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Abstract: This paper is devoted to the study of a class of commutative non-associative algebras characterized by the
identity:

x2x4 = (1−α)ω(x)2x4 +αω(x)4x2,

where α ∈ [0, 1]. In this study, we strongly use the Peirce decomposition technique. This allowed us to determine the
conditions for an algebra of this class to be Bernstein, principal train, or evolution.
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Abbreviation
GCD Greatest Common Divisor

1. Introduction
In 1923, Serge Bernstein proved that the only law of heredity compatible with the principle of stationarity is Mendel’s

law. However, it was only in 1975 that Ph. Holgate proposed a rigorous algebraic definition of structures known as
Bernstein algebras [1].

Let A be a commutative non-associative algebra over a commutative fieldK, and ω : A →K a non-zero morphism of
algebras. For any x∈A and n∈N∗, the principal power of x inA is defined as x1 = x and recursively as xn+1 = xnx. The pair
(A, ω) is called a weighted algebra. A weighted algebra (A, ω) is a Bernstein algebra, if for any x ∈ A, (x2)2 = ω(x)2x2.
(see [2–4] for more details).

The objective of this paper is to describe the main properties of commutative and non-associative algebras
characterized by the identity:
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x2x4 = (1−α)ω(x)2x4 +αω(x)4x2, ∀x ∈ A where α ∈ [0, 1]. (1)

Unless explicitly stated otherwise, throughout this study, A is a weighted C-algebra that satisfies (1), where C is the
field of complex numbers.

2. Preliminaries
For an algebra A satisfying identity (1), an element x can be interpreted as a genotype of a given population. The

successive powers xi describe the genotypes of individuals from the i-th generation, obtained through i successive crossings
of the initial population. So, identity (1) models a population where the genetic crossing between the second and fourth
generations produces individuals with genetic traits in proportions 1−α and α from the two populations. The real α could
represent the frequency of individuals in the population resulting from the crossing between individuals from the second
and fourth generations. Whenα = 0, the crossing generates only individuals from the fourth generation. This phenomenon
can be explained by the assumption that individuals from the second generation carry hidden alleles, while those from
the fourth generation express visible alleles. Conversely, when α = 1, only individuals from the second generation are
produced. This scenario could be justified by assuming that, in this case, individuals from the fourth generation carry the
hidden alleles, while those from the second generation possess the visible alleles. In A, an element e satisfying e2 = e is
called idempotent and represents a state of equilibrium.

Proposition 2.1 Let x, y and z be elements of A. Then:

2(yx)x4 + x2(yx3)+ x2(x(yx2))+2x2(x(x(xy)))

= (1−α)
[
2ω(yx)x4 +ω(x)2yx3 +ω(x)2x(yx2)+2ω(x)2x(x(yx))

]
+α

[
4ω(yx3)x2 +2ω(x)4yx

]
; (2)

2(yz)x4 +2(yx)(zx3)+2(yx)(x(zx2))+4(yx)(x(x(zx)))+2(zx)(yx3)

+ x2(y(zx2))+2x2(y(x(xz)))+2(zx)(x(yx2))+ x2(z(yx2))+2x2(x(y(zx)))

+4(zx)(x(x(xy)))+2x2(z(x(xy)))+2x2(x(z(xy)))+2x2(x(x(zy)))

= (1−α)
[
2ω(yz)x4 +2ω(yx)zx3 +2ω(yx)x(zx2)+4ω(yx)x(x(xz))

+2ω(zx)yx3 +ω(x)2y(zx2)+2ω(x)2y(x(xz))+2ω(xz)x(yx2)+ω(x)2z(yx2)+2ω(x)2x(y(zx))

+4ω(zx)x(x(yx))+2ω(x)2z(x(yx))+2ω(x)2x(z(yx))+2ω(x)2x(x(yz))
]

+α
[
12ω(y(zx2))x2 +8ω(yx3)zx+8ω(zx3)yx+2ω(x)4yz

]
. (3)

Proof. The identities (2) and (3) are obtained by a partial linearization of order 1 and 2 respectively of (1) (The
linearization technique is detailed in [5], 3. Linearization, p.174).
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The following example is an algebra that verifies the identity (1).
Example 2.2 Let A = (〈a1, a2, a3〉, ω) be a weighted C-algebra with the multiplication table defined as follows:

a2
1 = a1 +a3, a2

2 = a3, a1a2 =
1
2

a2 +a3, and a1a3 = δa3, where δ =
−α − i

√
−α2 +4(α +1)

2
(products not mentioned

are zero). The algebra homomorphism ω : A → K is defined such that ω(a1) = 1 and ω(a2) = ω(a3) = 0. For x =

βa1 + γa2 +µa3 ∈ A, we have x2x4 = (1−α)ω(x)2x4 +αω(x)4x2, i.e. A satisfies identity (1).
This algebra is not Bernstein algebra. Indeed, we have (x2)2 −ω(x)2x2 = [2δβ 4 + 2δβ 2γ2 + 4δβ 3γ + 2δ (2δ −

1)β 3µ]a3 6= 0 for some x. A non-zero idempotent of the algebra A is given by: a1 + γa2 +
(1+ γ)2

1−2δ
a3 | γ ∈ C.

In the following, we denote A as an algebra satisfying identity (1) and assume that A has a non-zero idempotent which
we will write e.

Proposition 2.3 The Peirce decomposition of A is:

A = Ce⊕A0 ⊕A 1
2
⊕Aδ ⊕Aδ ,

where Aµ = {x ∈ kerω | ex = µx}, µ ∈
{

0,
1
2
, δ , δ

}
, δ =

−α − i
√
−α2 +4(α +1)

2
and δ =

−α + i
√

−α2 +4(α +1)
2

.

Proof. Consider the mapping ℓe : kerω → kerω, x 7→ ex. Substituting x = e into (2), we obtain:

ℓe

(
ℓe −

1
2

)(
ℓ2

e +αℓe +α +1
)
= 0. (4)

Setting Q(t) = t
(

t − 1
2

)(
t2 +αt +(α +1)

)
.

We have Q(ℓe) = 0 and Q(t) = t
(

t − 1
2

)(
t − δ

)(
t − δ

)
. Consequently, the Peirce decomposition of A is: A =

Ce⊕kerQ(ℓe) = Ce⊕A0 ⊕A 1
2
⊕Aδ ⊕Aδ , where Aµ = {x ∈ kerω | ex = µx}, µ ∈

{
0,

1
2
, δ , δ

}
.

In the remainder of our study, we will assume that α 6= 1
2
, as this case has already been studied in [6, 7].

3. Structure
The theorem below provides the product of Peirce spaces of the algebra A.
Theorem 3.1 Let A = Ce⊕A0 ⊕A 1

2
⊕Aδ ⊕Aδ , we have:

(i) A0A0

{
⊆ A0, if α = 0,
= {0}, otherwise;

(ii) A0A 1
2
⊆ A 1

2
⊕Aδ ⊕Aδ ;

(iii) A0Aδ

{
⊆ Aδ , if α = 1,
= {0}, otherwise;

(iv) A0Aδ

{
⊆ Aδ , if α = 1,
= {0}, otherwise;

(v) A 1
2
A 1

2
⊆ A0 ⊕Aδ ⊕Aδ ;

(vi) A 1
2
Aδ ⊆ A0 ⊕A 1

2
⊕Aδ ;

(vii) A 1
2
Aδ ⊆ A0 ⊕A 1

2
⊕Aδ ;

(viii) Aδ Aδ = {0};
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(ix) Aδ Aδ = {0};

(x) Aδ Aδ

{
⊆ A0, if α = 0,
= {0}, otherwise.

Proof. Substituting x = e, y ∈ Aµ , i.e. ey = µy and z ∈ Aβ , i.e. ez = β z into identity (3), we obtain:

2e(yz)+2µβ (yz)+2µβ 2(yz)+4µβ 3(yz)+2µβ (yz)+βe(yz)+2β 2e(yz)

+2µ2β (yz)+µe(yz)+2βe(e(yz))+4µ3β (yz)+2µ2e(yz)+2µe(e(yz))+2e(e(e(yz)))

= (1−α)[βyz+2β 2yz+µyz+2βe(yz)+2µ2yz+2µe(yz)+2e(e(yz))]+2α(yz). (5)

From this, we obtain:

2ℓ3
e(yz)+2

[
β +µ +α −1

]
ℓ2

e(yz)+
[
2
(
µ2 +β 2)+ (

µ +β
)(

2α −1
)
+2

]
ℓe(yz)

+
[(

2µβ +α −1
)[

2
(
µ2 +β 2)+ (

µ +β
)]

+2
(
2µβ −α

)]
IdA(yz) = 0. (6)

Let P(µ, β )(t) be the annihilating polynomial of the space Aµ Aβ , defined as:

P(µ; β )(t) = 2t3 +2
(
µ +β +α −1

)
t2 +

[
2
(
µ2 +β 2)+ (

µ +β
)(

2α −1
)
+2

]
t

+
[(

2µβ +α −1
)[

2
(
µ2 +β 2)+ (

µ +β
)]

+2
(
2µβ −α

)]
, (7)

with µ, β ∈
{

0,
1
2
, δ , δ

}
.

• For µ = β = 0, we have P0, 0(t) = 2t3 + 2(α − 1)t2 + 2t − 2α. If α = 0, then P0, 0(t) = t(2t2 − 2t + 2). Hence,
gcd(Q(t), P0, 0(t)) = t if α = 0, and gcd(Q(t), P0, 0(t)) = 1 if α 6= 0. Thus, A0A0 ⊆ A0 if α = 0, and A0A0 = 0 otherwise.

• For µ = 0, β =
1
2
, we have P0, 1

2
(t) = 2t3 + (2α − 1)t2 + (α + 2)t − (α + 1). Factoring yields P0, 1

2
(t) =

2
(

t − 1
2

)
(t −δ )

(
t −δ

)
. Thus, gcd(Q(t), P0, 1

2
(t)) =

(
t − 1

2

)
(t −δ )

(
t −δ

)
.We conclude that A0A 1

2
⊆ A 1

2
⊕Aδ ⊕Aδ .

• For µ = 0, β = γ , with γ ∈ {δ , δ}, we have P0, γ(t) = 2t3 + 2(γ +α − 1)t2 − (2α + γ)t −
(
2α2γ + 2α2 − 3αγ +

2α +γ −2
)
. Here, gcd(Q(t), P0, γ(t)) = 1 if α 6= 1 so A0Aγ = 0, and gcd(Q(t), P0, γ(t)) = (t−γ) if α = 1 then A0Aγ ⊆ Aγ

for γ ∈ {δ , δ}.
Other results are obtained in the same way.

Lemma 3.2 Suppose that A = Ce⊕A 1
2
⊕Aµ and µ ∈ {δ , δ}. Then, for any xβ ∈ Aβ , β ∈

{
δ ,

1
2

}
, we have:

(i) x3
1
2
= 0;

(ii) xµ

(
x 1

2
xµ

)
= 0;

(iii) x 1
2

(
x 1

2
xµ

)
= 0;
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(iv)
(

x 1
2
xµ

)2
= 0;

(v) x2
1
2

(
x 1

2
xµ

)
= 0.

Proof. Let’s assume that µ = δ , then A =Ce⊕A 1
2
⊕Aδ . The multiplication table satisfies: A 1

2
A 1

2
⊆ Aδ , A 1

2
Aδ ⊆ A 1

2
,

and Aδ Aδ = 0. Let x be an element of A of weight 1, such that x = e+ax 1
2
+bxδ , with for any xβ ∈ Aβ , β ∈

{
δ ,

1
2

}
. We

have:

x2 = e+ax 1
2
+2δbxδ +a2x2

1
2
+2abx 1

2
xδ ,

x3 = e+
[
ax 1

2
+2(1+δ )abx 1

2
xδ +a3x3

1
2
+2ab2xδ

(
x 1

2
xδ

)]
1
2

+
[(

2δ 2 +δ
)

bxδ +(δ +1)a2x2
1
2
+2a2bx 1

2

(
xδ x 1

2

)]
δ
,

x4 = e+
[

ax 1
2
+

(
δ +

3
2

)
a3x3

1
2
+2

(
δ 2 +δ +1

)
abx 1

2
xδ +(2δ +3)ab2xδ

(
x 1

2
xδ

)

+
(

x3
1
2
xδ +2x 1

2

(
x 1

2

(
x 1

2
xδ

)))
a3b+2ab3xδ

(
xδ

(
x 1

2
xδ

))]
1
2

+
[(

2δa3 +δ 2 +δ
)

bxδ .

+
(
δ 2 +δ +1

)
a2x2

1
2
+a4x4

1
2
+2(2δ +1)a2bx 1

2

(
x 1

2
xδ

)
+2a2b2x 1

2

(
xδ

(
x 1

2
xδ

))]
δ
.

Using the identity (1−α)x4 +αx2 = x2x4, and equating the powers of akb j, 0 ≤ k, j ≤ 3, we obtain the identities of
the lemma.

The proof for µ = δ follow the same logic as for µ = δ .
Lemma 3.3 Let A = Ce⊕A0 ⊕Aδ ⊕Aδ , with α = 0. Then, for any xβ ∈ Aβ , β ∈ {0, δ , δ}, we have:
(i) x4

0 = 0;
(ii) 2x2

0(xδ xδ ) = x0(x0(xδ xδ ));
(iii) x2

0(x0(x0(xδ xδ ))) = 0;
(iv) (xδ xδ )(x0(x0(xδ xδ ))) = 0;
(v) (xδ xδ )

2 = 0.
Proof. The proof adheres to the same structure as Lemma 3.2.
In the following sub-paragraphs, we establish links between algebras verifying the identity (1) with some weighted

algebras.

3.1 Algebras verifying the identity (1) which are Bernstein

Lemma 3.4 Let A = Ce⊕A0 ⊕A 1
2
. Then, for any xβ ∈ Aβ , β ∈

{
0,

1
2

}
, we have:

(1) If α = 0:
(i) x3

1
2
= 0;

(ii)
(

x2
1
2

)2

= 0;

(iii) x4
0 = 0;
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(iv) x0x2
1
2
= 2x 1

2

(
x0x 1

2

)
;

(v) x2
0x 1

2
= 2x0

(
x0x 1

2

)
;

(vi) 5
(

x0x 1
2

)2
= 2x0

(
x0x2

1
2

)
= 4x0

(
x 1

2

(
x0x 1

2

))
;

(vii)
1
2

x3
0x 1

2
−2x2

0

(
x0x 1

2

)
+2x0

(
x0

(
x0x 1

2

))
= 0;

(viii) 2x2
1
2

(
x0x 1

2

)
= x 1

2

(
x 1

2

(
x0x 1

2

))
.

(2) If α 6= 0 or (α = 0 and A2
0 = 0):

(i) x3
1
2
= 0;

(ii) x0

(
x0x 1

2

)
= 0;

(iii) x 1
2

(
x0x 1

2

)
= 0;

(iv) x2
1
2

(
x0x 1

2

)
= 0;

(v)
(

x0x 1
2

)2
= 0.

Proof. The proof adheres to the same pattern as Lemma 3.2.
The following result provides the necessary and sufficient conditions for an algebra satisfying identity (1) to be a

Bernstein algebra.
Theorem 3.5 Let A = Ce⊕A0 ⊕A 1

2
⊕Aδ ⊕Aδ . A is a Bernstein algebra if and only if Aδ = Aδ = A2

0 = 0.
Proof. Let’s suppose that the algebra A satisfies identity (1) with α = 0 and Aδ = Aδ = A2

0 = 0. Let x = e+x0+x 1
2
be

an element of A such that ω(x) = 1. Then: x2 = e+x 1
2
+x2

1
2
+2

(
x0x 1

2

)
, (x2)2 = e+x 1

2
+x2

1
2
+2x3

1
2
+2x0x 1

2
+4

(
x0x 1

2

)2
+

4x 1
2

(
x0x 1

2

)
+ 4x2

1
2

(
x0x 1

2

)
. Using the identities in part (2) of Lemma 3.4, we find that (x2)2 − x2 = 0. Since the set

of elements of weight 1 (i.e. such that ω(x) = 1) is dense in A, by the Zariski topology (for its definition and main
characteristics on spaces not necessarily of finite dimension, see McCrimmon in [8]), it follows that (x2)2 −ω(x)2x2 = 0.
Thus, A is a Bernstein algebra.

Conversely, if A is a Bernstein algebra, then A = Ce⊕A0 ⊕A 1
2
and A0A0 ⊆ A 1

2
. Since A satisfies identity (1), the

Peirce decomposition and the multiplication table of its Peirce subspaces imply that Aδ = Aδ = 0 and A0A0 = 0.
For α 6= 0, the proof is similar to the previous case.

3.2 Power-associativity of algebras verifying the identity (1)

Proposition 3.6 Let A = Ce⊕A0 ⊕A 1
2
⊕Aδ ⊕Aδ . Then the following conditions are equivalent:

(i) A is a Jordan algebra;
(ii) A is power-associative, i.e. xkx j = xk+ j, ∀x ∈ A, ∀ k, j ≥ 1;
(iii) Aδ = Aδ = A2

0 = 0;
(iv) A satisfies the equation x3 −ω(x)x2 = 0.
Proof. Assume that A satisfies identity (1) with α 6= 0. For (i) ⇒ (ii), see [9]. For (ii) ⇒ (iii), see [9]. For (iii) ⇒

(iv), since Aδ = Aδ = 0 and α ∈ [0, 1], using the identities from Lemma 3.4, we have: x2 = e+ bx 1
2
+ b2x2

1
2
+ 2abx0x 1

2
,

x3 = e+ bx 1
2
+ b2x2

1
2
+ 2abx0x 1

2
. Thus, x3 − x2 = 0, which leads to x3 −ω(x)x2 = 0 according to Zariski topology. For

(iv)⇒ (i), see Corollary 4.4 and Corollary 4.5 in [10]. The proof is analogous if α = 0.

3.3 Algebras verifying the identity (1) which are train

Definition 3.7 A weighted C-algebra (A, ω) is a train algebra of rank n ≥ 2 if there exist scalars µi ∈ C for i ∈
{1, . . . , n−1} such that:
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xn +µ1ω(x)xn−1 +µ2ω(x)2xn−2 + · · ·+µn−1ω(x)n−1x = 0, (8)

for all x in A, and n is the smallest integer satisfying this equation.
Proposition 3.8 Suppose A = Ce⊕A0 ⊕Aδ ⊕Aδ and µ ∈ {δ , δ̄}.
(1) For α = 0:
If Aµ = 0, then A satisfies the equation: x6 − (1+ µ̄)ω(x)x5 + µ̄ω(x)2x4 = 0.
(2) For α 6= 0:
If Aµ = 0, then A satisfies the equation: x4 − (1+ µ̄)ω(x)x3 + µ̄ω(x)2x2 = 0.
Proof. For (1), assumeA=Ce⊕A0⊕Aδ . Sinceα = 0, we haveA0A0 ⊆A0 andA0Aδ =Aδ Aδ = 0. Let x∈A such that

x = e+x0+xδ . Then: x2 = e+x2
0+2δxδ , x2−x = x0+x2

0+(2δ −1)xδ , x(x2−x) = (2δ 2−δ )xδ −x2
0+x3

0, x(x(x2−x)) =
δ (2δ 2 −δ )xδ −x3

0 +x4
0, x(x(x(x2 −x))) = δ 2(2δ 2 −δ )xδ −x4

0 +x5
0. Since x4

0 = 0 by identity (i) in Lemma 3.3, it follows
that x6−(1+δ )x5+δx4 = 0. Using the Zariski topology, we deduce that for all x∈A: x6−(1+δ )ω(x)x5+δω(x)2x4 = 0.
The proof for Aδ = 0 is similar to that Aδ = 0.

For (2), the proof is similar to the previous case.
Proposition 3.9 Let A = Ce ⊕ A 1

2
⊕ Aδ ⊕ Aδ . If Aµ = 0, then A satisfies the equation: x3 − (1 + µ̄)ω(x)x2 +

µ̄ω(x)2x = 0, where µ ∈ {δ , δ̄}.
Proof. Suppose A = Ce⊕A 1

2
⊕Aδ . Let x ∈ A such that x = e+ x 1

2
+ xδ . Using the identities from Lemma 3.2, we

have x(x2 − x) = δ (x2 − x). Using Zariski topology, it follows that for all x ∈ A, x3 − (1+δ )ω(x)x2 +δω(x)2x = 0. The
proof for Aδ = 0 is analogous to the case of Aδ = 0, relying on the identities from Lemma 3.2.

Proposition 3.10 Let A =Ce⊕A0⊕A 1
2
⊕Aδ ⊕Aδ . Then A is a train algebra of rank 3 if and only if its train equation

is of the form:

x3 − (1+µ)ω(x)x2 +µω(x)2x = 0, with µ ∈ {0, δ , δ}.

Proof. Let A be an algebra satisfying the identity (1). Assume that A is a train algebra of rank 3, and its train equation
is given by:

x3 − (1+µ)ω(x)x2 +µω(x)2x = 0, where µ ∈K. (9)

A partial linearization of (9) yields:

yx2 +2x(xy)− (1+µ)[ω(y)x2 +2ω(x)(xy)]+µ[2ω(xy)x+ω(x)2y] = 0. (10)

Let y = x4 in (10), we have:

x4x2 +2x6 − (1+µ)[ω(x)4x2 +2ω(x)x5]+µ[2ω(x)5x+ω(x)2x4] = 0. (11)

Since A satisfies the identity (1), we know: x2x4 = (1−α)ω(x)2x4+αω(x)4x2, and: x3 = (1+µ)ω(x)x2−µω(x)2x.
Thus: 2x6 = 2(1+µ)ω(x)x5 −2µω(x)2x4. Substituting 2x6 and x2x4 into (11), we obtain:
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(1−α −µ)ω(x)2x4 +(α −µ −1)ω(x)4x2 +2µω(x)5x = 0. (12)

From the equality x3 = (1+µ)ω(x)x2 −µω(x)2x, we have:

x4 = (1+µ)ω(x)x3 −µω(x)2x2 = (1+µ +µ2)ω(x)2x2 −µ(µ +1)ω(x)3x.

Substituting x4 into (12), we get:

−µ(µ2 +αµ +α +1)ω(x)4[x2 −ω(x)x] = 0. (13)

Since A is a train algebra of rank 3, then

µ(µ2 +αµ +α +1)ω(x)4 = 0.

For ω(x) 6= 0, this implies: µ(µ −δ )(µ −δ ) = 0 so µ = 0, µ = δ , or µ = δ .
Conversely, assume A is a train algebra of rank 3 with the train equation:

x3 − (1+µ)ω(x)x2 +µω(x)2x = 0, where µ ∈ {0, δ , δ}. (14)

A partial linearization of (14) yields:

yx2 +2x(yx)− (1+µ)ω(y)x2 −2(1+µ)ω(x)yx+2µω(xy)x+µω(x)2y = 0. (15)

Let us substitute y = x4 in (15):

x4x2 +2x6 − (1+µ)ω(x)4x2 −2(1+µ)ω(x)x5 +2µω(x)5x+µω(x)2x4 = 0. (16)

If µ = 0, equation (14) becomes x3 −ω(x)x2 = 0 ⇒ x6 = ω(x)5x. Equation (15) reduces to: x4x2 +2x6 −ω(x)4x2 −
2ω(x)x5 = 0 ⇒ x4x2 = ω(x)4x2. By replacing x2x4 = ω(x)4x2 in identity (1), we have:

ω(x)4x2 − (1−α)ω(x)2x4 −αω(x)4x2

= (1−α)ω(x)2x4 − (1−α)ω(x)2x4

= (1−α)ω(x)2[x4 −ω(x)2x2] = 0,
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since x4 = ω(x)2x2. Thus:

x4x2 − (1−α)ω(x)2x4 −αω(x)4x2 = 0,

and therefore A satisfies identity (1).
If µ = δ , equation (15) becomes:

x4x2 +2x6 − (1+δ )ω(x)4x2 −2(1+δ )ω(x)x5 +2δω(x)5x+δω(x)2x4 = 0. (17)

Thus:

x4x2 =−2x6 +(1+δ )ω(x)4x2 +2(1+δ )ω(x)x5 −2δω(x)5x−δω(x)2x4.

From this:

x2x4 =−2x6 +(1+δ )[ω(x)4x2 +2ω(x)x5]−δ [2ω(x)5x+ω(x)2x4].

We have:

x2x6 =−2[x6 − (1+δ )ω(x)x5 +δω(x)2x4]+δω(x)2x4 +(1+δ )ω(x)4x2 −2δω(x)5x.

Using x3 − (1+δ )ω(x)x2 +δω(x)2x = 0, it follows that x6 − (1+δ )ω(x)x5 +δω(x)2x4 = 0. Hence:

x2x4 = δω(x)2x4 +(1+δ )ω(x)4x2 −2δω(x)5x.

Using x4 = (1+δ )ω(x)x3 −δω(x)2x2, we get:

x2x4 = δω(x)2[(1+δ )ω(x)x3 −δω(x)2x2]+ (1+δ )ω(x)4x2 −2δω(x)5x.

Simplifying further:

x2x4 − (1−α)ω(x)2x4 −αω(x)4x2 = [δ 2 +αδ +α −1]ω(x)3x3 − [δ 2 −2δ +αδ +α −1]ω(x)4x2 −2δω(x)5x.

As a result:

x2x4 − (1−α)ω(x)2x4 −αω(x)4x2 =−2ω(x)3[x3 − (1+δ )ω(x)2 +δω(x)x].
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Assuming ω(x) 6= 0, we have:

x3 − (1+δ )ω(x)2 +δω(x)x = 0,

and thus:

x2x4 − (1−α)ω(x)2x4 −αω(x)4x2 = 0.

Therefore, A satisfies identity (1).
For µ = δ , the proof is analogous to the case µ = δ .

3.4 Evolution algebras satisfying the identity (1)

Definition 3.11 A commutative finite-dimensional C-algebra is called an evolution algebra if it admits a basis B =

{e1, · · · , en} such that:

e2
i =

n

∑
j=1

ai je j and eie j = 0 for 1 ≤ i 6= j ≤ n. (18)

Such a basis is called a natural basis (see [11]). A finite-dimensional weighted evolution algebra (ϒ, ω) admits a
natural basis B = {e1, · · · , en} with a multiplication table (see [12], Corollary 3.4.) defined by:

e2
1 = e1 +

n

∑
k=2

a1kek, e2
i =

n

∑
k=2

aikek, with ω(e1) = 1, ω(ei) = 0 (19)

for 2 ≤ i ≤ n.
Proposition 3.12 A finite-dimensional evolution algebra (ϒ, ω) with natural basis B and multiplication defined by

(19) satisfies identity (1) if the following conditions hold:
(i) (e2

1)
2 = e2

1;
(ii) e2

1e2
i = αe2

i for 2 ≤ i ≤ n;
(iii) e2

1(e
2
1ei) = (1−α)e2

1ei for 2 ≤ i ≤ n;
(iv) e2

j(e
2
1ei) = 0 for 2 ≤ i, j ≤ n;

(v) e2
1(e j(e2

1ei)) = (1−α)e j(e2
1ei) for 2 ≤ i, j ≤ n;

(vi) e2
1(ek(eie2

j))+ e2
j(ek(e2

1ei)) = (1−α)ek(eie2
j) for 2 ≤ i, j, k ≤ n;

(vii) e2
l (ek(eie2

j)) = 0 for 2 ≤ i, j, k, l ≤ n.
Proof. Let ϒ be an evolution algebra satisfying (i) to (vii), with natural basis B and x = x1e1 +∑n

i=2 xiei ∈ ϒ. We
have:

x2 = x2
1e2

1 +
n

∑
i=2

x2
i e2

i ,
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x4 = x4
1e2

1 +
n

∑
i=2

x3
1xie2

1ei +
n

∑
i, j=2

x2
1xix je j(e2

1ei)+
n

∑
i, j, k=2

xix2
jxkek(eie2

j),

x2x4 = x6
1e2

1e2
1 +

n

∑
i=2

x5
1xie2

1(e
2
1ei)+

n

∑
i=2

x4
1x2

i e2
1e2

i

+
n

∑
i, j=2

x4
1xix je2

1(e j(e2
1ei))+

n

∑
i, j=2

x3
1xix2

je
2
j(e

2
1ei)

+
n

∑
i, j, k=2

x2
1xix2

jxk[e2
1(ek(eie2

j))+ e2
j(ek(e2

1ei))]+
n

∑
i, j, k, l=2

xix2
jxkx2

l e2
l (ek(eie2

j))

and

(1−α)ω(x)2x4 +αω(x)4x2 = (1−α)

[
x6

1e2
1 +

n

∑
i=2

x5
1xie2

1ei +
n

∑
i, j=2

x4
1xix je j(e2

1ei)

+
n

∑
i, j, k=2

x2
1xix2

jxkek(eie2
j)

]
+α

[
x6

1e2
1 +

n

∑
i=2

x4
1x2

i e2
i

]
.

Since the identities (i) to (vii) are satisfied, it follows that x2x4 = (1−α)ω(x)2x4 +αω(x)4x2.
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