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Abstract: This study introduces a group acceptance sampling plan (GASP) utilizing a truncated life test in which the
lifespan of an object follows a modified power exponential distribution. The median is used as a quality measure for
various constraint design criteria, including consumer and producer risks, as well as the minimum group size required for
a specified acceptance number and test termination time. The optimized values are presented in tables and graphs. In
addition, we illustrate our findings using real-world datasets. Furthermore, we compared different distributions under the
GASP framework and compared GASP with the ordinary sampling plan (OSP) approach. Simulations were performed
using the estimated parametric values. Future research is recommended to further enhance the efficiency and quality
control procedures.
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1. Introduction
In recent years, there has been increasing emphasis on the enhancement, measurement, and monitoring of the

quality of products, services, and procedures. The recognition of a robust correlation among productivity, reputation,
quality, and confidence in a brand’s image is the driving force behind this trend. Consequently, organizations in a
variety of sectors have been investing in quality management systems, process improvement initiatives, and customer
feedback mechanisms to guarantee that their products and services satisfy the expectations and requirements of their
clients. Currently, companies are considering the implementation of statistical quality control (SQC) procedures, which
are critical for improving their market competitiveness. Quality control (QC) has undergone a transformation from its
initial definition, which predominantly entailed the adaptation of production to a standardized model to satisfy customer
demands. It is now implemented in a variety of industrial and service sectors in addition to manufacturing procedures. To
identify and eradicate sources of variability and guarantee consistent adherence to quality standards, these methods are
implemented to supervise and regulate the quality of products, services, and procedures as well as to statistically analyze
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the data collected during production or service delivery. SQC also employs statistical tools and methodologies to analyze
data and make informed decisions based on objective evidence, rather than relying on subjective judgments [1–4].

Several researchers have developed GASP strategies to maximize product efficacy while reducing time and expenses,
particularly when an item’s lifetime follows specific distributions (see [4–9]). Aslam et al. [10] have performed several
studies on GASP. These studies explored the fundamental principles of GASP and the process of selecting items with
minimal risk to consumers and producers. Aslam and Jun [11] proposed GASP for lifetime data following a Weibull
distribution. Aslam et al. [12] presented a GASP for resubmitted lots using the Burr XII distribution. Aslam et al. [5]
developed a GASP for the generalized Pareto distribution. Ameeq et al. [13] employed the alpha power transformation
inverted perk distribution, and Al-Omari [14] presented GASP for the Garima distribution, Ameeq et al. [15] presented
the truncated exponential logarithmic distribution to test the reliability of quality control using the median as quality index.

There is a growing interest in developing distributions with potential parameters using baseline distributions and
compounding techniques. However, recent studies that introduced new parameter techniques have had a significant
impact on the shape and convergent validity of models, as noted in the comprehensive review [13, 16–22]. As in our
research experience, no previous studies have been conducted on the Modified Power Exponential Distribution (MPoE),
as evidenced by the lack of literature on GASP. We considered the MPoE distribution because of its flexibility in
modeling real-world data, particularly for quality control and reliability analysis. This distribution effectively captures
the asymmetric and skewed behaviors often observed in electronic component quality characteristics, such as resistance
or failure rates. Moreover, the median-based approach of the MPoE distribution provides a more robust quality index
than traditional mean-based methods, which can be highly sensitive to outliers. Its ability to model extreme events makes
it particularly suitable for acceptance sampling plans (ASP), ensuring that quality standards are met while optimizing
inspection efficiency [4, 15].

The remainder of this paper is organized as follows. Section 2 defines the structure of the MPoE distribution,
including cdf, pdf, and qf. Section 3 presents the conceptual framework of the MPoE distribution. In Section 4, the
properties are derived and Section 5 describes and illustrates of an example where, in Section 6, the application is
performed, and the simulation study is performed in Section 7. In Section 8, we present our findings and discuss future
work.

2. Modified power exponential distribution
Recently [23] proposed the modified power family of distributions in their most recent article, and we will use a

particular sub-model of this family, the modified power exponential distribution (MPoE). This distribution is characterized
by its cumulative distribution function (CDF), probability density function (PDF), and quantile function (QF), which
depend on two parameters: the shape parameter γ and the scale parameter α . Specifically, the CDF, PDF, and QF of the
MPoE distribution with shape parameter γ and scale parameter α are given by:

The cumulative distribution function (CDF) is given by:

F(t) = α−e−γt (
1− e−γt) , (1)

where α > e−1 and γ, t > 0.
The probability density function (PDF) is given by:

f (t) = γe−γtα−e−γt
+ γe−γtα−e−γt

log(α)
(
1− e−γt) . (2)

As shown in Figures 1 and 2 with different parameter values that are: (a) α = 0.42, γ = 0.65, (b) α = 0.44, γ = 0.7,
(c) α = 4.04, γ = 1.88, (d) α = 0.72, γ = 1.52, (e) α = 6.64, γ = 0.65, (f) α = 1.73, γ = 1.5.
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The qth quantile function yq of the MPoE distribution using Equation (1) is given by:

yq =−1
γ

log
[

1−W0

(
α log(α)q

log(α)

)]
(3)
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Figure 1. MPoE distribution pdf plots for some parametric values
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Figure 2. MPoE distribution hrf plots for some parametric values

3. Operating procedure for GASP
It is now possible to collect GASP parameters by utilizing theMPoE distribution framework. The process of utilizing

a group acceptance plan involves the following steps, as briefly outlined below, while selecting the design parameters, as
outlined in [10]:

i. The allocation of sample size n for a lot with a selected number of groups g and an allocation of predetermined r
items to each group can be calculated using the formula n = g× r.

ii. Selecting a group’s acceptance number (c) and establishing the experiment’s duration (to).
iii. To count the number of failures in every group and conduct an experiment simultaneously for every group (g).
iv. Accept the lot if, by the end of the trial, there are no more than d failures across all groups (c = 0).
v. If there are (c) or more failures in any group, suspend the experiment and discard the entire lot.
Thus, the proposed GASP for the MPoE distribution is defined for a given r and described by two design parameters

(g, c). In contrast to the median life, the CDF of the MPoE distribution is given in Equation (1) and is dependent on α
median life, which is expressed in Equation (3). In the following equations, the likelihood of accepting a lot is expressed:

Contemporary Mathematics 2394 | Muhammad Ameeq, et al.



Pa(p) =

[
c

∑
j=0

(
r
j

)
p j(1− p)r− j

]g

, (4)

p insinuates the number of probabilities an item in a group that would not succeed before t0, and this is obtained by adding
Equation (3) to Equation (1). Using Equation (3), we put

Ψ =− 1
Γ

log
[

1−W0

(
α log(α)q

log(α)

)]
(5)

and

ϕ = log
[

1−W0

(
α log(α)q

log(α)

)]
(6)

Let Γ =− ϕ
Ψ

and t̃0 = a1Ψ0. However, the standard of quality can be measured by comparing the actual lifespan of

the product to its expected lifespan
Ψ
Ψ0

by putting Γ =− ϕ
Ψ

and t0 = a1Ψ0 in Equation (1), and failure probability can be
expressed as:

P = α−e−Γt (
1− e−Γt) (7)

P = α−e
−
(
− ϕ

Ψ
)
(a1Ψ0)

(
1− e−

(
− ϕ

Ψ

)
(a1Ψ0)

)
(8)

Above equation also written as,

P = α−e
a1ϕ

(
Ψ

Ψ0

)−1 (
1−αa1ϕ

(
Ψ

Ψ0

)−1
)

(9)

where a1 is given and r2 =
Ψ
Ψ0

. Now, our current failure probabilities are p1 and p2, which are employed to convey risk
to the producer and consumer, where the probability of rejecting a good lot is referred to as producer risk, whereas the
likelihood of accepting a good campaign is referred to as consumer risk. In order to concurrently validate the next two
equations for a given value α , a1, we evaluate the value of g and c respectively.
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minimize: c and g

subject to: Pa

(
p1 |

Ψ
Ψ0

= r1

)
≤ δ ,

Pa

(
p2 |

Ψ
Ψ0

= r2

)
≥ 1− γ,

where g, r ∈ Z+, 0 ≤ c < r.

where, Z+ = {1, 2, 3, . . .} symbolizes the group of whole numbers. In this instance, the acceptability zone is determined
by:

Pa

(
p1 |

Ψ
Ψ0

= r1

)
=

[
c

∑
j=0

(
r
j

)
p j

1(1− p)r− j

]g

≤ δ , (10)

Pa

(
p2 |

Ψ
Ψ0

= r2

)
=

[
c

∑
j=0

(
r
j

)
p j

2(1− p)r− j

]g

≥ 1− γ, (11)

The two-point approach in designing GASP considers the consumer’s and producer’s perspectives, ensuring an
acceptable balance between producer risk (probability of rejecting a good lot) and consumer risk (probability of accepting
a bad lot). This approach evaluates probabilities at two critical points to optimize the design parameters, as outlined in
Equations (10) and (11).

Where r1 and r2 are the median ratios of consumer risk and producer risk. The probabilities that should be utilized
in Equations (10) and (11) are as follows:

P1 = α−ea1ϕ (
1− ea1ϕ) (12)

P2 = α−e
a1ϕ

(
Ψ

Ψ0

)−1 (
1− ea1ϕ

(
Ψ

Ψ0

)−1
)

(13)

4. Properties
4.1 Moment generating function (MGF)

The moment generating function (MGF) of a random variable X is defined as:

MX (t) = E[etX ] =
∫ ∞

0
etX f (x)dx.

Substituting the PDF of the MPoE distribution:
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MX (t) =
∫ ∞

0
etX
(

γe−γxα−e−γx
+ γe−γxα−e−γx

log(α)(1− e−γx)
)

dx.

Using Gamma function properties, after transformation and substitution

MX (t) = γΓ
(

t
γ
+1
)

α−Γ
(

t
γ +1

)
+ γ log(α)

[
Γ
(

t
γ
+1
)
−Γ

(
t
γ
+2
)]

.

Thus, the final expression for the MGF in terms of the Gamma function is:

MX (t) = γΓ
(

t
γ
+1
)[

α−Γ
(

t
γ +1

)
+ log(α)

(
1− t

γ +1

)]
.

4.2 Shannon entropy

The Shannon entropy is given by:

H(X) =−
∫ ∞

0
f (x) log f (x)dx.

Substituting the PDF, we get:

H(X) =−
∫ ∞

0

(
γe−γxα−e−γx

+ γe−γxα−e−γx
log(α)(1− e−γx)

)
log f (x)dx.

4.3 Order Statistics
Let X1, X2, . . . , Xn be a random sample from the MPoE distribution with cumulative distribution function (CDF)

and probability density function (PDF) given by:

F(t) = α−e−γt (
1− e−γt) ,

f (t) = γe−γtα−e−γt
+ γe−γtα−e−γt

log(α)
(
1− e−γt) .

The kth order statistic Xk:n in a random sample of size n has the probability density function given by:

fXk:n(t) =
n!

(k−1)!(n− k)!
[F(t)]k−1 [1−F(t)]n−k f (t).

Substituting F(t) and f (t).
Using the given CDF and PDF, we substitute:
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F(t)k−1 =
[
α−e−γt (

1− e−γt)]k−1
,

(1−F(t))n−k =
[
1−α−e−γt (

1− e−γt)]n−k
,

f (t) = γe−γtα−e−γt
+ γe−γtα−e−γt

log(α)
(
1− e−γt) .

Thus, the PDF of the kth order statistic is:

fXk:n(t) =
n!

(k−1)!(n− k)!

[
α−e−γt

(1− e−γt)
]k−1

×
[
1−α−e−γt

(1− e−γt)
]n−k

×
[
γe−γtα−e−γt

+ γe−γtα−e−γt
log(α)(1− e−γt)

]
.

This formula provides the probability density function of the kth order statistic for the MpoE distribution.

5. Discussion with illustrative example
In electronic component quality control, consider an acceptance sampling plan (ASP) characterized by parameters g,

c, and Pa(p), representing the acceptance number, sample size, and probability of acceptance, respectively. Suppose g= 4,
c = 10, and Pa(p) = 95%. This implies that in a sample of ten components, the batch is accepted if four or fewer defective
items are found; otherwise, it is rejected. Engineers monitor critical quality parameters, such as resistance, and use the
MPoE distribution to determine the median as a quality index. The ASP necessitates routine batch sampling, ensuring
a systematic assessment of production quality. This method provides several advantages: reduced inspection costs by
sampling a smaller portion of each batch, enhanced overall product quality by maintaining at least 95% compliance
with standards, efficient process monitoring using a robust median-based approach, and informed decision-making based
on predefined acceptance criteria. The values of g, c, and Pa(p) can be adjusted according to industry and product
specifications, offering flexibility for diverse manufacturing applications.

The GASP are designed for various parametric values of consumer risk (0.25, 0.10, 0.05, and 0.01) and r2 (2, 4, 6, and
8), r (5, 10), and a1 (5, 10). The findings show that decreasing consumer risk tends to increase the number of groups and
that as r2 rises, the number of groups eventually declines. However, with a constant g and c, the likelihood of accepting
a lot eventually increases. Tables 1 and 2 show the GASP with minimum g and c; therefore, when we take consumer risk
0.25 and g = 25, r2 = 4, and c = 2, there should be required units of (25× 4) = 100 to conduct a life test. In contrast,
when r2 increases to 8, a total of (5× 1) = 5 units will be required to pass a life test on it, and the minimum required
group will also be 5 for a consumer risk of 0.25. Under the MPoE distribution to consider GASP, and the median is used
as a quality index, the OC values increase as g decreases and the true median lifetime increases, as shown graphically
in Figure 3. Further shows that g and c tend to decrease as the true median life increases, while the OC values tend to
increase gradually. Thus, much is accepted at these points. Consequently, accepting the lot for r = 10 and in Figure 3
would be better because it would require fewer groups than for r = 5.
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In this study, we illustrate Tables 1 and 2 with relevant examples, providing comprehensive insights as detailed in
[15]. Consider a scenario where the lifespan of a bulb is tested using the MPoE distribution with α = 1.05 and an average
lifespan of 2,000 cycles. Consumers face risks of 25% and 5%, corresponding to average lifetimes of 3,000 and 5,000
cycles, respectively.

In Table 3-10, To assess whether the average lifespan exceeds the recommended value, a researcher designs an
experiment with 1,000 cycles and 10 units per group. Given the parameters m0 = 3,000 cycles, α = 1.05, δ = 0.25,
r = 10, and a1 = 1, the mean lifespan must surpass the prescribed threshold if no more than one unit in each of the 21
groups fails before completing 1,000 cycles (c = 2, 42 units tested). For a scenario assuming an average lifespan of 5,000
cycles, the researcher organizes 21 groups with two units each. If one unit fails within 1,000 cycles (a1 = 0.5), the test
concludes with 95% confidence that the lifespan exceeds 5,000 cycles, leading to lot acceptance. Figure 3 presents the
operating characteristic (OC) curves under various test conditions. The OC values increase with higher median lifetimes,
indicating improved reliability as the number of groups and acceptance criteria are adjusted. These graphs effectively
illustrate the impact of different testing parameters on the reliability assessment. (a) δ = 0.01, a1 = 1, r = 10, α = 1.05,
(b) δ = 0.10, a1 = 0.5, r = 5, α = 1.75, (c) δ = 0.01, a1 = 1, r = 10, α = 1.05. Figure 4 and Figure 5 showed MPoE
distribution for data set I and set II. Figure 6 showed Plots of descriptive analysis for (a) Data set I and (b) Data set II.
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Figure 3. Illustration of OC curve values taken from Tables 1 and 2

Table 1. GASP displaying minimal g and c for α = 1.05

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

δ r2 g c Pa(p) g c Pa(p) g c Pa(p) g c Pa(p)

0.25

2 - - - - - - 247 5 0.9589 - - -
4 25 2 0.9670 25 3 0.9874 12 3 0.9852 3 3 0.9586
6 25 2 0.9895 6 2 0.9820 4 2 0.9825 3 3 0.9895
8 5 1 0.9667 2 1 0.9509 4 2 0.9921 2 2 0.9738

0.10

2 - - - - - - - - - - - -
4 376 3 0.9863 40 3 0.9799 20 3 0.9754 8 4 0.9854
6 42 2 0.9825 9 2 0.9731 7 2 0.9695 4 3 0.9861
8 42 2 0.9924 9 2 0.9880 7 2 0.9862 2 2 0.9738

0.05

2 - - - - - - - - - - - -
4 489 3 0.9822 52 3 0.9739 26 3 0.9682 11 4 0.9800
6 54 2 0.9775 11 2 0.9672 9 2 0.9610 5 3 0.9826
8 54 2 0.9902 11 2 0.9853 9 2 0.9823 3 2 0.9609

0.01

2 - - - - - - - - - - - -
4 751 3 0.9728 80 3 0.9601 39 3 0.9526 16 4 0.9710
6 83 2 0.9657 80 3 0.9912 39 3 0.9892 7 3 0.9757
8 83 2 0.9849 17 2 0.9774 13 2 0.9745 7 3 0.9913

Remark: A large sample length in needed cells contains hyphens (-)
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Table 2. GASP displaying minimal g and c for α = 1.75

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

δ r2 g c Pa(p) g c Pa(p) g c Pa(p) g c Pa(p)

0.25

2 - - - - - - 175 5 0.9662 - - -

4 21 2 0.9722 4 3 0.9609 10 3 0.9876 2 3 0.9696

6 21 2 0.9914 4 2 0.9876 4 2 0.9829 1 2 0.9714

8 5 1 0.9676 2 1 0.9509 4 2 0.9924 1 2 0.9868

0.10

2 - - - - - - - - - - - -

4 35 2 0.9541 26 3 0.9855 16 3 0.9803 3 3 0.9548

6 35 2 0.9858 7 2 0.9785 6 2 0.9744 3 3 0.9892

8 35 2 0.9939 7 2 0.9906 6 2 0.9887 2 2 0.9738

0.05

2 - - - - - - - - - - - -

4 380 3 0.9862 34 3 0.9810 21 3 0.9742 7 4 0.9856

6 45 2 0.9817 8 2 0.9754 8 2 0.9660 4 3 0.9856

8 45 2 0.9922 8 2 0.9893 8 2 0.9849 2 2 0.9738

0.01

2 - - - - - - - - - - - -

4 583 3 0.9789 52 3 0.9711 32 3 0.9610 11 4 0.9775

6 69 2 0.9721 13 2 0.9604 11 2 0.9536 5 3 0.9821

8 69 2 0.9880 13 2 0.9827 11 2 0.9793 3 2 0.9609

Remark: A large sample length in needed cells contains hyphens (-)

Table 3. Optimized values for g, c, and Pa(p)

r2 2 4 6 8

g - 16 7 7

c - 4 3 3

Pa(p) - 0.9710 0.9757 0.9913

g - 35 35 35

c - 2 2 2

Pa(p) - 0.9541 0.9858 0.9939

Comments: The cells with (-) indicate that a larger sample size is required
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6. Applications
6.1 Data set I

Table 4. Survival periods (months) of 121 breast cancer patients taken from [24]

0.3 0.3 4.0 5.0 5.6 6.2 6.3 6.6 6.8 7.4 7.5 8.4
8.4 10.3 11.0 11.8 12.2 12.3 13.5 14.4 14.4 14.8 15.5 15.7
16.2 16.3 16.5 16.8 17.2 17.3 17.5 17.9 19.8 20.4 20.9 21.0
21.0 21.1 23.0 23.4 23.6 24.0 24.0 27.9 28.2 29.1 30.0 31.0
31.0 32.0 35.0 35.0 37.0 37.0 37.0 38.0 38.0 38.0 39.0 39.0
40.0 40.0 40.0 41.0 41.0 41.0 42.0 43.0 43.0 43.0 44.0 45.0
45.0 46.0 46.0 47.0 48.0 49.0 51.0 51.0 51.0 52.0 54.0 55.0
56.0 57.0 58.0 59.0 60.0 60.0 60.0 61.0 62.0 65.0 65.0 67.0
67.0 68.0 69.0 78.0 80.0 83.0 88.0 89.0 90.0 93.0 96.0 103.0
105.0 109.0 109.0 111.0 115.0 117.0 125.0 126.0 127.0 129.0 129.0 139.0
154.0

Table 5. The maximum likelihood estimates (MLE) with their standard error for two parameters of data sets II

α̂ β̂ Kolmogorov-smirnov test (K-s) p-Value

7.7496 (4.189) 0.1802 (0.0191) 0.05247 0.9537

Table 6. GASP for α̂ = 3.4323, β̂ = 0.0326, showing minimum g and c

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

δ r2 g c Pa(p) g c Pa(p) g c Pa(p) g c Pa(p)

0.25

2 - - - 780 4 0.9736 280 4 0.9621 39 5 0.9776
4 81 2 0.9833 10 2 0.9816 11 2 0.9755 2 2 0.9646
6 11 1 0.9654 3 1 0.9606 3 1 0.9600 2 2 0.9893
8 11 1 0.9807 3 1 0.9781 3 1 0.9773 1 1 0.9698

0.10

2 - - - - - - - - - 65 5 0.9626
4 134 2 0.9725 16 2 0.9707 18 2 0.9603 7 3 0.9869
6 134 2 0.9922 16 2 0.9918 18 2 0.9882 3 2 0.9841
8 18 1 0.9685 5 1 0.9637 5 1 0.9624 3 2 0.9933

0.05

2 - - - - - - - - - 84 5 0.9523
4 174 2 0.9644 120 2 0.9635 100 3 0.9889 9 3 0.9832
6 174 2 0.9898 20 2 0.9898 23 2 0.9850 4 2 0.9788
8 23 1 0.9600 6 1 0.9567 23 2 0.9937 4 2 0.9910

0.01

2 - - - - - - - - - - - -
4 - - - 187 3 0.9894 153 3 0.9831 13 3 0.9758
6 267 2 0.9845 31 2 0.9842 35 2 0.9773 6 2 0.9684
8 267 2 0.9936 31 2 0.9934 35 2 0.9904 6 2 0.9866

Remark: The cells with hyphens (-) indicate that a large sample size is required.
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Figure 4. MPoE distribution for data set I presented graphically with (a) Estimate the density (b) Estimate the cdf (c) P-P plot (d) Q-Q plot (e) TTT plot
(f) Index plot

6.2 Data set 2

Table 7. Waiting times (min) of 100 bank customers data taken from [25]

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1
3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4
4.6 4.7 4.7 4.8 4.9 4.9 5.0 5.3 5.5 5.7 5.7 6.1
6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6
7.7 8.0 8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5 11.9 12.4
12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9 14.1 15.4 15.4 17.3
17.3 18.1 18.2 18.4 18.9 19.0 19.9 20.6 21.3 21.4 21.9 23.0
27.0 31.6 33.1 38.5
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Table 8. The maximum likelihood estimates (MLE) with their standard error for two parameters of MPoE distribution

α̂ β̂ Kolmogorov-smirnov test (K-S) p-Value

3.4323 (1.3315) 0.0326 (0.0035) 0.055248 0.8539

Table 9. GASP for α̂ = 7.7496, β̂ = 0.1802, showing minimum g and c

r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

δ r2 g c Pa(p) g c Pa(p) g c Pa(p) g c Pa(p)

0.25

2 74 3 0.9669 17 4 0.9792 15 4 0.9761 2 5 0.9509
4 3 1 0.9568 2 2 0.9831 2 2 0.9878 1 3 0.9873
6 3 1 0.9834 1 1 0.9704 1 1 0.9768 1 2 0.9830
8 3 1 0.9914 1 1 0.9854 1 1 0.9877 1 2 0.9939

0.10

2 - - - 29 4 0.9647 24 4 0.9620 - - -
4 19 2 0.9888 2 2 0.9831 4 2 0.9757 1 3 0.9873
6 5 1 0.9724 1 1 0.9704 2 1 0.9542 1 2 0.9830
8 5 1 0.9856 1 1 0.9854 2 1 0.9756 1 2 0.9939

0.05

2 - - - 37 4 0.9552 31 4 0.9512 - - -
4 25 2 0.9853 3 2 0.9748 5 2 0.9697 2 3 0.9748
6 7 1 0.9616 3 2 0.9947 2 1 0.9542 1 2 0.9830
8 7 1 0.9799 2 1 0.9710 2 1 0.9756 1 2 0.9939

0.01

2 - - - - - - 183 5 0.9739 - - -
4 - - - 4 2 0.9665 7 2 0.9579 2 3 0.9748
6 38 2 0.9948 4 2 0.9930 7 2 0.9896 2 2 0.9664
8 10 1 0.9715 2 1 0.9710 4 1 0.9518 2 2 0.9878

Remark: The cells with hyphens (-) indicate that a large sample size is required

0.0

0.2

0.4

0.6

0.8

1.0 40

30

20

10

0

(a) (b) (c)

E
m

p
ir

ic
al

 p
ro

b
ab

il
it

ie
s

E
m

p
ir

ic
al

 q
u

an
ti

le
s

MPoE

MPoE

0.0 0.2 0.4 0.6 0.8 1.0

P-P plot

Theoretical probabilities

10 15 20 25 30 35

Q-Q plot

Theoretical quantiles

MPoE

Histogram and theoretical densities

00 5 10 20 30 40

data

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Volume 6 Issue 2|2025| 2403 Contemporary Mathematics



0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) (e) (f)

0 10 20 30 40

Empirical and theoretical CDFs

data

C
D

F

MPoE 

0.0 0.2 0.4 0.6 0.8 1.0

i/n

T
 (

i/
n

)
0 20 40 60 80 100

Index

x

40

30

20

10

0
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Table 10. Descriptive statistics

Data sets Mean Median Mode Max Min Q1 Q3 Var. Std.

Data set I 46.32 40.0 37, 38, 40, 41, 43, 51 60 0.3 17.4 60.5 1,244.44 35.27
Data set II 9.877 8.1 7.1 38.5 0.8 4.65 13.05 52.37 7.236

Table 11. Comparison among GASP follows distributions with OSP

Distribution Parameters a1 = 0.5, r = 5 a1 = 0.5, r = 10 OSP (g = 1, r = n, C, Pa )

δ r2 g c Pa(p) g c Pa(p) (r = 5) /(r = 10)

Alpha power
transformation inverted

perks distribution
(APTIP)

Two

0.25 4 69 2 0.9759 9 2 0.9668 (1, 345, 18, 0.9818)/(1, 90, 6, 0.9704)
0.1 4 114 2 0.9604 64 3 0.9859 (1, 570, 26, 0.9643)/(1, 640, 31, 0.9892)
0.05 4 2,004 3 0.9879 83 3 0.9817 (1, 10,020, 370, 0.9871)/(1, 830, 38, 0.9846)
0.01 4 3,080 3 0.9815 127 3 0.9722 (1, 15,400, 554, 0.9816)/(1, 1,270, 54, 0.9760)

New compounded
three parametric

weibull distribution
Three

0.25 4 5 1 0.9548 4 2 0.9876 (1, 25, 2, 0.9588)/(1, 40, 4, 0.9921)
0.1 4 44 2 0.9872 7 2 0.9784 (1, 220, 12, 0.9864)/(1, 70, 5, 0.9776)
0.05 4 58 2 0.9832 9 2 0.9723 (1, 290, 15, 0.9849)/(1, 90, 6, 0.9780)
0.01 4 88 2 0.9746 14 2 0.9572 (1, 440, 20, 0.9704)/(1, 140, 8, 0.9690)

Marshall-olkin
kumaraswamy exponential

(MOKw-E)
Three

0.25 4 41 3 0.9852 3 3 0.9693 (1, 205, 42, 0.9800)/(1, 30, 6, 0.9809)
0.1 4 67 3 0.9760 13 4 0.9840 (1, 335, 42, 0.9800)/(1, 130, 19, 0.9804)
0.05 4 88 3 0.9686 17 4 0.9792 (1, 440, 52, 0.9650)/(1, 170, 24, 0.9831)
0.01 4 134 3 0.9525 26 4 0.9683 (1, 670, 75, 0.9499)/ (1, 260, 33, 0.9725)

Modified power
exponential
distribution

Two

0.25 4 3 1 0.9568 2 2 0.9878 (1, 15, 2, 0.9800)/(1, 20, 3, 0.9927)
0.1 4 19 2 0.9888 4 2 0.9757 (1, 95, 8, 0.9865)/(1, 40, 4, 0.9794)
0.05 4 25 2 0.9853 5 2 0.9697 (1, 125, 10, 0.9885)/(1, 50, 5, 0.9859)
0.01 4 38 2 0.9777 7 2 0.9579 (1, 190, 13, 0.9795)/(1, 70, 5, 0.9400)
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Figure 6. Plots of descriptive analysis for (a) Data set I and (b) Data set II

In Table 11, a comparison is made between distributions with known shapes and scale parameters with fixed r2, where
a1 = 0.5, and r = (5, 10). However, δ (producer risk) was also used in the three distributions mentioned above, and we
observed that when we have r2 = 4, g = 69, and c = 2, 138 units are required to put a life test on it. As we move forward
and δ decreases, the values of g and c also increase for the APTIP distribution. Compared to APTIP, the new compounded
three-parametric Weibull distribution is also suitable, but when we compare it with the MOKw-E distribution, we need
more units compared to the NCTPW distribution. Finally, in the MPoE distribution, the required minimum units are
required to conduct a life test on it to save time and cost. For the last column, the results of OSP are provided for both r =
5 and r = 10, showing the corresponding values of g, c, and Pa, which highlights how the OSP plan performs relative to
GASP under the same conditions.

7. Simulation
In Figure 7 using the estimated parameter combinations, we generated 1,000 samples from MPoE with sizes of (50,

75, 100, 150, 250, and 500). The simulation results are listed in Table 12. While the mean square errors (MSE) of the
estimators are arranged in decreasing order, Table 12 demonstrates that the estimates for these sample sizes are highly
consistent and, more specifically, are close to the genuine parameter values. Bias and MSE both exhibit a declining
tendency as the sample size increases.
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Figure 7. MSE plot for the parameter value using different sample sizes
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Table 12. Bias and MSE values for different α̂ and β̂ estimates

α̂ = 3.43 β̂ = 0.03

n Bias MSE Bias MSE

50 −0.147 149.85 −0.127 160.21
75 −0.600 126.35 −0.576 153.66
100 −0.723 113.45 −0.687 146.98
150 −0.845 109.56 −0.867 135.87
250 −0.897 87.12 −0.967 121.12
500 −0.945 45.98 −0.998 102.87

α̂ = 7.74 β̂ = 0.18

n Bias MSE Bias MSE

50 −0.884 191.28 −0.621 235.06
75 −0.720 187.34 −0.723 223.66
100 −0.563 174.92 −0.587 216.08
150 −0.608 170.23 −0.617 205.87
250 −0.817 154.87 −0.742 199.82
500 −0.915 142.56 −0.998 163.87

8. Conclusions
In this study, we proposed a GASP based on a modified power exponential distribution, with the median serving as

a quality index. We considered consumer risk and tested the termination criteria when determining important design
parameters, such as sample size (n) and acceptance number (c). We also observed as the median life expectancy
increased and the number of groups (g) decreased, the operational characteristic (OC) values increased, as shown in
the tables and graphs. Our research also indicates that it is advantageous to accept a batch of products with low values
of g and c, as this minimizes inspection costs and time. The results of previous studies [26] are consistent with this
conclusion. Furthermore, by comparing several GASP follow-up distributions, we found that our distribution had the
lowest values for g and c, whereas r2 remained constant. A comparison between GASP and OSP was also performed,
which demonstrated the superiority of GASP. Furthermore, the simulation study shows that with an increase in sample size,
Bias and MSE decreases, which can be helpful in the assessment of risk modeling variability, optimization of sampling
parameters, cost-benefit analysis, sensitivity analysis, and dynamic modeling. These results are particularly useful for
novice researchers who wish to expand on this subject by incorporating fuzzy-logic and double-acceptance sampling
plans into their examination of quality and dependability. Essentially, our proposed method offers real advantages in
improving quality control procedures and decision making in production applications.
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