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1. Introduction
In this work, we will consider associative rings with a unitary element and all the classes of left modules considered

are closed under isomorphisms.
The left cyclic modules have been studied systematically in module theory. Since Barbara Osofsky proved in [1] that

the condition: every left cyclic module is left injective is equivalent to the ring being semisimple, most of the research
concern with left cyclic modules is related to the question: Which rings satisfy that every left cyclic module is . . .? The
excellent book [2] devoted to the left cyclic modules is an example of how the former question is in the heart of the recent
literature concern with left cyclic modules. There are important rings defined by means of left cyclic modules, such as
left Köthe rings, that is: rings in which every module is a direct sum of left cyclic modules. The historical development
of these rings is well exposed in [3], in that paper the authors deal with the Köthe-Cohen-Kaplansky problem: Are left
Köthe rings artinian principal ideal rings? This problem is an example of the fact that there are many interesting and
difficult problems in the noncommutative ring theory related to left cyclic modules. Although the dual concept of left
cyclic modules, that is, the cocyclic modules introduced by Maranda in [4] has not been developed as much as the left
cyclic modules, there are some books and articles that have worked on those modules, such as [5, 6]. Recall that a left
module M is called cocyclic if there exists a simple left module S such that S ≤e M, see [5]. Finally, recall that a ring R is
a left V -ring if every left simple module is injective.
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In Table 1, we illustrate some similarities and contrasts between cyclic and cocyclic modules and also use them to
pose some open questions. Also note that some of the statements in the list are known and others have been proven in this
work.

Table 1. Cyclic vs cocyclic

Cyclic side Cocyclic side

Every module has cyclic submodule. Every module has a cocyclic quotient.

Every cyclic module is finitely generated. Every cocyclic module is finitely cogenerated.

R is semisimple if and only if every cyclic module is injective. R is a left V -ring if and only if every cocyclic module is injective.

It is an open question if that being a left artinian ring is equivalent to a
ring in which every cyclic module embeds in a free module.

A ring in which every cocyclic embeds in a free module is a left
cogenerator ring.

R is a semisimple ring if and only if every cyclic module is projective. R is a semisimple ring if and only if every cocyclic module is
projective.

The class of cyclic modules is always closed under quotients.
The class of cocyclic modules is closed under quotients precisely
when E(S) (the injective hull of S) is uniserial and artinian for each

simple module S.

In this article wewill basically address three types of question: When do cocyclicmodules behave like cyclicmodules,
when do cyclic modules behave like cocyclic modules, and what properties do cocyclic modules have that cyclic modules
do not and vice versa?

2. When cocyclic modules behave like cyclic modules and vice versa
It is well known that the class of cyclic modules is closed under quotients, but the class of cocyclic modules is not

always closed under quotients, as the following example states.
Example 1 Consider the commutative ring

R =

{(
a (x, y)
0 a

)
| a ∈ Z2, (x, y) ∈ Z2 ⊕Z2

}
.

This ring have the following lattice of ideals as it can be seen in [7] (Figure 1).

Figure 1. Hasse diagram of R
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Then R is a commutative artinian ring with only one simple R-module S up to isomorphism. Then by [8] Theorem
2.13, there is a lattice anti-isomorphism between the lattice of ideals of R and the lattice of fully invariant submodules of
E(S). Hence the lattice of fully invariant submodules of E(S) is (Figure 2):

Figure 2. Hasse diagram of fully invariant submodules of E(S)

Then the quotient E(S)/S has two non zero submodules with zero intersection. Hence E(S)/S can not be cocyclic.
The next theorem tells us when the class of cocyclic modules is closed under quotients. Recall that a module M is

uniform if every nonzero submodule is essential in M.
Theorem 1 The following statements are equivalent for a ring R:
(1) E(S) is uniserial and artinian for each simple R-module S.
(2) The class of all cocyclic R-modules is closed under quotients.
(3) For each simple R-module S, the submodules of E(S) are well-ordered with respect to inclusion.
Proof. (1)⇒ (2) LetM be a cocyclic module andM → L a nonzero epimorphism. Then there exists a simple module

S such that S ≤e M ≤ E(S). By hypothesis, M is artinian and uniserial and therefore L is also artinian and uniserial. Then
there exists a simple submodule K of L. By linearity, K ≤e L. Thus, L is cocyclic.

(2)⇒ (1) Let S be a simple module. Consider a nonzero epimorphism E(S)→ L. As E(S) is cocyclic, it follows
from the hypothesis that L is also cocyclic, so it is uniform. Thus, by [9] Proposition 2.7, E(S) is uniserial. On the other
hand, since L is cocyclic, we have that it is finitely cogenerated, so that, E(S) is artinian.

(1)⇒ (3)As every nonempty family of submodules of E(S) has a least element and E(S) is uniserial, then E(S) also
has a least element.

(3)⇒ (1) It is clear.
Also, it is well known that if a cyclic module has a projective cover, then such a cover must be cyclic. The projective

cover of a cocyclic module is not always cocyclic, as the following example shows.
Example 2 Consider the commutative ring

R =

{(
a (x, y)
0 a

)
| a ∈ Z2, (x, y) ∈ Z2 ⊕Z2

}

of Example 1. Then R is an indecomposable commutative artinian ring with only one simple module S up to isomorphism.
Then the projective cover P(S) of S is isomorphic to R. Then P(S) is not a cocyclic module.

We are going to give necessary conditions for a projective cover of a cocyclic module to be cocyclic, but first we
have to prove some lemmas.

Lemma 1 Let f : M → N and g : N → K be two epimorphisms. Suppose that g f is a superfluous epimorphism. Then
f : M → N is superfluous.

Proof. Note that f−1(ker(g)) = ker(g f )<< M. So, as ker( f ) = f−1({0})≤ f−1(ker(g)), then ker( f )<< M.
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Lemma 2 If R is an artinian ring such that Re is cocyclic for each non-zero indecomposable idempotent e, then P(S)
is cocyclic and S ∼= Re/Je for every simple module S, with e an indecomposable idempotent element.

Proof. Let S be a simple R-module. As R is left artinian, then the simple R-module S has a projective cover. Also,
P(S) = Re for some idempotent element e ∈ R. As End(P(S)) is local, P(S) = Re is left indecomposable, thus P(S) is
cocyclic. Also, ifψ : P(S)↠ S is a projective cover, then ker(ψ)<<Re, so ker(ψ)≤Rad(Re) andRad(Re)= J(Re)= Je.
Therefore, Ker(ψ) = Rad(Re). This implies S ∼= Re/Je.

Recall that a moduleM is MAX if every nonzero submodule ofM has maximal submodules. Also, a ring R is MAX if
every nonzero R-module is a MAXmodule. Equivalently, R is left MAX if every nonzero R-module has a simple quotient.
Finally, a module M is coatomic if every proper submodule of M is contained in a maximal submodule of M.

Definition 1 A module is local if there exists a unique maximal submodule.
Lemma 3 If R is a left MAX ring, then every R-module is coatomic. Consequently, every local module has a greatest

submodule.
Proof. Let M be a nonzero module and N a proper submodule of M. Then M/N ̸= 0 and by hypothesis there exists

a maximal submodule K/N of M/N. Hence M/K ∼= (M/N)/(K/N) is simple module, and consequently K is a maximal
submodule of M.

Theorem 2 If R is a left artinian ring, Re is left cocyclic for each indecomposable nonzero idempotent element e ∈ R
and M is a local cocyclic R-module, thus P(M) exists and it is cocyclic.

Proof. Let M be a local cocyclic module and let N be the unique maximal submodule ofM. Then M/N = S is simple,
and by Lemma 2, there exists an isomorphism f : S → Re/Je with e an indecomposable idempotent element of R and Re
cocyclic. Hence, we have three epimorphisms f−1π1 : Re ↠ M/N where π1 : Re ↠ Re/Je, and π : M ↠ M/N. Since Re
is projective, then there exists a morphism φ : Re → M such that the following diagram commutes (Figure 3):

Figure 3. Projectivity of Re

We claim that, φ : Re → M is a projective cover of M. Indeed, as R is left artinian, it is perfect and by [10] Theorem
28.4 c, R is left MAX. Thus, by Lemma 3, N is the greatest proper submodule of M, so N << M. Then, as φ(Re)+N =

φ(Re)+Ker(π) = M, we have φ(Re) = M, so φ : Re → M is an epimorphism. In addition, we know that f−1π1 is a
superfluous epimorphism since π1 is a superfluous epimorphism and f−1 is an isomorphism. Hence πφ is a superfluous
epimorphism. Then, by Lemma 1 φ : Re → M is superfluous.

The next example shows that there exist rings that satisfy the hypothesis of Theorem 2.
Example 3 Consider the commutative ring

R =
Z4[x]
< x2 >

with x̄ = u such that u2 = 0. Then the lattice of ideals of this ring is (Figure 4):
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Figure 4. Hasse diagram of R

It is clear that R is a commutative cocyclic artinian module. Hence, the only direct summands are the trivial ones.
Therefore, Re is cocyclic for each nonzero indecomposable idempotent e.

For left artinian rings such that E(S) is noetherian for each simple module S we have been able to characterize when
the class of cocyclic modules is closed under quotients and projective covers.

Theorem 3 For a left artinian ring R such that E(S) is noetherian for each simple module S, the following statements
are equivalent:

(1) The class of cocyclic modules is closed under quotients and projective covers.
(2) For each indecomposable idempotent e ∈ R, Re is cocyclic and E(S) is uniserial and artinian.
Proof. (1) ⇒ (2) By Theorem 1, E(S) is artinian and uniserial. Now, consider an indecomposable idempotent

element e ∈ R. As Re is projective, there exists a morphism h : Re → P(S) such that the following diagram commutes
(Figure 5):

Figure 5. Projectivity of Re

Therefore Ker(φ) + h(Re) = P(S), and consequently P(S) = h(Re) since Ker(φ) is superfluous in P(S). Then
h : Re → P(S) is an epimorphism. Hence P(S) is a direct summand of Re. As Re is indecomposable, then P(S) = Re.
Therefore Re is a cocyclic module.

(2)⇒ (1) Let C be the class of cocyclic modules. By Theorem 1, C is closed under quotients. As E(S) is artinian
and noetherian for each simple module S, then E(S) is of finite length for each simple module S. Hence each cocyclic
module has a unique maximal submodule. Thus, by Theorem 2, the class C is closed under projective covers.

It is clear that every nonzero module has a cyclic submodule. Also, it is easily seen that every R-module has a cyclic
quotient if and only if the ring R is left MAX. It is known that every module has a cocyclic quotient, although we give
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a proof for the reader’s convenience. Also, we prove that every nonzero R-module has a nonzero cocyclic submodule
precisely when R is a left semiartinian ring.

Proposition 1 Every non zero module has a cocyclic quotient.
Proof. Let 0 ̸= x ∈ M and consider the set:

Γx = {N ≤ M | x /∈ N}.

Then, using Zorn’s Lemma we get a maximal element Lx ∈ Γx. It is easy to see that Lx is a maximal submodule of
Rx+Lx, and consequently (Rx+Lx)/Lx is a simple submodule of M/Lx. Suppose that L′/Lx is a non zero submodule
of M/Lx. Then Lx < L′, and consequently x ∈ L′. Hence Rx+Lx ≤ L′. Therefore (Rx+Lx)/Lx ≤ L′/Lx and M/x is a
cocyclic quotient of M.

Recall that a ring R is left semiartinian if every nonzero R-module has a simple submodule.
Proposition 2 The following statements are equivalent for a ring R:
(1) R is left semiartinian.
(2) Every nonzero module has a cocyclic submodule.
(3) Every injective module is the injective hull of a direct sum of cocyclic modules.
Proof. (2) ⇒ (1) Let M be a nonzero module. Then M has a nonzero cocyclic submodule N. Then there exists a

simple module S such that S ≤e N. Therefore, M has a simple submodule.
(2)⇒ (3) This is by a standard use of Zorn’s Lemma.
(3) ⇒ (2) Let M be a nonzero module. Then M ≤e E(M) = E(

⊕
i∈I Ki), with Ki cocyclic for each i ∈ I. By the

projection argument [11] 2.3.3, M has a nonzero submodule isomorphic to a submodule of K j for some j ∈ I. Therefore
M has a nonzero cocyclic submodule.

At this stage, it is natural to ask when the cyclic modules and the cocyclic modules coincide. This question was
answered in [12]. In that paper, the authors demonstrated the following:

Theorem 4 The classes of nonzero cyclic and cocyclic modules coincide if and only if R is a left uniserial and an
artinian principal ideal ring.

We now characterize when every cyclic module is cocyclic and describe for which rings every cocyclic module is
cyclic.

Theorem 5 The following statements are equivalent for a ring R:
(1) Every cyclic module is cocyclic.
(2) R is left artinian and left uniserial.
(3) Every nonempty subset of left ideals of R has least element.
(4) R is left semiartinian and left uniserial.
(5) The lattice of left ideals of R is as follows:

0 < Jn−1 < Jn−2 < · · ·< J < R

where J is the Jacobson radical and Jm is a principal ideal for every m ∈ N.
Proof. (1)⇒ (2) Let M be a R-module and RR → M an epimorphism. Then, by hypothesis, M is a cocyclic module,

and thus it is finitely cogenerated, consequently R is left artinian. Also, as M is cocyclic, then it is uniform. Therefore by
[9] Proposition 2.7, R is left uniserial.

(2)⇒ (1) LetC be a cyclic module. Then there exists an epimorphism R →C. ThereforeC is artinian and uniserial.
As C is artinian, then it has a simple submodule S. Furthermore, by the linearity ofC, we have that S is essential inC.

(2)⇒ (3) Consider a nonempty family of left ideas of R. As R is left artinian, then such family posses a minimal
element, and by linearity of R, such element is in fact a least element.
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(3)⇒ (4) This is clear.
(4) ⇒ (1) Let M be a cyclic module. Then M is a quotient of R, and therefore M is uniserial and semiartinian, so

that S = soc(M)≤e M, for some simple module S. Then M is cocyclic.
(5)⇒ (2) Clear.
(2)⇒ (5)Note that at this point, we have that the former conditions are equivalent. Now, observe that, since R is left

uniserial, it contains a unique maximal ideal I, so R is local, and hence I = J ̸= 0 where J is the Jacobson radical. Also,
as a consequence of R being artinian, we get that J is nilpotent. So, we will show by induction on the nilpotency index
of the Jacobson radical, that every ideal of R has the form Jm for some m ∈ N. Indeed, let n be the nilpotency index of
the radical. If n = 2, then J is a R/J-module. Furthermore, J is a semisimple R/J-module, since R/J is a division ring.
Thus J is a semisimple R-module. Then linearity of R implies that J is simple. So, if we consider an ideal I of R, then
either I = J or I = J0 = R. Now, for the inductive case Jn−1, we have that Jn−1 ̸= 0 hence, the same argument as above,
proves that Jn−1 is simple. So, if I is a nonzero ideal, we get that Jn−1 ≤ I and therefore R/Jn−1 is an artinian uniserial
ring with nilpotency index less than n, with I/Jn ≤ R/Jn. Then the inductive hypothesis yields I = Jm for some m ∈N. It
remains to show that I is cyclic. Let x ∈ J such that x ∈ J2. Then, linearity ensures that J2 < Rx ≤ J, and this implies that
J = Rx.

Proposition 3 Let R be a ring such that every cocyclic module is local in the sense of Definition 1. Then the following
statements are equivalent:

(1) Every cocyclic module is cyclic.
(2) R is left MAX and E(S) is noetherian for each simple module S.
Proof. (1) ⇒ (2) By hypothesis E(S) and all its submodules are cyclic. Then E(S) is noetherian for each simple

module S. Now, take a nonzero module M. By Proposition 1, M has a cocyclic quotient which is cyclic by hypothesis.
Hence M has a simple quotient. Therefore, R is a left MAX ring.

(2)⇒ (1) Consider M a cocyclic module. Then there exists a simple module S such that M ≤ E(S). Therefore, M
is finitely generated. That is M = Rx1 + · · ·+Rxn for some x1, . . . , xn ∈ M. Note that by an induction argument it is
sufficient to prove that if M = Rx1 +Rx2, then M = Rx1 or M = Rx2. Indeed, as R is a left MAX ring, then by Lemma
3, M has a greatest proper submodule N. If Rx1 < M and Rx2 < M, then Rx1 ≤ N and Rx2 ≤ N. Consequently M = N, a
contradiction. Therefore M is cyclic.

There are some rings that are defined by means of cyclic modules such as Köthe rings. Recall that a ring R is left
Köthe if every module is a direct sum of cyclic modules. Also a Köthe ring is a ring which is left and right Köthe ring.
These rings are related to the left uniserial left artinian rings in which every cyclic module is cocyclic as the next theorem
elucidates.

Theorem 6 For a left uniserial ring R the following conditions are equivalent:
1. R is a left Köthe ring.
2. R is a Köthe ring.
3. R is an artinian principal ideal ring.
4. R is left artinian and each cocyclic module is a cyclic module.
Proof. (1)⇒ (3) Let I be a two sided ideal of R. By Lemma 4, it follows that R/I is a left Köthe ring. Since R is

left uniserial, so is R/IR/I. Consequently, E(R/I) is an indecomposable R/I-module. Moreover, E(R/I) is a direct sum
of cyclic R/I-modules, so E(R/I) is cyclic. Furthermore, by [13] Theorem 4.4, R/I is left artinian. Then [14] Section 3,
2. Lemma implies that R/I is left autoinjective. Hence, R/I is a QF ring for each two sided ideal I of R. Therefore, by
[15] Proposition 25.4.6B, R is an artinian principal ideal ring.

(3)⇒ (2) This follows from Köthe’s Theorem.
(2)⇒ (1) Clear.
(4)⇔ (3) Follows from Theorems 5 and 4.
Moreover, the class of cyclic R-modules coincides with the class of cocyclic R-modules precisely when R is a left

uniserial left Köthe ring as we will see in Theorem 7. But first we are going to introduce some lemmas.
Lemma 4 If R is a left Köthe ring, then R/I is a left Köthe ring for each two sided ideal I of R.
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Proof. Let R/IM be a left R/I-module. Hence M is a R-module such that IM = {0}. Also, since R is left Köthe,
M =

⊕
j∈J C j with C j a left cyclic R-module for each j ∈ J. Thus

⊕
j∈J IC j = I(

⊕
j∈J C j) = IM = {0}. Then IC j = {0}

for each j ∈ J, concluding thatC j is a left cyclic R/I-module. Therefore, R/I is a left Köthe ring for each ideal I of R.
Lemma 5 If R is a ring such that every left module is a direct sum of cocyclic modules, then R is left artinian.
Proof. As every nonzero module is a direct sum of cocyclic modules, every nonzero module has nonzero socle.

Equivalently each nonzero module has essential socle. Now, take Rx a cyclic module. Then Rx =
⊕n

i=1 Ci withCi cocyclic
for each i ∈ {1, . . . , n} as being finitely generated. Then

soc(Rx) = soc
n⊕

i=1

Ci =
n⊕

i=1

soc(Ci) =
n⊕

i=1

Si

with Si a simple module for each i ∈ {1, · · · , n}. Then every left cyclic module has left finitely generated essential socle.
Hence, each left cyclic is finitely cogenerated. Therefore R is left artinian.

Theorem 7 The following statements are equivalent for a ring R:
1. The classes of nonzero cyclic R-modules and cocyclic R-modules coincide,
2. R is a left uniserial left Köthe ring,
3. R is a left uniserial and an artinian principal ideal ring,
4. R is a left uniserial ring such that every left module is a direct sum of left cocyclic modules.
Proof. (1)⇔ (2)⇔ (3) They follow from Theorem 6.
(3)⇒ (4) By Köthe’s theorem we see that R is a left Köthe ring. Also, Theorem 6 implies that the class of nonzero

cyclic modules and cocyclic modules coincide. Therefore, every module is a direct sum of cocyclic modules.
(4)⇒ (3) By hypothesis every cyclic module is a direct sum of cocyclic modules. Hence, every cyclic module has a

simple submodule. Also, as R is uniserial, every cyclic module is uniserial, so the uniqueness of each submodule simple
holds. Therefore, every cyclic module is cocyclic. This implies, by Theorem 6, that R is uniserial and an artinian principal
ideal ring.

It is well known that if each module embeds in a free module, then the ring R has to be QF . In recent years, rings
(CF rings) with the property that all of it’s cyclic modules embed in a free module have been studied in [2]. Also have
been studied rings (FGF rings) in which every finitely generated module embeds in a free module, see [2]. Now we will
study the dual properties of the CF and FGF rings, i.e., every cocyclic module embeds in a free module and every finitely
cogenerated module embeds in a free module and conclude that these dual properties are equivalent.

Theorem 8 The following statements are equivalent for a ring R:
(1) Every cocyclic module embeds in a free module.
(2) The injective hull of every simple module is projective.
(3) R is a cogenerator.
(4) Every finitely cogenerated module embeds in a free module.
(5) The injective hull of every finitely cogenerated module is projective.
Proof. (1)⇒ (2) By hypothesis, E(S) embeds in a free module. Then E(S) is a direct summand of a free module,

so, it is projective.
(2) ⇒ (1) Let M be a cocyclic module. Then there exists a simple module S such that M ≤ E(S). By hypothesis,

E(S) is a direct summand of a free module, and hence M embeds in a free module.
(2) ⇒ (4) Let M be a finitely cogenerated module. Then soc(M) =

⊕n
i=1 Si ≤e M, so E(

⊕n
i=1 Si)=

⊕n
i=1 E(Si) =

E(M). Since each E(Si) is projective, E(M) is also projective, and thus it embeds in a free module.
(5) ⇒ (3) Let us prove that the injective hull of every simple module embeds in R. Let S be a simple module.

By hypothesis E(S) is projective since it is finitely cogenerated, so E(S) embeds in a free module. Then there exists a
monomorphism φ : E(S) → R(X) for some set X . Then there exists π j : R(X) → R with π j ̸= 0 such that π jφ(S) ̸= 0.
Therefore, π jφ is a monomorphism.
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(3) ⇒ (2) As R is a left cogenerator ring, then E(S) embeds in R for each simple module S. Therefore, E(S) is
projective for each simple module S.

(4)⇒ (5) Let M be a finitely cogenerated module. Then E(M) is finitely cogenerated: indeed, let S ≤ E(M) be a
simple module. Then S∩M ̸= 0, so S ≤ M, thus soc(E(M)) = soc(M). Hence, by hypothesis E(M) embeds in a free
module and, consequently, is a projective module.

Finally, we observe some similarities between the cyclic and cocyclic modules with respect to the pretorsion classes
and the free pretorsion classes. Recall that a classC of modules is pretorsion if it is closed under quotients and direct sums.
Also, a class C is free torsion if it is closed under submodules and direct products. Recall that a class C is determined by
its cyclic modules if for each module M : M ∈ C if and only if Rx ∈ C for each x ∈ C . The next proposition is a well
known result:

Proposition 4 The following statements are equivalent:
(1) Every pretorsion class is closed under submodules.
(2) Every pretorsion class is determined by its cyclic modules.
We now establish a definition:
Definition 2 A class C is determined by its cocyclic modules if for each module M : M ∈ C if and only if every

cocyclic quotient of M is in the class C .
Again, the relation between cyclic and cocyclic modules is in some cases dual, as the following proposition shows:
Proposition 5 The following statements are equivalent:
(1) Every free pretorsion class is closed under quotients.
(2) Every free pretorsion class is determined by its cocyclic modules.
Proof. (1)⇒ (2) Let C be a free pretorsion class. If M ∈ C , then by hypothesis every cocyclic quotient belongs to

C . Now, suppose that every cocyclic quotient of a module M belongs to C . As in the proof of Proposition 1, for each
x ̸= 0 there exists a maximal submodule Lx such that x /∈ Lx and M/Lx is a cocyclic quotient for each nonzero x ∈ M. Then
consider the morphism

f : M → ∏
0̸=x∈M

M/Lx

defined by f (m) = (m+Lx)0̸=x∈M . Let x ∈ Ker( f ) =
∩

0̸=x∈M Lx. If y ∈ Ker( f ) and y ̸= 0, then y ∈ Lx for each nonzero
x ∈ M, in particular y ∈ Ly, which is absurd. Then f is a monomorphism, and consequently M ∈ C .

(2)⇒ (1) Let C be a free pretorsion class and f : M → L an epimorphism with M ∈ C . Then each cocyclic quotient
of L is a cocyclic quotient of M. Hence each cocyclic quotient of L is in C . Then L ∈ C by hypothesis. Therefore C is
closed under quotients.
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