of (19) and (20) in equation (16), we have

y(ℏ, τ) = O
′
(ℏ, τ)+qL−1

(
L [Ny(ℏ, τ)]

sη

)
. (22)

w(ℏ, τ) =
∞

∑
m=0

pmwm(ℏ, τ), (23)

y(ℏ, τ) =
∞

∑
m=0

qmym(ℏ, τ). (24)

N(w(ℏ, τ)) = B1k0 +
∞

∑
m=1

(
m

∑
i=0

Bm+1−iki

)
pm, (25)

N(y(ℏ, τ)) = B1N0 +
∞

∑
m=1

(
m

∑
i=0

Bm+1−iNi

)
qm. (26)

By substituting equation (23), and (25) in (21), we have
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∞

∑
m=0

pmwm (ℏ, τ) = O(ℏ, τ)+ pL−1

[
1
sη L

(
B1k0 +

∞

∑
m=1

(
m

∑
i=0

Bm+1−iki

)
pm

)]
.

By substituting equation (24), and (26) in (22), we have

∞

∑
m=0

qmym (ℏ, τ)

= O
′
(ℏ, τ)+qL−1

[
1
sη L

(
B1N0 +

∞

∑
m=1

(
m

∑
i=0

Bm+1−iNi

)
qm

)]
.

w0(ℏ, τ)p0 +w1(ℏ, τ)p1 +w2(ℏ, τ)p2 + ...

= O(ℏ, τ)+ pL−1
[

1
Sη L

(
(B1k0)+(B2k0 +B1k1) p1 +(B3k0 +B2k1 +B1k2) p2)] , (27)

y0(ℏ, τ)q0 + y1(ℏ, τ)q1 + y2(ℏ, τ)q2 + ...

= O
′
(ℏ, τ)+qL−1

[
1

Sη L
(
(B1N0)+(B2N0 +B1N1)q1 +(B3N0 +B2N1 +B1N2)q2)] . (28)

In equation (27), we compare the coefficient of like power of p to obtain

p0 : w0(ℏ, τ) = O(ℏ, τ), (29)

p1 : w1(ℏ, τ) = L−1 1
Sη L [B1k0] , (30)

p2 : w2(ℏ, τ) = L−1 1
Sη [B2k0 +B1k1] , (31)

and the kth order iteration is

pk : wk(ℏ, τ) = L−1

[
1

Sη L

(
k−1

∑
i=0

Bk−1ki

)]
. (32)

In equation (28), we compare the coefficient of like power of p to obtain
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q0 : y0(ℏ, τ) = O
′
(ℏ, τ), (33)

q1 : y1(ℏ, τ) = L−1 1
Sη L [B1N0] , (34)

q2 : y2(ℏ, τ) = L−1 1
Sη [B2N0 +B1N1] , (35)

and the kth order iteration is

qk : yk(ℏ, τ) = L−1

[
L
(
∑k−1

i=0 Bk−1Ni
)

Sη

]
. (36)

Using the Laplace and inverse Laplace transform properties, the aforementioned equations are solved, and the
approximate solution is provided as

w̃(ℏ, τ) = w0 (ℏ, τ)+w1 (ℏ, τ)+w2 (ℏ, τ)+w3 (ℏ, τ) ..., (37)

ỹ(ℏ, τ) = y0 (ℏ, τ)+ y1 (ℏ, τ)+ y2 (ℏ, τ)+ y3 (ℏ, τ) ... (38)

We will tabulate the results of the relevant problems after determining the analytical solution to the newly suggested
technique. We will also apply the developed technique by using MATLAB code to show the results obtained by AHPTM
and other methods via different surface and line graphs. To compare the approximate solution with exact solution through
new suggested scheme by plotting errors.

3. Proposed method’s application
3.1 Problem 01

The first specific problem of fractional coupled non-linear Burgers equations is considered in the form of

∂ η w
∂τη =

∂ 2w
∂ℏ2 +2w

∂w
∂ℏ

− ∂
∂ℏ

(wy), (39)

∂ η y
∂τη =

∂ 2y
∂ℏ2 +2y

∂y
∂ℏ

− ∂
∂ℏ

(wy), 0 < η ≤ 1. (40)

Under the given initial conditions

w(ℏ, 0) = sin(ℏ), y(ℏ, 0) = sin(ℏ).
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Consider

j =
∂ η w
∂τη , k=−∂ 2w

∂ℏ2 −2w
∂w
∂ℏ

+
∂

∂ℏ
(wy),

and

M =
∂ η y
∂τη , N =− ∂ 2y

∂ℏ2 −2y
∂y
∂ℏ

+
∂

∂ℏ
(wy).

As deformation equation is

L(j)−Lpk= 0,

and

LM−LpN = 0,

where L is Laplace operator.

L(j) = Lpk,

LM = LpN,

L
(

∂ η w
∂τη

)
= L(Pk),

L
(

∂ η y
∂τη

)
= L(PN).

L
(

∂ η w
∂τη

)
= Lp

[
B1k0 +(B2k0 +B1k1)p+(B3k0 +B2k1 +B1k2)p2 + ...

]
,

L
(

∂ η y
∂τη

)
= Lq

[
B1N0 +(B2N0 +B1N1)q+(B3N0 +B2N1 +B1N2)q2 + ...

]
,
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sη w(s, τ)− sη−1w(ℏ, 0)− sη−2wτ(ℏ, 0)...

= L
[
(B1k0)p+(B2k0 +B1k1)p2 +(B3k0 +B2k1 +B1k2)p3 + ...,

]
sη y(s, τ)− sη−1y(ℏ, 0)− sη−2yτ(ℏ, 0)...

= L
[
(B1N0)q+(B2N0 +B1N1)q2 +(B3N0 +B2N1 +B1N2)q3 + ...

]
, w(ℏ, τ)

= sin(ℏ)+L−1 1
Sη L[B1k0]p+L−1 1

Sη L[B2k0 +B1k1]p2

+L−1 1
Sη L[B3k0 +B2k1 +B1k2]p3 + ..., y(ℏ, τ)

= sin(ℏ)+L−1 1
Sη L[B1N0]q+L−1 1

Sη L[B2N0 +B1N1]q2

+L−1 1
Sη L[B3N0 +B2N1 +B1N2]q3 + ...,

w0(ℏ, τ)+w1(ℏ, τ)p+w2(ℏ, τ)p2 +w3(ℏ, τ)p3 + ...

= sin(ℏ)+L−1 1
Sη L[B1k0]p

+L−1 1
Sη L[B2k0 +B1k1]p2 +L−1 1

Sη L[B3k0 +B2k1 +B1k2]p3 + ..., (41)

y0(ℏ, τ)+ y1(ℏ, τ)q+ y2(ℏ, τ)q2 + y3(ℏ, τ)q3 + ...

= sin(ℏ)+L−1 1
Sη L[B1N0]q

+L−1 1
Sη L[B2N0 +B1N1]q2 +L−1 1

Sη L[B3N0 +B2N1 +B1N2]q3 + ..., (42)

Equating the coefficients of like powers of p in equation (39), we get
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p0 : w0(ℏ, τ) = sin(ℏ), (43)

p1 : w1(ℏ, τ) = L−1 1
Sη L [B1k0] , (44)

p2 : w2(ℏ, τ) = L−1 1
Sη [B2k0 +B1k1] , (45)

p3 : w3(ℏ, τ) = L−1 1
Sη L [B3k0 +B2k1 +B1k2] . (46)

Equating the coefficients of like powers of q in equation (40), we get

q0 : y0(ℏ, τ) = sin(ℏ), (47)

q1 : y1(ℏ, τ) = L−1 1
Sη L [B1N0] , (48)

q2 : y2(ℏ, τ) = L−1 1
Sη [B2N0 +B1N1] , (49)

q3 : y3(ℏ, τ) = L−1 1
Sη L [B3N0 +B2N1 +B1N2] . (50)

Consider equation (43) and equation (47), we have

w0(ℏ, τ) = sin(ℏ), y0(ℏ, τ) = sin(ℏ).

k0 =−∂ 2w0

∂ℏ2 −2w0
∂w0

∂ℏ
+

∂
∂ℏ

(w0y0).

Hence k0 = sin(ℏ).
Consider equation (44)

w1(ℏ, τ) = L−1 1
Sη L [B1k0] ,

w1(ℏ, τ) = L−1 1
Sη L [B1sin(ℏ)] ,

w1(ℏ, τ) = B1sin(ℏ)L−1
(

1
Sη+1

)
,
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On taking inverse L−1 of transformation as:

w1(ℏ, τ) = B1sin(ℏ)
(

τη

Γ(η +1)

)
. (51)

N0 =−∂ 2y0

∂ℏ2 −2y0
∂y0

∂ℏ
+

∂
∂ℏ

(w0y0).

Hence N0 = sin(ℏ).
Consider equation (48)

y1(ℏ, τ) = L−1 1
Sη L [B1N0] ,

y1(ℏ, τ) = L−1 1
Sη L [B1sin(ℏ)] ,

y1(ℏ, τ) = B1sin(ℏ)L−1
(

1
Sη+1

)
,

On taking inverse L−1 of transformation as:

y1(ℏ, τ) = B1sin(ℏ)
(

τη

Γ(η +1)

)
. (52)

k1 =−∂ 2w1

∂ℏ2 −2w1
∂w1

∂ℏ
+

∂
∂ℏ

(w1y1).

Hence

k1 = B1sin(ℏ)
(

τη

Γ(η +1)

)
.

Consider equation (45), we have

w2(ℏ, τ) = L−1 1
Sη L [B2k0 +B1k1] ,

w2(ℏ, τ) = L−1 1
Sη L

[
B2sin(ℏ)+B1

(
B1sin(ℏ)

(
τη

Γ(η +1)

))]
,

w2(ℏ, τ) = B2sin(ℏ)L−1
(

1
Sη+1

)
+B2

1sin(ℏ)L−1
(

1
S2η+1

)
,
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On taking inverse transformation L−1, we get

w2(ℏ, τ) = B2sin(ℏ)
(

τη

Γ(η +1)

)
+B2

1sin(ℏ)
(

τ2η

Γ(2η +1)

)
. (53)

N1 =−∂ 2y1

∂ℏ2 −2y1
∂y1

∂ℏ
+

∂
∂ℏ

(w1y1).

Hence

N1 = B1sin(ℏ)
(

τη

Γ(η +1)

)
.

Consider equation (49), we have

y2(ℏ, τ) = L−1 1
Sη L [B2N0 +B1N1] ,

y2(ℏ, τ) = B2(sin(ℏ))L−1
(

1
Sη+1

)
+B2

1sin(ℏ)L−1
(

1
S2η+1

)
.

On taking inverse transformation L−1, we get

y2(ℏ, τ) = B2sin(ℏ)
(

τη

Γ(η +1)

)
+B2

1sin(ℏ)
(

τ2η

Γ(2η +1)

)
. (54)

k2 =−∂ 2w2

∂ℏ2 −2w2
∂w2

∂ℏ
+

∂
∂ℏ

(w2y2).

Hence

k2 = B2sin(ℏ)
(

τη

Γ(η +1)

)
+B2

1sin(ℏ)
(

τ2η

Γ(2η +1)

)
.

Consider equation (46), we have

w3(ℏ, τ) = L−1 1
Sη L [B3k0 +B2k1 +B1k2] ,

w3(ℏ, τ) = L−1 1
Sη L

[
B3sin(ℏ)+B2

(
B1sin(ℏ)

(
τη

Γ(η +1)

))]
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+L−1 1
Sη L

[
B1

(
B2sin(ℏ)(

τη

Γ(η +1)
)+B2

1sin(ℏ)
(

τ2η

Γ(2η +1)

))]
,

w3(ℏ, τ) = B3sin(ℏ)L−1
(

1
sη+1

)
+2B1B2sin(ℏ)L−1

(
1

s2η+1

)
+B3

1sin(ℏ)L−1
(

1
s3η+1

)
.

On taking inverse transformation L−1, we get

w3(ℏ, τ) = B3sin(ℏ)
(

τη

Γ(η +1)

)
+2B1B2sin(ℏ)

(
τ2η

Γ(2η +1)

)
+B3

1sin(ℏ)
(

τ3η

Γ(3η +1)

)
. (55)

N2 =−∂ 2y2

∂ℏ2 −2y2
∂y2

∂ℏ
+

∂
∂ℏ

(w2y2).

Hence

N2 = B2sin(ℏ)
(

τη

Γ(η +1)

)
+B2

1sin(ℏ)
(

τ2η

Γ(2η +1)

)
.

Consider equation (50), we have

y3(ℏ, τ) = L−1 1
Sη L [B3N0 +B2N1 +B1N2]

y3(ℏ, τ) = B3sin(ℏ)L−1
(

1
sη+1

)
+2B1B2sin(ℏ)L−1

(
1

s2η+1

)
+B3

1sin(ℏ)L−1
(

1
s3η+1

)
.

On taking inverse transformation L−1, we get

y3(ℏ, τ) = B3sin(ℏ)
(

τη

Γ(η +1)

)
+2B1B2sin(ℏ)

(
τ2η

Γ(2η +1)

)
+B3

1sin(ℏ)
(

τ3η

Γ(3η +1)

)
. (56)

By adding equations (43), (51), (53), and (55).

w̃(ℏ, τ) = w0 (ℏ, τ)+w1 (ℏ, τ)+w2 (ℏ, τ)+w3 (ℏ, τ) ,

w̃(ℏ, τ) = sin(ℏ)+B1sin(ℏ)
(

τη

Γ(η +1)

)
+B2sin(ℏ)

(
τη

Γ(η +1)

)
+B2

1sin(ℏ)
(

τ2η

Γ(2η +1)

)
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+B3sin(ℏ)
(

τη

Γ(η +1)

)
+2B1B2sin(ℏ)

(
τ2η

2η +1

)
+B3

1sin(ℏ)
(

τ3η

3η +1

)
.

w̃(ℏ, τ) = sin(ℏ)+(B1 +B2 +B3)sin(ℏ)
(

τη

Γ(η +1)

)
+
(
B2

1 +2B1B2
)

sin(ℏ)
(

τ2η

Γ(2η +1)

)
(57)

+B3
1sin(ℏ)

(
τ3η

Γ(3η +1)

)
.

By adding equations (47), (52), (54), and (56).

ỹ(ℏ, τ) = y0 (ℏ, τ)+ y1 (ℏ, τ)+ y2 (ℏ, τ)+ y3 (ℏ, τ) ,

ỹ(ℏ, τ) = sin(ℏ)+B1sin(ℏ)
(

τη

Γ(η +1)

)
+B2sin(ℏ)

(
τη

Γ(η +1)

)
+B2

1sin(ℏ)
(

τ2η

Γ(2η +1)

)

+B3sin(ℏ)
(

τη

Γ(η +1)

)
+2B1B2sin(ℏ)

(
τ2η

2η +1

)
+B3

1sin(ℏ)
(

τ3η

3η +1

)
,

ỹ(ℏ, τ) = sin(ℏ)+(B1 +B2 +B3)sin(ℏ)
(

τη

Γ(η +1)

)
+
(
B2

1 +2B1B2
)

sin(ℏ)
(

τ2η

Γ(2η +1)

)

+B3
1sin(ℏ)

(
τ3η

Γ(3η +1)

)
. (58)

Residual for w(ℏ, τ)

R =
∂ η w̃
∂τη − ∂ 2w̃

∂ℏ2 −2w̃
∂ w̃
∂ℏ

+
∂

∂ℏ
(w̃ỹ),

R = sin(ℏ)+(B1 +B2 +B3)sin(ℏ)+
(
B2

1 +2B1B2 +B1 +B2 +B3
)

sin(ℏ)
(

τη

Γ(η +1)

)

+
(
B3

1 +B2
1 +2B1B2

)
sin(ℏ)

(
τ2η

Γ(2η +1)

)
+B3

1sin(ℏ)
(

τ3η

Γ(3η +1)

)
.

R =

(
(1+B1 +B2 +B3)+

(
B2

1 +2B1B2 +B1 +B2 +B3
)( τη

Γ(η +1)

))
sin(ℏ)

+

((
B3

1 +B2
1 +2B1B2

)( τ2η

Γ(2η +1)

)
+B3

1

(
τ3η

Γ(3η +1)

))
sin(ℏ).
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Residual for y(ℏ, τ)

R =
∂ η ỹ
∂τη − ∂ 2ỹ

∂ℏ2 −2ỹ
∂ ỹ
∂ℏ

+
∂

∂ℏ
(w̃ỹ),

R = sin(ℏ)+(B1 +B2 +B3)sin(ℏ)+
(
B2

1 +2B1B2 +B1 +B2 +B3
)

sin(ℏ)
(

τη

Γ(η +1)

)

+
(
B3

1 +B2
1 +2B1B2

)
sin(ℏ)

(
τ2η

Γ(2η +1)

)
+B3

1sin(ℏ)
(

τ3η

Γ(3η +1)

)
.

R =

(
(1+B1 +B2 +B3)+

(
B2

1 +2B1B2 +B1 +B2 +B3
)( τη

Γ(η +1)

))
sin(ℏ)

+

((
B3

1 +B2
1 +2B1B2

)( τ2η

Γ(2η +1)

)
+B3

1

(
τ3η

Γ(3η +1)

))
sin(ℏ).

The constant values are determined using least square method B1 =−0.9999996, B2 =−0.00000027502669, and
B3 = 0.000000040182729.

By substituting the values of the auxiliary constants, we get the analytical solution for the fractional-order problem
3.1 through AHPTM. When η = 1, the AHPTM solution of classical integer-order problem corresponding to problem
3.1 is given by:

w̃(ℏ, τ) = sin(ℏ)(−0.1667τ3 +0.5τ2 − τ +0.1),

ỹ(ℏ, τ) = sin(ℏ)(−0.1667τ3 +0.5τ2 − τ +0.1).

The numerical results of problem 3.1 , which were produced using the AHPTM algorithm for various values in range
of 0 < η ≤ 1, are shown in Table 1. The concerned errors estimates of solutions obtained using the suggested method
are shown in Tables 2 to 3. The suggested method is accurate and efficient, as shown by the minor error values in the
last columns of Tables 2 and 3. The results of the proposed method are compared with other existing methods in Table
4, wherein high accuracy of proposed method is observed. Several graphs showing different fractional solutions within
the interval 0 < η ≤ 1 are used to illustrate the dynamic behavior of the solution to the given problem. These details
are described in the captions of Figures 1 to 5. Finally, the visual representations in Figures 1 to 5 and Tables 1 to 4
demonstrate the accuracy and convergence of the proposed technique.
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Table 1. Numerical results of problem 3.1 by taking fixed value of τ and numerous values of ℏ and η

ℏ AHPTM AHPTM AHPTM AHPTM

at (τ = 0.001) (η = 0.2) (η = 0.3) (η = 0.4) (η = 0.5)

−3.1416 −9.5502e−17 −1.0721e−16 −1.1425e−16 −1.1822e−16
−2.8274 −0.24098 −0.27052 −0.28829 −0.2983
−2.5133 −0.45837 −0.51456 −0.54837 −0.56739
−2.1991 −0.6309 −0.70823 −0.75476 −0.78095
−1.885 −0.74166 −0.83257 −0.88728 −0.91806
−1.5708 −0.77983 −0.87542 −0.93294 −0.96531
−1.2566 −0.74166 −0.83257 −0.88728 −0.91806
−0.94248 −0.6309 −0.70823 −0.75476 −0.78095
−0.62832 −0.45837 −0.51456 −0.54837 −0.56739
−0.31416 −0.24098 −0.27052 −0.28829 −0.2983

0 0 0 0 0
0.31416 0.24098 0.27052 0.28829 0.2983
0.62832 0.45837 0.51456 0.54837 0.56739
0.94248 0.6309 0.70823 0.75476 0.78095
1.2566 0.74166 0.83257 0.88728 0.91806
1.5708 0.77983 0.87542 0.93294 0.96531
1.885 0.74166 0.83257 0.88728 0.91806
2.1991 0.6309 0.70823 0.75476 0.78095
2.5133 0.45837 0.51456 0.54837 0.56739
2.8274 0.24098 0.27052 0.28829 0.2983
3.1416 9.5502e−17 1.0721e−16 1.1425e−16 1.1822e−16

Table 2. The error estimate at τ = 0.001 and η = 1 for ℏ is provided for comparison purposes of the solution via AHPTM and exact solution to problem
3.1

ℏ Exact AHPTM Error

τ = 0.001 (η = 1) (η = 1) (η = 1)

−3.1416 −1.2234e−16 −1.2234e−16 9.1952e−30
−2.8274 −0.30871 −0.30871 2.3148e−14
−2.5133 −0.5872 −0.5872 4.4076e−14
−2.1991 −0.80821 −0.80821 6.0729e−14
−1.885 −0.95011 −0.95011 7.1387e−14
−1.5708 −0.999 −0.999 7.5051e−14
−1.2566 −0.95011 −0.95011 7.1387e−14
−0.94248 −0.80821 −0.80821 6.0729e−14
−0.62832 −0.5872 −0.5872 4.4076e−14
−0.31416 −0.30871 −0.30871 2.3148e−14

0 0 0 0
0.31416 0.30871 0.30871 2.3148e−14
0.62832 0.5872 0.5872 4.4076e−14
0.94248 0.80821 0.80821 6.0729e−14
1.2566 0.95011 0.95011 7.1387e−14
1.5708 0.999 0.999 7.5051e−14
1.885 0.95011 0.95011 7.1387e−14
2.1991 0.80821 0.80821 6.0729e−14
2.5133 0.5872 0.5872 4.4076e−14
2.8274 0.30871 0.30871 2.3148e−14
3.1416 1.2234e−16 1.2234e−16 9.1952e−30
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Table 3. The absolute error at η = 1 for (ℏ, τ) is provided for comparison purposes of the solution via AHPTM and exact solution to problem 3.1

ℏ τ Exact AHPTM Error

η = 1 η = 1 η = 1

−3.1416 0 −1.2246e−16 −1.2246e−16 0

−2.8274 0.0005 −0.30886 −0.30886 2.1094e−15

−2.5133 0.001 −0.5872 −0.5872 4.4076e−14

−2.1991 0.0015 −0.8078 −0.8078 2.6157e−13

−1.885 0.002 −0.94916 −0.94916 8.8729e−13

−1.5708 0.0025 −0.9975 −0.9975 2.1476e−12

−1.2566 0.003 −0.94821 −0.94821 4.0639e−12

−0.94248 0.0035 −0.80619 −0.80619 6.2111e−12

−0.62832 0.004 −0.58544 −0.58544 7.5187e−12

−0.31416 0.0045 −0.30763 −0.30763 6.2138e−12

0 0.005 0 0 0

0.31416 0.0055 0.30732 0.30732 1.3483e−11

0.62832 0.006 0.58427 0.58427 3.5934e−11

0.94248 0.0065 0.80378 0.80378 6.75e−11

1.2566 0.007 0.94442 0.94442 1.0589e−10

1.5708 0.0075 0.99253 0.99253 1.457e−10

1.885 0.008 0.94348 0.94348 1.7829e−10

2.1991 0.0085 0.80217 0.80217 1.9223e−10

2.5133 0.009 0.58252 0.58252 1.7468e−10

2.8274 0.0095 0.3061 0.3061 1.1351e−10

3.1416 0.01 1.2125e−16 1.2125e−16 5.5007e−26

Table 4. The absolute error at η = 1 for (ℏ, τ) is provided for comparison purposes of the solution to problem 3.1

ℏ τ Fvim [23] Adm [9] Gdtm [24] Hpm [25] AHPTM

Error Error Error Error Error

−10 0.001 9.0610−11 9.9910−4 2.7110−7 9.9910−4 4.0856e−14

−10 0.002 7.2410−10 1.9910−3 1.0810−6 1.9910−3 5.0759e−13

−10 0.003 2.4410−9 2.9910−3 2.4410−6 2.9910−3 2.3246e−12

−10 0.004 5.7910−9 3.9910−3 4.3410−6 3.9910−3 6.9588e−12

−10 0.005 1.1310−8 4.9910−3 6.7810−6 4.9910−3 1.642e−11

00 0.001 0 1.0010−3 0 1.0010−3 0

00 0.002 0 2.0010−3 0 2.0010−3 0

00 0.003 0 3.0010−3 0 3.0010−3 0

00 0.004 0 4.0110−3 0 4.0110−3 0

00 0.005 0 5.0210−3 0 5.0210−3 0

00 0.001 9.0610−11 9.9810−4 2.7110−7 9.9810−4 4.0856e−14

00 0.002 7.2410−10 1.9910−3 1.0810−6 1.9910−3 5.0759e−13

00 0.003 2.4410−9 2.9810−3 2.4410−6 2.9810−3 2.3246e−12

00 0.004 5.7910−9 3.9710−3 4.3410−6 3.9710−3 6.9588e−12

00 0.005 1.1310−8 4.9610−3 6.7810−6 4.9610−3 1.642e−11
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Figure 1. AHPTM and exact solutions to the problem 3.1 are compared graphically for various values of (ℏ, τ) = (x, t), and η

Figure 2. AHPTM and exact solutions to the problem 3.1 are compared graphically for various values of (ℏ, η) = (x, η), and at τ = 0.005 (as t denotes
τ)
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Figure 3. Surface plots at various (ℏ, τ) = (x, t), and η = 0.3, 0.2 of AHPTM’s solution to the problem 3.1

Figure 4. Surface plots at various (ℏ, τ) = (x, t), and η = 0.5, 0.4 of AHPTM’s solution to the problem 3.1
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Figure 5. A comparison of solution via AHPTM with the exact solution of problem 3.1, for all (ℏ, τ) = (x, t) at fixed value η = 1

3.2 Problem 02

The second specific problem of fractional coupled non-linear Burgers equations is considered in the form of

∂ η w
∂τη +2w

∂w
∂ℏ

− ∂
∂ℏ

(wy) =
∂ 2w
∂ℏ2 , (59)

∂ η y
∂τη +2y

∂y
∂ℏ

− ∂
∂ℏ

(wy) =
∂ 2y
∂ℏ2 , 0 < η ≤ 1. (60)

Under the given initial conditions

w(ℏ, 0) = eℏ, y(ℏ, 0) = eℏ.

Consider

j =
∂ η w
∂τη , k= 2w

∂w
∂ℏ

− ∂
∂ℏ

(wy)− ∂ 2w
∂ℏ2 ,

and

M =
∂ η y
∂τη , N = 2y

∂y
∂ℏ

− ∂
∂ℏ

(wy)− ∂ 2y
∂ℏ2 .
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As deformation equation is

L(j)−Lpk= 0,

and

L(M)−LpN = 0,

where L denotes the Laplace transform operator.

L(j) = Lpk,

L(M) = LpN,

L
(

∂ η w
∂τη

)
= L(Pk),

L
(

∂ η y
∂τη

)
= L(PN).

L
(

∂ η w
∂τη

)
= Lp

[
B1k0 +(B2k0 +B1k1)p+(B3k0 +B2k1 +B1k2)p2 + ...

]
,

L
(

∂ η y
∂τη

)
= Lq

[
B1N0 +(B2N0 +B1N1)q+(B3N0 +B2N1 +B1N2)q2 + ...

]
,

sη w(s, τ)− sη−1w(ℏ, 0)− sη−2wτ(ℏ, 0)...

= L
[
(B1k0)p+(B2k0 +B1k1)p2 +(B3k0 +B2k1 +B1k2)p3 + ...,

]
sη y(s, τ)− sη−1y(ℏ, 0)− sη−2yτ(ℏ, 0)...

= L
[
(B1N0)q+(B2N0 +B1N1)q2 +(B3N0 +B2N1 +B1N2)q3 + ...,

]
w(ℏ, τ) = eℏ+L−1 1

Sη L [B1k0] p+L−1 1
Sη L [B2k0 +B1k1] p2

+L−1 1
Sη L [B3k0 +B2k1 +B1k2] p3 + ...,
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y(ℏ, τ) = eℏ+L−1 1
Sη L[B1N0]q+L−1 1

Sη L[B2N0 +B1N1]q2

+L−1 1
Sη L[B3N0 +B2N1 +B1N2]q3 + ...,

w0(ℏ, τ)+w1(ℏ, τ)p+w2(ℏ, τ)p2 +w3(ℏ, τ)p3 + ...

= eℏ+L−1 1
Sη L[B1k0]p

+L−1 1
Sη L[B2k0 +B1k1]p2 +L−1 1

Sη L[B3k0 +B2k1 +B1k2]p3 + ..., (61)

y0(ℏ, τ)+ y1(ℏ, τ)q+ y2(ℏ, τ)q2 + y3(ℏ, τ)q3 + ...

= eℏ+L−1 1
Sη L[B1N0]q

+L−1 1
Sη L[B2N0 +B1N1]q2 +L−1 1

Sη L[B3N0 +B2N1 +B1N2]q3 + ..., (62)

Equating the coefficients of like powers of p in equation (59), we get

p0 : w0(ℏ, τ) = eℏ, (63)

p1 : w1(ℏ, τ) = L−1 1
Sη L [B1k0] , (64)

p2 : w2(ℏ, τ) = L−1 1
Sη [B2k0 +B1k1] , (65)

p3 : w3(ℏ, τ) = L−1 1
Sη L [B3k0 +B2k1 +B1k2] . (66)

Equating the coefficients of like powers of q in equation (60), we get

q0 : y0(ℏ, τ) = eℏ, (67)

q1 : y1(ℏ, τ) = L−1 1
Sη L [B1N0] , (68)
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q2 : y2(ℏ, τ) = L−1 1
Sη [B2N0 +B1N1] , (69)

q3 : y3(ℏ, τ) = L−1 1
Sη L [B3N0 +B2N1 +B1N2] . (70)

Consider equation (63) and equation (67), we have

w0(ℏ, τ) = eℏ, y0(ℏ, τ) = eℏ.

k0 = 2w0
∂w0

∂ℏ
− ∂

∂ℏ
(w0y0)−

∂ 2w0

∂ℏ2 .

Hence k0 =−eℏ.
Consider equation (64), we have

w1(ℏ, τ) = L−1 1
Sη L [B1k0] ,

w1(ℏ, τ) = L−1 1
Sη L

[
B1(−eℏ)

]
,

w1(ℏ, τ) =−B1eℏL−1
(

1
Sη+1

)
,

On taking inverse L−1 of transformation as:

w1(ℏ, τ) =−B1eℏ
(

τη

Γ(η +1)

)
. (71)

N0 = 2y0
∂y0

∂ℏ
− ∂

∂ℏ
(w0y0)−

∂ 2y0

∂ℏ2 .

Hence N0 =−eℏ.
Consider equation (68), we have

Contemporary Mathematics 4798 | Sajjad Ali, et al.



y1(ℏ, τ) = L−1 1
Sη L [B1N0] ,

y1(ℏ, τ) = L−1 1
Sη L

[
B1(−eℏ)

]
,

y1(ℏ, τ) =−B1eℏL−1
(

1
Sη+1

)
,

On taking inverse L−1 of transformation, we get

y1(ℏ, τ) =−B1eℏ
(

τη

Γ(η +1)

)
. (72)

k1 = 2w1
∂w1

∂ℏ
− ∂

∂ℏ
(w1y1)−

∂ 2w1

∂ℏ2 .

Hence k1 = B1eℏ
(

τη

Γ(η +1)

)
.

Consider equation (65), we have

w2(ℏ, τ) = L−1 1
Sη L [B2k0 +B1k1] ,

w2(ℏ, τ) = L−1 1
Sη L

[
B2(−eℏ)+B1

(
B1eℏ

(
τη

Γ(η +1)

))]
,

w2(ℏ, τ) =−B2eℏL−1
(

1
Sη+1

)
+B2

1eℏL−1
(

1
S2η+1

)
.

On taking inverse L−1 of transformation as:

w2(ℏ, τ) =−B2eℏ
(

τη

Γ(η +1)

)
+B2

1eℏ
(

τ2η

Γ(2η +1)

)
. (73)

N1 = 2y1
∂y1

∂ℏ
− ∂

∂ℏ
(w1y1)−

∂ 2y1

∂ℏ2 .

Hence N1 = B1eℏ
(

τη

Γ(η +1)

)
.

Consider equation (69), we have
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y2(ℏ, τ) = L−1 1
Sη L [B2N0 +B1N1] ,

y2(ℏ, τ) = L−1 1
Sη

[
B2(−eℏ)+B1

(
B1

(
eℏ

τη

Γ(η +1)

))]
,

y2(ℏ, τ) =−B2eℏL−1
(

1
Sη+1

)
+B2

1eℏL−1
(

1
S2η+1

)
.

On taking inverse L−1 of transformation as:

y2(ℏ, τ) =−B2eℏ
(

τη

Γ(η +1)

)
+B2

1eℏ
(

τ2η

Γ(2η +1)

)
. (74)

k2 = 2w2
∂w2

∂ℏ
− ∂

∂ℏ
(w2y2)−

∂ 2w2

∂ℏ2 .

Hence

k2 = B2eℏ
(

τη

Γ(η +1)

)
−B2

1eℏ
(

τ2η

Γ(2η +1)

)
.

Consider equation (66), we have

w3(ℏ, τ) = L−1 1
Sη L [B3k0 +B2k1 +B1k2] ,

w3(ℏ, τ) =−B3eℏL−1
(

1
sη+1

)
+2B1B2eℏL−1

(
1

s2η+1

)
−B3

1eℏL−1
(

1
s3η+1

)
.

On taking inverse L−1 of transformation, we get

w3(ℏ, τ) =−B3eℏ
(

τη

Γ(η +1)

)
+2B1B2eℏ

(
τ2η

Γ(2η +1)

)
−B3

1eℏ
(

τ3η

Γ(3η +1)

)
. (75)

N2 = 2y2
∂y2

∂ℏ
− ∂

∂ℏ
(w2y2)−

∂ 2y2

∂ℏ2 .

Hence
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N2 = B2eℏ
(

τα

Γ(α +1)

)
−B2

1eℏ
(

τ2α

Γ(2α +1)

)
.

Consider equation (70), we have

y3(ℏ, τ) = L−1 1
Sη L [B3N0 +B2N1 +B1N2] ,

y3(ℏ, τ) =−B3eℏL−1
(

1
sη+1

)
+2B1B2eℏL−1

(
1

s2η+1

)
−B3

1eℏL−1
(

1
s3η+1

)
.

On taking inverse L−1 of transformation, we get

y3(ℏ, τ) =−B3eℏ
(

τη

Γ(η +1)

)
+2B1B2eℏ

(
τ2η

Γ(2η +1)

)
−B3

1eℏ
(

τ3η

Γ(3η +1)

)
. (76)

By adding equations (63), (71), (73), and (75).

w̃(ℏ, τ) = w0 (ℏ, τ)+w1 (ℏ, τ)+w2 (ℏ, τ)+w3 (ℏ, τ) ,

w̃(ℏ, τ) = eℏ− (B1 +B2 +B3)eℏ
(

τη

Γ(η +1)

)
+
(
B2

1 +2B1B2
)

eℏ
(

τ2η

Γ(2η +1)

)
−B3

1eℏ
(

τ3η

Γ(3η +1)

)
. (77)

By adding equations (67), (72), (74), and (76).

ỹ(ℏ, τ) = y0 (ℏ, τ)+ y1 (ℏ, τ)+ y2 (ℏ, τ)+ y3 (ℏ, τ) ,

ỹ(ℏ, τ) = eℏ− (B1 +B2 +B3)eℏ
(

τη

Γ(η +1)

)
+
(
B2

1 +2B1B2
)

eℏ
(

τ2η

Γ(2η +1)

)
−B3

1eℏ
(

τ3η

Γ(3η +1)

)
. (78)

Residual for w(ℏ, τ)

R =
∂ η w̃
∂τη +2w̃

∂ w̃
∂ℏ

− ∂
∂ℏ

(w̃ỹ)− ∂ 2w̃
∂τ2 ,

R = − eℏ− (B1 +B2 +B3)eℏ+
(
B2

1 +2B1B2 +B1 +B2 +B3
)

eℏ
(

τη

Γ(η +1)

)

−
(
B3

1 +B2
1 +2B1B2

)
eℏ
(

τ2η

Γ(2η +1)

)
+B3

1eℏ
(

τ3η

Γ(3η +1)

)
.
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Residual for y(ℏ, τ)

R =
∂ η ỹ
∂τη +2ỹ

∂ ỹ
∂ℏ

− ∂
∂ℏ

(w̃ỹ)− ∂ 2ỹ
∂τ2 ,

R = − eℏ− (B1 +B2 +B3)eℏ+
(
B2

1 +2B1B2 +B1 +B2 +B3
)

eℏ
(

τη

Γ(η +1)

)

−
(
B3

1 +B2
1 +2B1B2

)
eℏ
(

τ2η

Γ(2η +1)

)
+B3

1eℏ
(

τ3η

Γ(3η +1)

)
.

The constant values are determined using the least squares method B1 = −1.0000053, B2 = −0.000036227039,
and B3 = 6.7016015e−10.

Table 5. Numerical results of AHPTM solutions for the problem 3.2 by taking fixed value of τ and numerous values of ℏ and η

ℏ AHPTM AHPTM AHPTM AHPTM

at (τ = 0.001) (η = 0.2) (η = 0.3) (η = 0.4) (η = 0.5)

−3.1416 0.058877 0.050132 0.046482 0.0448

−2.8274 0.080609 0.068637 0.063638 0.061336

−2.5133 0.11036 0.093971 0.087128 0.083976

−2.1991 0.1511 0.12866 0.11929 0.11497

−1.885 0.20687 0.17614 0.16332 0.15741

−1.5708 0.28323 0.24116 0.2236 0.21551

−1.2566 0.38777 0.33017 0.30613 0.29506

−0.94248 0.5309 0.45204 0.41913 0.40396

−0.62832 0.72685 0.6189 0.57383 0.55307

−0.31416 0.99514 0.84734 0.78563 0.75721

0 1.3625 1.1601 1.0756 1.0367

0.31416 1.8653 1.5883 1.4726 1.4194

0.62832 2.5539 2.1745 2.0162 1.9433

0.94248 3.4965 2.9772 2.7604 2.6605

1.2566 4.7871 4.0761 3.7793 3.6426

1.5708 6.5541 5.5806 5.1742 4.9871

1.885 8.9732 7.6405 7.0841 6.8278

2.1991 12.285 10.461 9.6989 9.348

2.5133 16.82 14.322 13.279 12.798

2.8274 23.028 19.608 18.18 17.522

3.1416 31.528 26.845 24.891 23.99

By substituting the values of the auxiliary constants, we get the analytical solution for the fractional-order problem
3.2 through AHPTM. When η = 1, the AHPTM solution of classical integer-order problem corresponding to problem
3.2 is given by:

Contemporary Mathematics 4802 | Sajjad Ali, et al.



w̃(ℏ, τ) = eℏ(0.16667τ3 +0.50004τ2 + τ +1.0),

ỹ(ℏ, τ) = eℏ(0.16667τ3 +0.50004τ2 + τ +1.0).

The numerical results of the problem 3.2 with their error estimates, determined by the AHPTM technique, are
recorded in Tables 5 to 7. The minimal error estimates in final columns are observed in Tables 6 and 7, indicating that the
suggested method is accurate and efficient. Different graphs representing various fractional solutions within the interval
0 < η ≤ 1 are used to illustrate the dynamic behavior of the solution to the given problem 3.2 . These details are described
in the captions of Figures 6 to 10. Finally, the visual representations in Figures 6 to 10 and Tables 5 to 7 demonstrate the
accuracy and convergence of the proposed technique.

Table 6. The error estimate at τ = 0.001 and η = 1 for ℏ is provided for comparison purposes of the solution via AHPTM and exact solution to problem
3.2

ℏ Exact AHPTM Error

τ = 0.001 (η = 1) (η = 1) (η = 1)

−3.1416 0.043257 0.043257 1.7269e−12

−2.8274 0.059224 0.059224 2.3643e−12

−2.5133 0.081084 0.081084 3.237e−12

−2.1991 0.11101 0.11101 4.4318e−12

−1.885 0.15199 0.15199 6.0676e−12

−1.5708 0.20809 0.20809 8.3072e−12

−1.2566 0.28489 0.28489 1.1373e−11

−0.94248 0.39005 0.39005 1.5571e−11

−0.62832 0.53402 0.53402 2.1319e−11

−0.31416 0.73113 0.73113 2.9188e−11

0 1.001 1.001 3.9962e−11

0.31416 1.3705 1.3705 5.4712e−11

0.62832 1.8763 1.8763 7.4906e−11

0.94248 2.5689 2.5689 1.0255e−10

1.2566 3.5171 3.5171 1.4041e−10

1.5708 4.8153 4.8153 1.9223e−10

1.885 6.5927 6.5927 2.6319e−10

2.1991 9.0261 9.0261 3.6034e−10

2.5133 12.358 12.358 4.9334e−10

2.8274 16.919 16.919 6.7543e−10

3.1416 23.164 23.164 9.2474e−10
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Table 7. The absolute error at η = 1 for (ℏ, τ) is provided for comparison purposes of the solution via AHPTM and exact solution to problem 3.2

ℏ τ Exact AHPTM Error

η = 1 η = 1 η = 1

−3.1416 0 0.043214 0.043241 0

−2.8274 0.0005 0.059194 0.059194 5.9153e−13

−2.5133 0.001 0.081084 0.081084 3.237e−12

−2.1991 0.0015 0.11107 0.11107 9.959e−12

−1.885 0.002 0.15214 0.15214 2.4197e−11

−1.5708 0.0025 0.2084 0.2084 5.1642e−11

−1.2566 0.003 0.28546 0.28546 1.0152e−10

−0.94248 0.0035 0.39103 0.39103 1.8855e−10

−0.62832 0.004 0.53563 0.53563 3.3585e−10

−0.31416 0.0045 0.7337 0.7337 5.7936e−10

0 0.005 1.005 1.005 9.7435e−10

0.31416 0.0055 1.3767 1.3767 1.6051e−09

0.62832 0.006 1.8857 1.8857 2.5992e−09

0.94248 0.0065 2.5831 2.5831 4.1483e−09

1.2566 0.007 3.5383 3.5383 6.5386e−09

1.5708 0.0075 4.8467 4.8467 1.0195e−08

1.885 0.008 6.639 6.639 1.5746e−08

2.1991 0.0085 9.094 9.094 2.4113e−08

2.5133 0.009 12.457 12.457 3.6648e−08

2.8274 0.0095 17.063 17.063 5.5318e−08

3.1416 0.01 23.373 23.373 8.2979e−08

Figure 6. AHPTM and exact solutions to the problem 3.2 are compared graphically for various values of (ℏ, τ) = (x, t), and η
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Figure 7. AHPTM and exact solutions to the problem 3.2 are compared graphically for various values of (ℏ, η) = (x, η), and at τ = 0.001 (as t denotes
τ)

Figure 8. Surface plots at various (ℏ, τ) = (x, t), and η = 0.3, 0.2 of AHPTM’s solution to the problem 3.2
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Figure 9. Surface plots at various (ℏ, τ) = (x, t), and η = 0.5, 0.4 of AHPTM’s solution to the problem 3.2

Figure 10. A comparison of solution via AHPTM with the exact solution of problem 3.2 , for all (ℏ, τ) = (x, t) at fixed value η = 1

3.3 Problem 03

The third specific problem of fractional coupled non-linear Burgers equations is considered in the form of
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∂ η w
∂τη =

∂ 2w
∂ℏ2 +2w

∂w
∂ℏ

− ∂
∂ℏ

(wy), (79)

∂ η y
∂τη =

∂ 2y
∂ℏ2 +2y

∂y
∂ℏ

− ∂
∂ℏ

(wy), 0 < η ≤ 1. (80)

Under the given initial conditions

w(ℏ, 0) = cos(ℏ), y(ℏ, 0) = cos(ℏ).

Consider

j =
∂ η w
∂τη , k=−∂ 2w

∂ℏ2 −2w
∂w
∂ℏ

+
∂

∂ℏ
(wy),

and

M =
∂ η y
∂τη , N =− ∂ 2y

∂ℏ2 −2y
∂y
∂ℏ

+
∂

∂ℏ
(wy).

As deformation equation is

L(j)−Lpk= 0,

and

LM−LpN = 0,

where L is Laplace operator.

L(j) = Lpk,

LM = LpN,

L
(

∂ η w
∂τη

)
= L(Pk),

L
(

∂ η y
∂τη

)
= L(PN).
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L
(

∂ η w
∂τη

)
= Lp

[
B1k0 +(B2k0 +B1k1)p+(B3k0 +B2k1 +B1k2)p2 + ...

]
,

L
(

∂ η y
∂τη

)
= Lq

[
B1N0 +(B2N0 +B1N1)q+(B3N0 +B2N1 +B1N2)q2 + ...

]
,

sη w(s, τ)− sη−1w(ℏ, 0)− sη−2wτ(ℏ, 0)...

= L
[
(B1k0)p+(B2k0 +B1k1)p2 +(B3k0 +B2k1 +B1k2)p3 + ...

]
,

sη y(s, τ)− sη−1y(ℏ, 0)− sη−2yτ(ℏ, 0)...

= L
[
(B1N0)q+(B2N0 +B1N1)q2 +(B3N0 +B2N1 +B1N2)q3 + ...

]
,

w(ℏ, τ) = cos(ℏ)+L−1 1
Sη L[B1k0]p+L−1 1

Sη L[B2k0 +B1k1]p2

+L−1 1
Sη L[B3k0 +B2k1 +B1k2]p3 + ...,

y(ℏ, τ) = cos(ℏ)+L−1 1
Sη L[B1N0]p+L−1 1

Sη L[B2N0 +B1N1]p2

+L−1 1
Sη L[B3N0 +B2N1 +B1N2]p3 + ...,

w0(ℏ, τ)+w1(ℏ, τ)p+w2(ℏ, τ)p2 +w3(ℏ, τ)p3 + ...

= cos(ℏ)+L−1 1
Sη L[B1k0]p

+L−1 1
Sη L[B2k0 +B1k1]p2 +L−1 1

Sη L[B3k0 +B2k1 +B1k2]p3 + ..., (81)

y0(ℏ, τ)+ y1(ℏ, τ)q+ y2(ℏ, τ)q2 + y3(ℏ, τ)q3 + ...

= cos(ℏ)+L−1 1
Sη L[B1N0]q

+L−1 1
Sη L[B2N0 +B1N1]q2 +L−1 1

Sη L[B3N0 +B2N1 +B1N2]q3 + ..., (82)
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Equating the coefficients of like powers of p in equation (81), we get

p0 : w0(ℏ, τ) = cos(ℏ), (83)

p1 : w1(ℏ, τ) = L−1 1
Sη L [B1k0] , (84)

p2 : w2(ℏ, τ) = L−1 1
Sη [B2k0 +B1k1] , (85)

p3 : w3(ℏ, τ) = L−1 1
Sη L [B3k0 +B2k1 +B1k2] . (86)

Equating the coefficients of like powers of q in equation (82), we get

q0 : y0(ℏ, τ) = cos(ℏ), (87)

q1 : y1(ℏ, τ) = L−1 1
Sη L [B1N0] , (88)

q2 : y2(ℏ, τ) = L−1 1
Sη [B2N0 +B1N1] , (89)

q3 : y3(ℏ, τ) = L−1 1
Sη L [B3N0 +B2N1 +B1N2] . (90)

Consider equation (83) and equation (87), we have

w0(ℏ, τ) = cos(ℏ), y0(ℏ, τ) = cos(ℏ).

k0 =−∂ 2w0

∂ℏ2 −2w0
∂w0

∂ℏ
+

∂
∂ℏ

(w0y0).

Hence k0 = cos(ℏ).
Consider equation (84)

w1(ℏ, τ) = L−1 1
Sη L [B1k0] ,

w1(ℏ, τ) = L−1 1
Sη L [B1cos(ℏ)] ,

w1(ℏ, τ) = B1cos(ℏ)L−1
(

1
Sη+1

)
,
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On taking inverse transformation L−1, we get

w1(ℏ, τ) = B1cos(ℏ)
(

τη

Γ(η +1)

)
. (91)

N0 =−∂ 2y0

∂ℏ2 −2y0
∂y0

∂ℏ
+

∂
∂ℏ

(w0y0).

Hence N0 = cos(ℏ).
Consider equation (88)

y1(ℏ, τ) = L−1 1
Sη L [B1N0] ,

y1(ℏ, τ) = L−1 1
Sη L [B1cos(ℏ)] ,

y1(ℏ, τ) = B1cos(ℏ)L−1
(

1
Sη+1

)
,

On taking inverse transformation L−1, we get

y1(ℏ, τ) = B1cos(ℏ)
(

τη

Γ(η +1)

)
. (92)

k1 =−∂ 2w1

∂ℏ2 −2w1
∂w1

∂ℏ
+

∂
∂ℏ

(w1y1).

Hence

k1 = B1cos(ℏ)
(

τη

Γ(η +1)

)
.

Consider equation (85), we have

w2(ℏ, τ) = L−1 1
Sη L [B2k0 +B1k1] ,

w2(ℏ, τ) = L−1 1
Sη L

[
B2cos(ℏ)+B1

(
B1cos(ℏ)

(
τη

Γ(η +1)

))]
,

w2(ℏ, τ) = B2cos(ℏ)L−1
(

1
Sη+1

)
+B2

1cos(ℏ)L−1
(

1
S2η+1

)
,

On taking inverse transformation L−1, we get
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w2(ℏ, τ) = B2cos(ℏ)
(

τη

Γ(η +1)

)
+B2

1cos(ℏ)
(

τ2η

Γ(2η +1)

)
. (93)

N1 =−∂ 2y1

∂ℏ2 −2y1
∂y1

∂ℏ
+

∂
∂ℏ

(w1y1).

Hence

N1 = B1cos(ℏ)
(

τη

Γ(η +1)

)
.

Consider equation (89), we have

y2(ℏ, τ) = L−1 1
Sη L [B2N0 +B1N1] ,

y2(ℏ, τ) = B2(cos(ℏ))L−1
(

1
Sη+1

)
+B2

1cos(ℏ)L−1
(

1
S2η+1

)
.

On taking inverse transformation L−1, we get

y2(ℏ, τ) = B2cos(ℏ)
(

τη

Γ(η +1)

)
+B2

1cos(ℏ)
(

τ2η

Γ(2η +1)

)
. (94)

k2 =−∂ 2w2

∂ℏ2 −2w2
∂w2

∂ℏ
+

∂
∂ℏ

(w2y2).

Hence

k2 = B2cos(ℏ)
(

τη

Γ(η +1)

)
+B2

1cos(ℏ)
(

τ2η

Γ(2η +1)

)
.

Consider equation (86), we have

w3(ℏ, τ) = L−1 1
Sη L [B3k0 +B2k1 +B1k2] ,

w3(ℏ, τ) = L−1 1
Sη L

[
B3cos(ℏ)+B2

(
B1cos(ℏ)

(
τη

Γ(η +1)

))]

+L−1 1
Sη L

[
B1

(
B2cos(ℏ)(

τη

Γ(η +1)
)+B2

1cos(ℏ)
(

τ2η

Γ(2η +1)

))]
,
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w3(ℏ, τ) = B3cos(ℏ)L−1
(

1
sη+1

)
+2B1B2cos(ℏ)L−1

(
1

s2η+1

)
+B3

1cos(ℏ)L−1
(

1
s3η+1

)
.

On taking inverse transformation L−1, we get

w3(ℏ, τ) = B3cos(ℏ)
(

τη

Γ(η +1)

)
+2B1B2cos(ℏ)

(
τ2η

Γ(2η +1)

)
+B3

1cos(ℏ)
(

τ3η

Γ(3η +1)

)
. (95)

N2 =−∂ 2y2

∂ℏ2 −2y2
∂y2

∂ℏ
+

∂
∂ℏ

(w2y2).

Hence

N2 = B2cos(ℏ)
(

τη

Γ(η +1)

)
+B2

1cos(ℏ)
(

τ2η

Γ(2η +1)

)
.

Consider equation (90), we have

y3(ℏ, τ) = L−1 1
Sη L [B3N0 +B2N1 +B1N2]

y3(ℏ, τ) = B3cos(ℏ)L−1
(

1
sη+1

)
+2B1B2cos(ℏ)L−1

(
1

s2η+1

)
+B3

1cos(ℏ)L−1
(

1
s3η+1

)
.

On taking inverse transformation L−1, we get

y3(ℏ, τ) = B3cos(ℏ)
(

τη

Γ(η +1)

)
+2B1B2cos(ℏ)

(
τ2η

Γ(2η +1)

)
+B3

1cos(ℏ)
(

τ3η

Γ(3η +1)

)
. (96)

By adding equations (83), (91), (93), and (95).

w̃(ℏ, τ) = w0 (ℏ, τ)+w1 (ℏ, τ)+w2 (ℏ, τ)+w3 (ℏ, τ) ,

w̃(ℏ, τ) = cos(ℏ)+B1cos(ℏ)
(

τη

Γ(η +1)

)
+B2cos(ℏ)

(
τη

Γ(η +1)

)
+B2

1cos(ℏ)
(

τ2η

Γ(2η +1)

)

+B3cos(ℏ)
(

τη

Γ(η +1)

)
+2B1B2cos(ℏ)

(
τ2η

2η +1

)
+B3

1cos(ℏ)
(

τ3η

3η +1

)
.
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w̃(ℏ, τ) = cos(ℏ)+(B1 +B2 +B3)cos(ℏ)
(

τη

Γ(η +1)

)
+
(
B2

1 +2B1B2
)

cos(ℏ)
(

τ2η

Γ(2η +1)

)

+B3
1cos(ℏ)

(
τ3η

Γ(3η +1)

)
. (97)

By adding equations (87), (92), (94), and (96).

ỹ(ℏ, τ) = y0 (ℏ, τ)+ y1 (ℏ, τ)+ y2 (ℏ, τ)+ y3 (ℏ, τ) ,

ỹ(ℏ, τ) = cos(ℏ)+B1cos(ℏ)
(

τη

Γ(η +1)

)
+B2cos(ℏ)

(
τη

Γ(η +1)

)
+B2

1cos(ℏ)
(

τ2η

Γ(2η +1)

)

+B3cos(ℏ)
(

τη

Γ(η +1)

)
+2B1B2cos(ℏ)

(
τ2η

2η +1

)
+B3

1cos(ℏ)
(

τ3η

3η +1

)
,

ỹ(ℏ, τ) = cos(ℏ)+(B1 +B2 +B3)cos(ℏ)
(

τη

Γ(η +1)

)
+
(
B2

1 +2B1B2
)

cos(ℏ)
(

τ2η

Γ(2η +1)

)

+B3
1cos(ℏ)

(
τ3η

Γ(3η +1)

)
. (98)

Residual for w(ℏ, τ)

R =
∂ η w̃
∂τη − ∂ 2w̃

∂ℏ2 −2w̃
∂ w̃
∂ℏ

+
∂

∂ℏ
(w̃ỹ),

R = cos(ℏ)+(B1 +B2 +B3)cos(ℏ)+
(
B2

1 +2B1B2 +B1 +B2 +B3
)

cos(ℏ)
(

τη

Γ(η +1)

)

+
(
B3

1 +B2
1 +2B1B2

)
cos(ℏ)

(
τ2η

Γ(2η +1)

)
+B3

1cos(ℏ)
(

τ3η

Γ(3η +1)

)
.

R =

(
(1+B1 +B2 +B3)+

(
B2

1 +2B1B2 +B1 +B2 +B3
)( τη

Γ(η +1)

))
cos(ℏ)

+

((
B3

1 +B2
1 +2B1B2

)( τ2η

Γ(2η +1)

)
+B3

1

(
τ3η

Γ(3η +1)

))
cos(ℏ).

Residual for y(ℏ, τ)
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R =
∂ η ỹ
∂τη − ∂ 2ỹ

∂ℏ2 −2ỹ
∂ ỹ
∂ℏ

+
∂

∂ℏ
(w̃ỹ),

R = cos(ℏ)+(B1 +B2 +B3)cos(ℏ)+
(
B2

1 +2B1B2 +B1 +B2 +B3
)

cos(ℏ)
(

τη

Γ(η +1)

)

+
(
B3

1 +B2
1 +2B1B2

)
cos(ℏ)

(
τ2η

Γ(2η +1)

)
+B3

1cos(ℏ)
(

τ3η

Γ(3η +1)

)
.

R =

(
(1+B1 +B2 +B3)+

(
B2

1 +2B1B2 +B1 +B2 +B3
)( τη

Γ(η +1)

))
cos(ℏ)

+

((
B3

1 +B2
1 +2B1B2

)( τ2η

Γ(2η +1)

)
+B3

1

(
τ3η

Γ(3η +1)

))
cos(ℏ).

The constant values are determined using least square method B1 =−0.99999994, B2 = 0.000000055359782, and
B3 = 0.000000056483867.

By substituting the values of the auxiliary constants, we get the analytical solution for the fractional-order problem
3.3 through AHPTM. When η = 1, the AHPTM solution of classical integer-order problem corresponding to problem
3.3 is given by:

w̃(ℏ, τ) = cos(ℏ)(−0.16667τ3 +0.5τ2 − τ +1),

ỹ(ℏ, τ) = cos(ℏ)(−0.16667τ3 +0.5τ2 − τ +1).

The numerical results of the problem 3.3with their errors estimates, determined by the AHPTM technique, are
recorded in Tables 8 to 10. The suggested method is accurate and efficient, as shown by the minimal error values in the
last columns of Tables 9 and 10. Several graphs representing different fractional solutions within the interval 0 < η ≤ 1
are used to illustrate the dynamic behavior of the solution to the given problem 3.3 . These details are described in the
captions of Figures 11 to 15. Finally, the visual representations in Figures 11 to 15 and Tables 8 to 10 demonstrate the
accuracy and convergence of the proposed technique.
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Table 8. Numerical results of problem 3.3 by taking fixed value of τ and numerous values of ℏ and η

ℏ AHPTM AHPTM AHPTM AHPTM

at (τ = 0.001) (η = 0.2) (η = 0.3) (η = 0.4) (η = 0.5)

−3.1416 −0.77981 −0.87539 −0.93293 −0.96529
−2.8274 −0.74164 −0.83255 −0.88727 −0.91805
−2.5133 −0.63088 −0.70821 −0.75476 −0.78094
−2.1991 −0.45836 −0.51454 −0.54836 −0.56739
−1.885 −0.24097 −0.27051 −0.28829 −0.29829
−1.5708 4.7749e−17 5.3602e−17 5.7126e−17 5.9107e−17
−1.2566 0.24097 0.27051 0.28829 0.29829
−0.94248 0.45836 0.51454 0.54836 0.56739
−0.62832 0.63088 0.70821 0.75476 0.78094
−0.31416 0.74164 0.83255 0.88727 0.91805

0 0.77981 0.87539 0.93293 0.96529
0.31416 0.74164 0.83255 0.88727 0.91805
0.62832 0.63088 0.70821 0.75476 0.78094
0.94248 0.45836 0.51454 0.54836 0.56739
1.2566 0.24097 0.27051 0.28829 0.29829
1.5708 4.7749e−17 5.3602e−17 5.7126e−17 5.9107e−17
1.885 −0.24097 −0.27051 −0.28829 −0.29829
2.1991 −0.45836 −0.51454 −0.54836 −0.56739
2.5133 −0.63088 −0.70821 −0.75476 −0.78094
2.8274 −0.74164 −0.83255 −0.88727 −0.91805
3.1416 −0.77981 −0.87539 −0.93293 −0.96529

Table 9. The error estimate at τ = 0.001 and η = 1 for ℏ is provided for comparison purposes of the solution via AHPTM and exact solution to problem
3.3

ℏ Exact AHPTM Error

τ = 0.001 (η = 1) (η = 1) (η = 1)

−3.1416 −0.999 −0.999 4.5075e−14
−2.8274 −0.95011 −0.95011 4.2855e−14
−2.5133 −0.80821 −0.80821 3.6415e−14
−2.1991 −0.5872 −0.5872 2.6423e−14
−1.885 −0.30871 −0.30871 1.3933e−14
−1.5708 6.1171e−17 6.1171e−17 2.761e−30
−1.2566 0.30871 0.30871 1.3933e−14
−0.94248 0.5872 0.5872 2.6423e−14
−0.62832 0.80821 0.80821 3.6415e−14
−0.31416 0.95011 0.95011 4.2855e−14

0 0.999 0.999 4.5075e−14
0.31416 0.95011 0.95011 4.2855e−14
0.62832 0.80821 0.80821 3.6415e−14
0.94248 0.5872 0.5872 2.6423e−14
1.2566 0.30871 0.30871 1.3933e−14
1.5708 6.1171e−17 6.1171e−17 2.761e−30
1.885 −0.30871 −0.30871 1.3933e−14
2.1991 −0.5872 −0.5872 2.6423e−14
2.5133 −0.80821 −0.80821 3.6415e−14
2.8274 −0.95011 −0.95011 4.2855e−14
3.1416 −0.999 −0.999 4.5075e−14
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Table 10. The absolute error at η = 1 for (ℏ, τ) is provided for comparison purposes of the solution via AHPTM and exact solution to problem 3.3

ℏ τ Exact AHPTM Error

η = 1 η = 1 η = 1

−3.1416 0 −1 −1 0
−2.8274 0.0005 −0.95058 −0.95058 2.8866e−15
−2.5133 0.001 −0.80821 −0.80821 3.6415e−14
−2.1991 0.0015 −0.5869 −0.5869 1.3056e−13
−1.885 0.002 −0.3084 −0.3084 2.1422e−13
−1.5708 0.0025 6.1079e−17 6.1079e−17 1.028e−28
−1.2566 0.003 0.30809 0.30809 1.0701e−12
−0.94248 0.0035 0.58573 0.58573 3.7567e−12
−0.62832 0.004 0.80579 0.80579 8.7952e−12
−0.31416 0.0045 0.94679 0.94679 1.6524e−11

0 0.005 0.99501 0.99501 2.6432e−11
0.31416 0.0055 0.94584 0.94584 3.6749e−11
0.62832 0.006 0.80418 0.80418 4.4217e−11
0.94248 0.0065 0.58398 0.58398 4.4199e−11
1.2566 0.007 0.30686 0.30686 3.1225e−11
1.5708 0.0075 6.0775e−17 6.0775e−17 8.1466e−27
1.885 0.008 −0.30655 −0.30655 5.3182e−11
2.1991 0.0085 −0.58281 −0.58281 1.2883e−10
2.5133 0.009 −0.80177 −0.80177 2.2273e−10
2.8274 0.0095 −0.94206 −0.94206 3.2487e−10
3.1416 0.01 −0.99005 −0.99005 4.1917e−10

Figure 11. AHPTM and exact solutions to the problem 3.3 are compared graphically for various values of (ℏ, τ) = (x, t), and η
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Figure 12. AHPTM and exact solutions to the problem 3.3 are compared graphically for various values of (ℏ, η) = (x, η), and at τ = 0.005 (as t
denotes τ)

Figure 13. Surface plots at various (ℏ, τ) = (x, t), and η = 0.3, 0.2 of AHPTM’s solution to the problem 3.3
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Figure 14. Surface plots at various (ℏ, τ) = (x, t), and η = 0.5, 0.4 of AHPTM’s solution to the problem 3.3

Figure 15. A comparison of solution via AHPTM with the exact solution of problem 3.3, for all (ℏ, τ) = (x, t) at fixed value η = 1.

4. Conclusion
In this research work, the asymptotic homotopy perturbation transform method is proposed to solve one-dimensional

nonlinear coupledBurgers equations. Three numerical examples of one-dimensional coupled non-linear Burgers equations
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are examined. Focusing on the method’s effectiveness and computational efficiency, AHPTM is compared with other
existing methods wherein the proposed method is found to be a highly accurate scheme for solving coupled Burgers
equations. No limitation of this method is observed in this work. It is also observed that AHPTM has simple
construction, ease of use, and effectiveness in computation. The graphical and numerical results for the fractional-order
problem serve as a testament to the accuracy and reliability of the AHPTM. Regarding AHPTM accuracy and simple
implementation, the potential areas for future research are other practical and daily problems.

Regarding future research directions, AHPTMmay be extended to efficiently solve fractional-order delay differential
equations, time-fractional optimal control problems, stochastic differential equations, fractional stochastic processes,
biomedical models, and fractional reaction-diffusion equations for simulations. The applications of AHPTM may also
be investigated in quantum mechanics and statistical physics, nonlinear wave propagation, seismic wave modeling and
plasma physics, etc.
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