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Abstract: The current definition of the Complex Hesitant Fuzzy Set (CHFS), derived from the Ramot form of complex
numbers, cannot process information as in Tamir’s complex fuzzy form. We have data with uncertainty and extra
information that cannot be described by any other structure than Tamir’s complex fuzzy form. Hence, in this article,
we initiated the idea of CHFS based on Tamir’s complex fuzzy form and established its operational laws. Since Decision-
Making (DM) theory is central to nearly all disciplines, we have proposed a novel complex hesitant fuzzy Multi-Criterion
Decision-Making (MCDM)model. This method can handle all sorts of real-lifeMCDMproblems, where the data contains
uncertainty, hesitancy, and extra fuzzy information. While developing this method, we also develop and apply Dombi
aggregation operators in thismanuscript. After that, we illustrate a case study that concerns energy storage system selection
for AI-controlled microgrids and discuss how the theory we have developed can be applied to real-world challenges. Last,
we confer on how this proposed theory is superior to other theories and why it should be adopted.
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Abbreviation
FS Fuzzy Set
HFS Hesitant Fuzzy Set
CFS Complex Fuzzy Set
CHFS Complex Hesitant Fuzzy Set
CHFDWA AOs Complex Hesitant Fuzzy Dombi Weighted Average Aggregation Operators
CHFDWG AOs Complex Hesitant Fuzzy Dombi Weighted Geometric Aggregation Operators

1. Introduction
The Fuzzy Set (FS) theory was established by Zadeh [1] in 1965. In FS every element from the universal set U ranging

from the unit interval [0, 1], FS only deals with Membership Grade (MG). FS has generalized the crisp set and provided
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a useful mathematical framework to decision-makers for handling ambiguity and uncertainty in real-life issues. After the
development of FS theory, many researchers utilized them in different fields of life [2, 3]. FS plays a very important role in
the field of Decision-Making (DM) procedures [4, 5]. Tanaka and Sugeno [6] made significant contributions to FS theory,
particularly in the development of fuzzy logic systems and fuzzy inference systems, which have found wide applications
in control systems and DM processes. Fuzzy control theory [7] makes use of fuzzy variables and fuzzy logic to create
control systems that can deal with imprecise or uncertain input, providing flexibility and robustness while operating
complex and nonlinear systems. FS has received a lot of consideration over the last few eras [8–10]. Also, the fuzzy
cooperative approach was recently devised by Chen et al. [11] to evaluate the applicability of smart health. Hesitancy
is seen in many real-life problems. Torra [12] developed Hesitant Fuzzy Sets (HFSs) to deal with such situations. HFSs
are a powerful variant of FS that enables several positive ratings to be associated with any preference data for handling
a challenging and complex situation. Using the benefits of HFS, Tan et al. [13] established the notion of HF Hamacher
AOs for multi-criteria decision-making. He [14] discussed Typhoon disaster assessment based on Dombi HF information
AOs. HF Dombi Archimedean AO [15] and HF Maclaurin symmetric mean AO [16] have been developed to discuss the
analysis of HF in aggregation theory. Moreover, HF information AOs have been delivered by Xia and Xu [17]. Xia et al.
[18] delivered the notion of some HF AOs and established their applications to group decision-making. Wei et al. [19]
introduced the idea of HF coquet integral AOs and their applications to MCDM. HF power AOs have been delivered by
Zhang [20]. Li et al. [21] discussed the consistency of HF linguistic preference relations. Wu et al. [22] discussed the
connection of the numerical scale model with assessing attitudes and proposed its application to MADM. Sahoo et al. [23]
initiated a review of theMCDMapplication to solve energymanagement problems. Similarly, Sahoo et al. [24] proposed a
systematic review of theMCDMapproach towards sustainable renewable energy developments. Complex-valued positive
grades, which carry two-dimensional data in a specific set, are a representation of the concept of a Complex Fuzzy Set
(CFS). The polar form of CFS was initially introduced by Ramot et al. [25]. Rehman [26] utilized the notion of CFS and
proposed the probability AOs for the selection of a database management system. In the Polar form of CFS, MG belongs
to the unit circle in a complex plan and it is a limited notion pointed out by Tamir et al. [27]. Tamir et al. [27] introduced
the CF membership grade and MG belongs to the unit square in the complex plan rather than that of the unit circle in the
complex plan. The Tamir’s form of CFS is more advanced because it can handle more advanced data and, in this case,
the chance of data loss can be reduced. Numerous investigators employed CFS across various domains. Yazdanbakhsh
and Dick [28] established the systematic review using CFS and reasoning. The Complex Hesitant Fuzzy Set (CHFS) is a
combination of the HFS and CFS. In CHFS theory, degrees of membership take on complex values and are represented
in polar coordinates [29]. CHFS plays a significant role in DM problems [30] due to its capability to handle complex and
uncertain information. When handling complicated and challenging data in real-world decision-making, CHFS is more
potent than other theories like FS, CFS, and HFS. CHFS provides a flexible framework to represent these uncertainties,
allowing DM to express their preferences more accurately. The polar form of CHFS deals with unit circles only to make
it more accurate and easier to understand. We discuss the CHFS based on Tamir’s CFS. Instead of using the old polar
method, we now use CHFS using unit squares in the complex plan, which makes it simpler to draw and calculate. In this
article:

(1) We introduce different AOs using the framework of CHFSs.
(2) We introduce here complex HFDWA (CHFDWA), complex HFDOWA (CHFDOWA) and complex HFDHWA

(CHFDHWA) AOs. Similarly, we introduce CHFD geometric, complex HFDWG (CHFDWG), complex HFDOWG
(CHFDOWG), and complex HFDHWG (CHFDHWG) AOs.

(3) To discuss the application of the proposed theory, we have defined an algorithm and utilized the initiated theory.
(4) The comparative analysis of the developed approach has been discussed to show the advancement of the

introduced work.
The rest of the article is organized as follows; in section 2 we have discussed the fundamental notions. Section 2

is about the basic Dombi operational laws for CHHFNs. Section 4 is about the aggregation theory in which we have
developed the notion of CHFDWA, CHFDWG, CHFDOWA, CHFDOWG, CHFDHA, and CHFDHG AOs. In section 5
we have discussed the algorithm and application of the introduced approach. Section 6 is about the comparative analysis
of the delivered approach. In section 7, we have discussed the conclusion remarks.
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2. Preliminaries
This section of the article is devoted to discussing some important notions and their operational laws that can help

us define the fundamental idea of the proposed theory.
Definition 1 [12] A Hesitant Fuzzy Set (HFS) Ĥ is of the form

Ĥ = {(i, NĤ1
(i)) | i ∈U}

where NĤ1
(i) is the set of different finite values in [0, 1] representing the Membership Grades (MG) for each element

i ∈U . Further, the notation Ĥ = {NĤ} is called a Hesitant Fuzzy Number (HFN).
Definition 2 [12] Suppose Ĥ1 = {NĤ1

} and Ĥ2 = {NĤ2
} be two HFNs. The fundamental functions are defined as:

ĤC
1 =

∪
Ĉ1∈Ĥ1

{1−Ĉ1},

Ĥ1 ∪ Ĥ2 =
∪

Ĉ1∈Ĥ1, Ĉ2∈Ĥ2

{max(Ĉ1, Ĉ2)},

Ĥ1 ∩ Ĥ2 =
∪

Ĉ1∈Ĥ1, Ĉ2∈Ĥ2

{min(Ĉ1, Ĉ2)}.

Definition 3 [12] For any given three HFNs Ĥ = {N}, Ĥ1 = {N1}, Ĥ2 = {N2} and δ > 0, the operational rules are
given by:

Ĥ1 ⊕ Ĥ2 =
∪

Ĉ1∈Ĥ1, Ĉ2∈Ĥ2

{Ĉ1 +Ĉ2 −Ĉ1Ĉ2},

Ĥ1 ⊗ Ĥ2 =
∪

Ĉ1∈Ĥ1, Ĉ2∈Ĥ2

{Ĉ1Ĉ2},

δ Ĥ =
∪

Ĉ∈Ĥ

{1− (1−Ĉ)δ},

Ĥδ =
∪

Ĉ∈Ĥ

{Ĉδ}.

The idea of Tamir’s Complex Fuzzy Set (CFS) is a more generalized form compared to Ramot’s CFS, due to using
the unit square in a complex plane for membership degrees. The notion of CFS defined by Tamir et al. [27] is given by:

Definition 4 [27] A CFS Ĥ is of the form

Ĥ = {(i, NĤ(i)) | i ∈U},
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where NĤ(i) = ĈĤ(i)+ iT̃Ĥ(i) and Ĥ = {NĤ = ĈĤ + iT̃Ĥ}= {ĈĤ + iT̃Ĥ} represents the Complex Fuzzy Number (CFN),
where i =

√
−1 and ĈĤ , T̃Ĥ ∈ [0, 1].

Definition 5 [27] Let Ĥ1 = {ĈĤ1
+ iT̃Ĥ1

} and Ĥ2 = {ĈĤ2
+ iT̃Ĥ2

} be two CFNs. Then their basic operations are
defined as:

ĤC
1 = {1−ĈĤ1

+ i(1− T̃Ĥ1
)},

Ĥ1 ∪ Ĥ2 = {max(ĈĤ1
, ĈĤ2

)+ imax(T̃Ĥ1
, T̃Ĥ2

)},

Ĥ1 ∩ Ĥ2 = {min(ĈĤ1
, ĈĤ2

)+ imin(T̃Ĥ1
, T̃Ĥ2

)}.

Definition 6 [31] Let δ be a parameter greater than 0 and ς , τ ∈ [0, 1]. The Dombi t-norm and t-conorm are defined
as follows:

T (ς , τ) =
1

1+

[(
1− ς

ς

)δ
+

(
1− τ

τ

)δ
]1/δ ,

T ∗(ς , τ) = 1− 1

1+

[(
ς

1− ς

)δ
+

(
τ

1− τ

)δ
]1/δ .

3. Dombi operational rules based on complex hesitant fuzzy sets
The idea of CHFS has been proposed by Albaity et al. [30]. In this section of the article, we have discussed the basic

operational laws for the CHFSs based on Dombi t-norm and t-conorm. The overall discussion is given by
Definition 7 [30] A CHFS Ĥ is of the form

Ĥ = {(i, NĤ1
(i)) | i ∈ U }, whereNĤ(i) = {CĤ(i)+ iTĤ(i)}

where NĤ(i) is the set of distinct finite complex values and CĤ(i), TĤ(i) ∈ [0, 1]. Note that

Ĥ = {NĤ = CĤ + iTĤ}= {CĤ + iTĤ}

represents the CHFN, where i =
√
−1.

Definition 8 Let

Ĥ1 = {CĤ1
+ iTĤ1

}, Ĥ2 = {CĤ2
+ iTĤ2

}
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be two CHFNs. Then, their fundamental functions are described as:

ĤC
1 =

∪
Ci, Ti∈Ĥ1

{1−Ci + i(1−Ti)},

Ĥ1 ∪ Ĥ2 =
∪

Ci, Ti∈Ĥ1
C j , T j∈Ĥ2

{max{Ci, C j}+ imax{Ti, T j}},

Ĥ1 ∩ Ĥ2 =
∪

Ci, Ti∈Ĥ1
C j , T j∈Ĥ2

{min{Ci, C j}+ imin{Ti, T j}}.

Definition 9 The operations for any three CHFNs Ĥ = (C + iT ), Ĥ1 = (C1+ iT1), Ĥ2 = (C2+ iT2) and δ > 0, are
defined as follows:

Ĥ1 ⊕ Ĥ2 =
∪

C1, T1∈Ĥ1
C2, T2∈Ĥ2

{(C1 +C2 −C1C2)+ i(T1 +T2 −T1T2)} ,

Ĥ1 ⊗ Ĥ2 =
∪

C1, T1∈Ĥ1
C2, T2∈Ĥ2

{(C1C2)+ i(T1T2)} ,

δ Ĥ =
∪

C , T ∈Ĥ

{
(1− (1−C )δ )+ i(1− (1−T )δ )

}
,

Ĥδ =
∪

C , T ∈Ĥ

{
C δ + iT δ

}
.

3.1 Characteristic of Dombi aggregation operators

Aggregation operators are the mathematical framework that can convert a huge amount of information into a single
value that can further help to make a decision easily. Based on the Dombi t-norm and t-conorm, Dombi AOs provide
flexible parameterized control over the aggregation process. Because these operators are smooth and can represent varying
levels of strictness in aggregation, they are frequently utilized in fuzzy logic, decision-making, and multi-criteria analysis.
The following are the main characteristics of Dombi AOs:

(1) Dombi AOs utilize the tunable parameter that can help to see the behaviors of the aggregation. For the different
values of the parameter, we can analyze the results and decide the effects of the parameter on the results.

(2) Unlike the classical AOs, Dombi AOs provide a smooth transition between extreme cases.
(3) These AOs are more flexible and reliable. Accuracy in the results can be obtained in many decision-making

problems by the utilization of Dombi AOs.
Definition 10 For any given three CHFNs Ĥ = (C + iT ), Ĥ1 = (C1+ iT1), Ĥ2 = (C2+ iT2), and δ > 0, the Dombi

operations are described below:
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Ĥ1 ⊕ Ĥ2 =
∪

C1, T1∈Ĥ1
C2, T2∈Ĥ2



1− 1

1+

((
C1

1−C1

)δ
+

(
C2

1−C2

)δ
)1/δ

+

i

1− 1

1+

((
T1

1−T1

)δ
+

(
T2

1−T2

)δ
)1/δ





,

Ĥ1 ⊗ Ĥ2 =
∪

C1, T1∈Ĥ1
C2, T2∈Ĥ2




1

1+

((
1−C1

C1

)δ
+

(
1−C2

C2

)δ
)1/δ

+ i


1

1+

((
1−T1

T1

)δ
+

(
1−T2

T2

)δ
)1/δ




,

θ Ĥ =
∪

C , T ∈Ĥ



1− 1

1+

(
θ
(

C

1−C

)δ
)1/δ

+ i

1− 1

1+

(
θ
(

T

1−T

)δ
)1/δ




,

Ĥθ =
∪

C , T ∈Ĥ




1

1+

(
θ
(

1−C

C

)δ
)1/δ

+ i


1

1+

(
θ
(

1−T

T

)δ
)1/δ




.

Definition 11 For any given CHFN Ĥ, the score function is defined as follows:

s(Ĥ) =
1
2

 1
#Ĥ ∑

C , T ∈Ĥ

(C +T )

 ,

where #Ĥ is the number of elements in Ĥ. For any two CHFNs Ĥ1 and Ĥ2:

if s(Ĥ1)≻ s(Ĥ2), then Ĥ1 ≻ Ĥ2; if s(Ĥ1) = s(Ĥ2), then Ĥ1 ∼ Ĥ2.
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4. Complex hesitant fuzzy Dombi AOs
This section focuses on the CHF Dombi AOs, building on the previous section’s study of CHF operations. This

section introduces various aggregation operators, including CHFDWA, CHFDOWA, CHFDWG, CHFDOWG, CHFDHA,
and CHFDHG. The article discusses the desirable features and gives an example of these operators. To discuss the
applicability of Dombit-norm and t-conorm, it is necessary to define average and geometric AOs. The notion of CHFDWA
and CHFDWG can weight CHF values. To cover these characteristics, the notions of CHFDWA and CHFDWG AOs are
defined as follows:

Definition 12 Assuming a set of CHFNs Ĥ j (where j = 1, 2, 3, . . . , n), the CHFDWA operator is given below.

CHFDWA(Ĥ1, Ĥ2, . . . , Ĥn) =
n⊕

j=1

w̃ jĤ j = w̃1Ĥ1 ⊕ w̃2Ĥ2 ⊕·· ·⊕ w̃nĤn

Then w̃ = (w̃1, w̃2, . . . , w̃n)
T is the Weight Vector (WV) of the CHFNs, w̃ j ∈ [0, 1] and ∑n

j=1 w̃ j = 1.
Theorem 1 Assume that there is a collection of CHFNs Ĥ j ( j = 1, 2, . . . , n) with WV w̃ = (w̃1, w̃2, . . . , w̃n)

T , then
the aggregated CHFNs is:

CHFDWA(Ĥ1, Ĥ2, . . . , Ĥn) =
k+1⊕
j=1

w̃ jĤ j =
∪

C1, T1∈Ĥ1
C2, T2∈Ĥ2

...
Cn, Tn∈Ĥn



1− 1

1+

(
∑n

j=1 w̃ j

(
C j

1−C j

)δ
)1/δ

+

ι

1− 1

1+

(
∑n

j=1 w̃ j

(
Tj

1−Tj

)δ
)1/δ





Proof. We use mathematical induction.
Assuming for (n = 2):

w̃1Ĥ1 =
∪

C1, T1∈Ĥ1

{(
1− 1

1+(w̃1(C1/(1−C1))δ )1/δ

)
+ ι
(

1− 1
1+(w̃1(T1/(1−T1))δ )1/δ

)}

w̃2Ĥ2 =
∪

C2, T2∈Ĥ2

{(
1− 1

1+(w̃2(C2/(1−C2))δ )1/δ

)
+ ι
(

1− 1
1+(w̃2(T2/(1−T2))δ )1/δ

)}

Then
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ẃ1Ĥ1 ⊕ ẃ2Ĥ2

=
∪

Č1, T̃1∈Ĥ1
Č2, T̃2∈Ĥ2





1− 1

1+





1− 1

1+

(
ẃ1

(
Č1

1−Č1

)δ)1/δ

1−1+
1(

ẃ1

(
Č1

1−Č1

)δ)1/δ



δ

+



1− 1

1+

(
ẃ2

(
Č2

1−Č2

)δ)1/δ

1−1+
1(

ẃ2

(
Č2

1−Č2

)δ)1/δ



δ

1/δ



+

ι



1− 1

1+





1− 1

1+

(
ẃ1

(
T̃1

1− T̃1

)δ
)1/δ

1−1+
1(

ẃ1

(
T̃1

1− T̃1

)δ
)1/δ



δ

+



1− 1

1+

(
ẃ2

(
T̃2

1− T̃2

)δ
)1/δ

1−1+
1(

ẃ2

(
T̃2

1−T̃2

)δ
)1/δ



δ

1/δ




If Eq. 1 holds n = k, that is

k⊕
j=1

w̃ jĤ j =
∪

C1, T1∈Ĥ1, ..., Ck, Tk∈Ĥk



1− 1

1+
(

∑k
j=1 w̃ j(C j/(1−C j))δ

)1/δ

+

ι

1− 1

1+
(

∑k
j=1 w̃ j(Tj/(1−Tj))δ

)1/δ




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Now for n = k+1we have

k+1⊕
j=1

w̃ jĤ j =

(
k⊕

j=1

w̃ jĤ j

)
⊕ (w̃k+1Ĥk+1)

In other words, for n = k+1. Eq. 1 holds. So, for every n Eq. 1 holds

k⊕
j=1

w̃ jĤ j =
∪

C1, T1∈Ĥ1, ..., Ck, Tk∈Ĥk



1− 1

1+
(

∑k
j=1 w̃ j(C j/(1−C j))δ

)1/δ

+

ι

1− 1

1+
(

∑k
j=1 w̃ j(Tj/(1−Tj))δ

)1/δ




⊕ ∪

Ck+1, Tk+1∈Ĥk+1

{ (
1− 1

1+
(
w̃k+1(Ck+1/(1−Ck+1))δ

)1/δ

)
+ ι

(
1− 1

1+
(
w̃k+1(Tk+1/(1−Tk+1))δ

)1/δ

) }

Example 1 Assume two CHFNs

Ĥ1 = {0.5+ ι0.3, 0.8+ ι0.5}, Ĥ2 = {0.2+ ι0.1, 0.3+ ι0.4, 0.5+ ι0.6},

with

ẃ =

(
0.45
0.55

)

being the weight vector (WV) of the two CHFNs. The aggregate CHFN is for = 3

CHFDWA(Ĥ1, Ĥ2) =
∪

Ĉ1, T̂1∈Ĥ1, Ĉ2, T̂2∈Ĥ2




1− 1

1+

∑2
j=1 ẃ j

(
Ĉ j

1−Ĉ j

)δ
1/δ


+

ι

1− 1

1+

(
∑2

j=1 ẃ j

(
T̂j

1− T̂j

)δ)1/δ




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=



1− 1

1+

(
0.45

(
0.5

1−0.5

)3

+0.55
(

0.2
1−0.2

)3
)1/3 + ι

1− 1

1+

(
0.45

(
0.3

1−0.3

)3

+0.55
(

0.1
1−0.1

)3
)1/3

 ,

1− 1

1+

(
0.45

(
0.5

1−0.5

)3

+0.55
(

0.3
1−0.3

)3
)1/3 + ι

1− 1

1+

(
0.45

(
0.3

1−0.3

)3

+0.55
(

0.4
1−0.4

)3
)1/3

 ,

1− 1

1+

(
0.45

(
0.5

1−0.5

)3

+0.55
(

0.5
1−0.5

)3
)1/3 + ι

1− 1

1+

(
0.45

(
0.3

1−0.3

)3

+0.55
(

0.6
1−0.6

)3
)1/3

 ,

1− 1

1+

(
0.45

(
0.8

1−0.8

)3

+0.55
(

0.2
1−0.2

)3
)1/3 + ι

1− 1

1+

(
0.45

(
0.5

1−0.5

)3

+0.55
(

0.1
1−0.1

)3
)1/3

 ,

1− 1

1+

(
0.45

(
0.8

1−0.8

)3

+0.55
(

0.3
1−0.3

)3
)1/3 + ι

1− 1

1+

(
0.45

(
0.5

1−0.5

)3

+0.55
(

0.4
1−0.4

)3
)1/3

 ,

1− 1

1+

(
0.45

(
0.8

1−0.8

)3

+0.55
(

0.5
1−0.5

)3
)1/3 + ι

1− 1

1+

(
0.45

(
0.5

1−0.5

)3

+0.55
(

0.6
1−0.6

)3
)1/3




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=



0.4354+ ι0.2485,

0.4414+ ι0.3684,

0.5000+ ι0.5529,

0.7540+ ι0.4340,

0.7541+ ι0.4593,

0.7552+ ι0.5692


Various aggregated CHFNs can be created when the parameter ξ́ has various values.
Definition 13 Let us assume there is a group of CHFNs

Ĥ j ( j = 1, 2, 3, . . . , n),

a CHFDWG operator is specified as given below:

CHFDWG(Ĥ1, Ĥ2, . . . , Ĥn) =
n⊗

j=1

Ĥ
ẃ j
j = Ĥẃ1

1 ⊗ Ĥẃ2
2 ⊗·· ·⊗ Ĥẃn

n

Then ẃ = (ẃ1, ẃ2, . . . , ẃn)
T is the Weight Vector (WV) of the CHFNs, where

ẃ j ∈ [0, 1],
n

∑
j=1

ẃ j = 1.

Theorem2Assume that there is, a group of CHFNs Ĥ j ( j = 1, 2, 3, . . . , n)with theWVof ẃ=(ẃ1, ẃ2, . . . , ẃn)
T , then

the aggregated CHFNs is
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CHFDWG(Ĥ1, Ĥ2, . . . , Ĥn) =
n⊗

j=1

(
Ĥ

ẃ j
j

)
=

∪
Č1, T̃1∈Ĥ1
Č2, T̃2∈Ĥ2

...
Čn, T̃n∈Ĥn




1

1+

 n
∑
j=1

ẃ j

(
1−Č j

Č j

)δ
1/δ


+

ι


1

1+

(
n
∑
j=1

ẃ j

(
1− T̃j

T̃j

)δ)1/δ




Proof. We use mathematical induction.
In the case of n = 2,

Ĥẃ1
1 =

∪
Č1, T̃1∈Ĥ1




1

1+

(
ẃ1

(
1−Č1

Č1

)δ)1/δ

+

ι

1− 1

1+

(
ẃ1

(
1− T̃1

T̃1

)δ
)1/δ





Ĥẃ2
2 =

∪
Č2, T̃2∈Ĥ2




1

1+

(
ẃ2

(
1−Č2

Č2

)δ)1/δ

+

ι

1− 1

1+

(
ẃ2

(
1− T̃2

T̃2

)δ
)1/δ




Then
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Ĥẃ1
1 ⊗ Ĥẃ2

2 =
∪

Č1, T̃1∈Ĥ1, Č2, T̃2∈Ĥ2




1

1+

((
ẃ1

(
1−Č1

Č1

)δ)
+

(
ẃ2

(
1−Č2

Č2

)δ))1/δ

+

ι


1

1+

((
ẃ1

(
1− T̃1

T̃1

)δ
)
+

(
ẃ2

(
1− T̃2

T̃2

)δ
))1/δ





=
∪

Č1, T̃1∈Ĥ1, Č2, T̃2∈Ĥ2




1

1+

 2
∑
j=1

ẃ j

(
1−Č j

Č j

)δ
1/δ


+

ι


1

1+

(
2
∑
j=1

ẃ j

(
1− T̃j

T̃j

)δ)1/δ




For n = k, Eq. 2 is valid, which means

CHFDWA(Ĥ1, Ĥ2, . . . , Ĥn) =
k⊗

j=1

(
Ĥ

ẃ j
j

)
=

∪
Č1, T̃1∈Ĥ1

...
Čn, T̃n∈Ĥn




1

1+

 k
∑
j=1

ẃ j

(
1−Č j

Č j

)δ
1/δ


+

ι


1

1+

(
k
∑
j=1

ẃ j

(
1− T̃j

T̃j

)δ)1/δ




Now for n = k+1
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k+1⊗
j=1

(
Ĥ

ẃ j
j

)
=

(
k⊗

j=1

Ĥ
ẃ j
j

)
⊗ Ĥẃk+1

k+1

=
∪

Č1, T̃1∈Ĥ1, ..., Čk, T̃k∈Ĥk




1

1+

 k
∑
j=1

ẃ j

(
1−Č j

Č j

)δ
1/δ


+

ι


1

1+

(
k
∑
j=1

ẃ j

(
1− T̃j

T̃j

)δ)1/δ





⊗
∪

Čk+1, T̃k+1∈Ĥk+1




1

1+

(
ẃk+1

(
1−Čk+1

Čk+1

)δ)1/δ

+

ι


1

1+

(
ẃk+1

(
1− T̃k+1

T̃k+1

)δ
)1/δ





=
∪

Č1, T̃1∈Ĥ1, ..., Čk+1, T̃k+1∈Ĥk+1




1

1+

k+1
∑
j=1

ẃ j

(
1−Č j

Č j

)δ
1/δ


+

ι


1

1+

(
k+1
∑
j=1

ẃ j

(
1− T̃j

T̃j

)δ)1/δ




It is true that Eq. 2 for n = k+1. Therefore, Eq. 2 is true for every n. Then,
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CHFDWG(Ĥ1, Ĥ2, . . . , Ĥn) =
n⊗

j=1

(
Ĥ

ẃ j
j

)
=

∪
Č1, T̃1∈Ĥ1

...
Čn, T̃n∈Ĥn




1

1+

 n
∑
j=1

ẃ j

(
1−Č j

Č j

)δ
1/δ


+

ι


1

1+

(
n
∑
j=1

ẃ j

(
1− T̃j

T̃j

)δ)1/δ




Example 2 Let us assume there are two CHFNs:

Ĥ1 = {0.34+ ι0.51, 0.42+ ι0.53}, Ĥ2 = {0.12+ ι0.41, 0.31+ ι0.43, 0.44+ ι0.60},

and the weight vector is given by:

ẃ =

(
0.45
0.55

)
,

with aggregation parameter δ = 4. Then, the accumulated CHFN using the CHFDWG operator is computed as:

CHFDWG(Ĥ1, Ĥ2) =
∪

Ĉ1, T̂1∈Ĥ1
Ĉ2, T̂2∈Ĥ2


 1

1+
(

∑n
j=1 ẃ j

(
1−Ĉ j

Ĉ j

)δ)1/δ

+ ι

 1

1+
(

∑n
j=1 ẃ j

(
1−T̂j

T̂j

)δ)1/δ



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=



1(
1+0.45

(
1−0.34

0.34

)4

+0.55
(

1−0.12
0.12

)4
)1/4 + ι

1(
1+0.45

(
1−0.51

0.51

)4

+0.55
(

1−0.41
0.41

)4
)1/4 ,

1(
1+0.45

(
1−0.34

0.34

)4

+0.55
(

1−0.31
0.31

)4
)1/4 + ι

1(
1+0.45

(
1−0.51

0.51

)4

+0.55
(

1−0.43
0.43

)4
)1/4 ,

1(
1+0.45

(
1−0.34

0.34

)4

+0.55
(

1−0.44
0.44

)4
)1/4 + ι

1(
1+0.45

(
1−0.51

0.51

)4

+0.55
(

1−0.60
0.60

)4
)1/4 ,

1(
1+0.45

(
1−0.42

0.42

)4

+0.55
(

1−0.12
0.12

)4
)1/4 + ι

1(
1+0.45

(
1−0.53

0.53

)4

+0.55
(

1−0.41
0.41

)4
)1/4 ,

1(
1+0.45

(
1−0.42

0.42

)4

+0.55
(

1−0.31
0.31

)4
)1/4 + ι

1(
1+0.45

(
1−0.53

0.53

)4

+0.55
(

1−0.43
0.43

)4
)1/4 ,

1(
1+0.45

(
1−0.42

0.42

)4

+0.55
(

1−0.44
0.44

)4
)1/4 + ι

1(
1+0.45

(
1−0.53

0.53

)4

+0.55
(

1−0.60
0.60

)4
)1/4


={0.1366+ ι0.4373, 0.3214+ ι0.4543, 0.3741+ ι0.5442, 0.1367+ ι0.4397, 0.3364+ ι0.4575,

0.4302+ ι0.5591}.

Various aggregated CHFNs can be established by changing the value of parameter δ .
The CHFDWA and CHFDWG operators consider the importance (weights) of CHF values, but do not address their

ordered positions. To incorporate the ordered positions of CHFNs, the following operators are defined:
Definition 14 Let there be a group of CHFNs Ĥ j ( j = 1, 2, . . . , n), and let ẃ = (ẃ1, ẃ2, . . . , ẃn)

T be the
corresponding weights such that ẃ j ∈ [0, 1] and ∑n

j=1 ẃ j = 1. Let Ĥφ( j) denote the j-th largest CHF value. Then:

CHFDOWA(Ĥ1, Ĥ2, . . . , Ĥn) =
n⊕

j=1

(
ẃ jĤφ( j)

)
= ẃ1Ĥφ(1)⊕ ẃ2Ĥφ(2)⊕·· ·⊕ ẃnĤφ(n),

CHFDOWG(Ĥ1, Ĥ2, . . . , Ĥn) =
n⊗

j=1

(
Ĥ

ẃ j
φ( j)

)
= Ĥẃ1

φ(1)⊗ Ĥẃ2
φ(2)⊗·· ·⊗ Ĥẃn

φ(n).
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Theorem 3Assume that there is a set of CHFNs Ĥ j ( j = 1, 2, 3, . . . , n). Then, the aggregated CHFNs are determined
by the CHFDOWA or CHFDOWG operator.

CHFDOWA(Ĥ1, Ĥ2, . . . , Ĥn) =
∪

Čϕ(1), T̃ϕ(1)∈Ĥϕ(1)
Čϕ(2), T̃ϕ(2)∈Ĥϕ(2)

...
Čϕ(n), T̃ϕ(n)∈Ĥϕ(n)



1− 11+
n
∑
j=1

ẃ j

(
Čϕ( j)

1−Čϕ( j)

)δ


1
δ
+

ι


1− 11+

n
∑
j=1

ẃ j

(
T̃ϕ( j)

1− T̃ϕ( j)

)δ


1
δ




and

CHFDOWG(Ĥ1, Ĥ2, . . . , Ĥn) =
∪

Čϕ(1), T̃ϕ(1)∈Ĥϕ(1)
Čϕ(2), T̃ϕ(2)∈Ĥϕ(2)

...
Čϕ(n), T̃ϕ(n)∈Ĥϕ(n)



11+
n
∑
j=1

ẃ j

(
1−Čϕ( j)

Čϕ( j)

)δ


1
δ
+

ι


11+

n
∑
j=1

ẃ j

(
1− T̃ϕ( j)

T̃ϕ( j)

)δ


1
δ




Example 3 Let us assume there are three CHFNs:

Ĥ1 = {0.2+ ι0.3, 0.4+ ι0.5}, Ĥ2 = {0.2+ ι0.3, 0.6+ ι0.6, 0.8+ ι0.7}, Ĥ3 = {0.4+ ι0.5}

ẃ = (0.2, 0.3, 0.5)T

is the weight vector of these CHFNs. Let the parameter δ = 4. Then the score of each CHFN is calculated as:
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s(Ĥ1) =
1
2

(
0.2+0.3+0.4+0.5

2

)
= 0.35

s(Ĥ2) =
1
2

(
0.2+0.3+0.6+0.6+0.8+0.7

3

)
= 0.53

s(Ĥ3) =
0.4+0.5

2
= 0.45

Since s(Ĥ2)> s(Ĥ3)> s(Ĥ1), we have:

Ĥϕ(1) = Ĥ2 = {0.2+ ι0.3, 0.6+ ι0.6, 0.8+ ι0.7}

Ĥϕ(2) = Ĥ3 = {0.4+ ι0.5},

Ĥϕ(3) = Ĥ1 = {0.2+ ι0.3, 0.4+ ι0.5}

According to the definition of the CHFDOWA operator, we have:

CHFDOWA(Ĥ1, Ĥ2, Ĥ3) =
∪

Čϕ(1), T̃ϕ(1)∈Ĥϕ(1)
Čϕ(2), T̃ϕ(2)∈Ĥϕ(2)
Čϕ(3), T̃ϕ(3)∈Ĥϕ(3)



1− 11+
3
∑
j=1

ẃ j

(
Čϕ( j)

1−Čϕ( j)

)δ


1
δ
+

ι


1− 11+

3
∑
j=1

ẃ j

(
T̃ϕ( j)

1− T̃ϕ( j)

)δ


1
δ





=

{
0.3329+ ι0.4299, 0.3870+ ι0.4866, 0.5044+ ι0.5178,
0.5098+ ι0.5371, 0.7279+ ι0.6125, 0.7280+ ι0.6169

}

Similarly, for the CHFDOWG operator:

Contemporary Mathematics 3286 | Tahir Mahmood, et al.



CHFDOWG(Ĥ1, Ĥ2, Ĥ3) =
∪

Čϕ(1),T̃ϕ(1)∈Ĥϕ(1)
Čϕ(2),T̃ϕ(2)∈Ĥϕ(2)
Čϕ(3),T̃ϕ(3)∈Ĥϕ(3)



11+
3
∑
j=1

ẃ j

(
1−Čϕ( j)

Čϕ( j)

)δ


1
δ
+

ι


11+

3
∑
j=1

ẃ j

(
1− T̃ϕ( j)

T̃ϕ( j)

)δ


1
δ





=

{
0.2143+ ι0.3183, 0.2684+ ι0.3831, 0.2283+ ι0.3363,
0.4000+ ι0.5109, 0.2286+ ι0.3365, 0.4129+ ι0.5134

}

Now we introduce some hybrid CHF Dombi aggregation operators.
The notion of CHFDWA and CHFDWG AOs can only weigh the CHF values, while CHFDOWA and CHFDOWG

AOs can only consider the ordered positions. To incorporate both these characteristics in a unified structure, the CHFDHA
and CHFDHG operators are defined as follows:

Definition 15 Let us assume there is a group of CHFNs Ĥ j ( j = 1, 2, 3, . . . , n), and

ẃ = (ẃ1, ẃ2, . . . , ẃn)
T

is the weight vector (WV) of the CHFNs, where ẃ j ∈ [0, 1] and ∑n
j=1 ẃ j = 1.

Also,

ẃ = (ẃ1, ẃ2, . . . , ẃn)
T

is the related weight vector of the accumulated documents, satisfying ẃ j ∈ [0, 1] and ∑n
j=1 ẃ j = 1.

Then, the definitions of the CHFDHA and CHFDHG operators are given as follows:
CHFDHA operator:

CHFDHA(Ĥ1, Ĥ2, . . . , Ĥn) =
n⊕

j=1

ẃ j
˙̂Hϕ( j) = ẃ1

˙̂Hϕ(1)⊕ ẃ2
˙̂Hϕ(2)⊕·· ·⊕ ẃn

˙̂Hϕ(n)

where ˙̂Hϕ( j) is the i-th largest element of

˙̂H = nẃ jĤ j, ( j = 1, 2, . . . , n)
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CHFDHG operator:

CHFDHG(Ĥ1, Ĥ2, . . . , Ĥn) =
n⊗

j=1

(
¨̂Hϕ( j)

)ẃ j
=
(

¨̂Hϕ(1)

)ẃ1
⊗
(

¨̂Hϕ(2)

)ẃ2
⊗·· ·⊗

(
¨̂Hϕ(n)

)ẃn

where ¨̂Hϕ( j) is the j-th largest element of

¨̂H j = Ĥ
nẃ j
j , ( j = 1, 2, . . . , n)

Theorem 4 Suppose there is a group of CHFNs Ĥ j (where j = 1, 2, 3, . . . , n). The aggregated CHFNs, established
using the CHFDHA and CHFDHG operators, are as follows:

CHFDHA operator:

CHFDHA(Ĥ1, Ĥ2, . . . , Ĥn) =
∪

Ċϕ(1), Ṫϕ(1)∈ ˙̂Hϕ(1)

Ċϕ(2), Ṫϕ(2)∈ ˙̂Hϕ(2)
...

Ċϕ(n), Ṫϕ(n)∈ ˙̂Hϕ(n)




1− 11+

n
∑
j=1

ẃ j

(
Ċϕ( j)

1−Ċϕ( j)

)δ
1/δ


+

ι


1− 11+

n
∑
j=1

ẃ j

(
Ṫϕ( j)

1− Ṫϕ( j)

)δ
1/δ




CHFDHG operator:

CHFDHG(Ĥ1, Ĥ2, . . . , Ĥn) =
∪

C̈ϕ(1), T̈ϕ(1)∈ ¨̂Hϕ(1)

C̈ϕ(2), T̈ϕ(2)∈ ¨̂Hϕ(2)
...

C̈ϕ(n), T̈ϕ(n)∈ ¨̂Hϕ(n)




11+

n
∑

i=1
ẃi

(
1−C̈ϕ(i)

C̈ϕ(i)

)δ
1/δ


+

ι


11+

n
∑

i=1
ẃi

(
1− T̈ϕ(i)

T̈ϕ(i)

)δ
1/δ




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Here, ˙̂Hϕ( j) is the j-th largest of ˙̂H = nẃ jĤ j, and ¨̂Hϕ( j) is the j-th largest of ¨̂H j = Ĥ
nẃ j
j for j = 1, 2, . . . , n.

Example 4 Let us assume there are three CHFNs

Ĥ1 = {0.2+ ι0.4, 0.3+ ι0.5}, Ĥ2 = {0.4+ ι0.3, 0.5+ ι0.6, 0.7+ ι0.7}, Ĥ3 = {0.4+ ι0.6},

with weight vector

ẃ = (0.1, 0.4, 0.5)T , and related weight vector ẃ = (0.2, 0.3, 0.5)T .

Let the accumulation parameter be δ = 4.
On one hand, we compute:

˙̂H1 =


(1− 1

(1+3 ·0.1 · (0.2/(1−0.2))4)1/4 )+ ι(1− 1
(1+3 ·0.1 · (0.4/(1−0.4))4)1/4 ),

(1− 1
(1+3 ·0.1 · (0.3/(1−0.3))4)1/4 )+ ι(1− 1

(1+3 ·0.1 · (0.5/(1−0.5))4)1/4 )


= {0.1561+ ι0.3304, 0.2408+ ι0.4253}

˙̂H2 = {0.4111+ ι0.3097, 0.5114+ ι0.6109, 0.7095+ ι0.7095} (similarly computed)

˙̂H3 = {0.4246+ ι0.6241}

We compute their score functions:

s( ˙̂H1) =
1
2
· 0.1561+0.3304+0.2408+0.4253

2
= 0.2884,

s( ˙̂H2) =
1
2
· 0.4111+0.3097+0.5114+0.6109+0.7095+0.7095

3
= 0.5437,

s( ˙̂H3) =
1
2
(0.4246+0.6241) = 0.5244.

Since s( ˙̂H2)> s( ˙̂H3)> s( ˙̂H1), we have:

˙̂Hϕ(1) =
˙̂H2,

˙̂Hϕ(2) =
˙̂H3,

˙̂Hϕ(3) =
˙̂H1

Based on the definition of CHFDHA, we get:
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CHFDHA(Ĥ1, Ĥ2, Ĥ3) =
∪

Ćϕ(1), T́ϕ(1)∈ ˙̂Hϕ(1)

Ćϕ(2), T́ϕ(2)∈ ˙̂Hϕ(2)

Ćϕ(3), T́ϕ(3)∈ ˙̂Hϕ(3)



1− 1

(1+
3
∑
j=1

ẃ j(
Ćϕ( j)

1−Ćϕ( j)
)ρ)1/ρ

+

ι

1− 1

(1+
3
∑
j=1

ẃ j(
T́ϕ( j)

1− T́ϕ( j)
)ρ)1/ρ




={0.3783+ ι0.5523, 0.3802+ ι0.5556, 0.4312+ ι0.5781, 0.4319+ ι0.5801,

0.6210+ ι0.6367, 0.6210+ ι0.6374}

On the other hand, compute:

¨̂H1 = {0.2525+ ι0.4739, 0.3667+ ι0.5747},

¨̂H2 = {0.3891+ ι0.2905, 0.4886+ ι0.5890, 0.6903+ ι0.6903},

¨̂H3 = {0.3759+ ι0.5754}

s( ¨̂H1) = 0.4170, s( ¨̂H2) = 0.5230, s( ¨̂H3) = 0.4757

Ordering gives:

¨̂Hϕ(1) =
¨̂H2,

¨̂Hϕ(2) =
¨̂H3,

¨̂Hϕ(3) =
¨̂H1

Then we compute CHFDHG:
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CHFDHG(Ĥ1, Ĥ2, Ĥ3) =
∪

Ćϕ(1), T́ϕ(1)∈ ¨̂Hϕ(1)

Ćϕ(2), T́ϕ(2)∈ ¨̂Hϕ(2)

Ćϕ(3), T́ϕ(3)∈ ¨̂Hϕ(3)




1

1+

(
3
∑
j=1

ẃ j

(
1−Ćϕ( j)

Ćϕ( j)

)ρ)1/ρ

+

ι


1

1+

(
3
∑
j=1

ẃ j

(
1− T́ϕ( j)

T́ϕ( j)

)ρ)1/ρ




={0.2822+ ι0.0001, 0.3733+ ι0.0001, 0.2833+ ι0.4672, 0.3810+ ι0.4950,

0.2836+ ι0.3920, 0.3830+ ι0.3986}

5. Complex hesitant fuzzy MADM
To illustrate the CHF MADM issues, the following assumptions are used. Let Ã = {Ã1, Ã2, . . . , Ãm} is a discrete

collection of alternatives and C = {C1, C2, . . . , Cn} is a collection of attributes. If the DMs provide several values for
the alternative Ãi under the state of nature C j with secrecy, these values can be measured as CHFNs H̃i j. When two DM
supply the same value, the value only shows up once in H̃i j. Assume that the CHF decision matrix is represented as the
decision matrix H̃ = (H̃i j)m×n, where H̃i j (i = 1, 2, . . . , m, j = 1, 2, . . . , n) are represented as CHFNs. Our approach
to addressing the MADM issues with CHF information is based on the models mentioned above. These stages are part of
the method.

5.1 Algorithm of proposed study

Step 1 Collect the information offered by the decision analyst in the form of CHFSs.
Step 2 Utilize the CHFDWA operator:

H̃i = CHFDWA(H̃i1, H̃i2, . . . , H̃in) =
∪

(Či j , T́i j∈H̃i j)




1− 1

1+

∑n
j=1 ẃ j

(
Či j

1−Či j

)δ
1/δ


+

ι

1− 1

1+

(
∑n

j=1 ẃ j

(
T́i j

1− T́i j

)δ)1/δ





, i = 1, 2, . . . , m
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Or the CHFDWG operator:

H̃i = CHFDWG(H̃i1, H̃i2, . . . , H̃in) =
∪

(Či j , T́i j∈H̃i j)




1

1+

∑n
j=1 ẃ j

(
1−Či j

Či j

)δ
1/δ


+

ι


1

1+

(
∑n

j=1 ẃ j

(
1− T́i j

T́i j

)δ)1/δ





, i = 1, 2, . . . , m

to derive the alternativeCi, total preference values of H̃i (i = 1, 2, . . . , m), where

s(H̃i) =
1
n

n

∑
j=1

s(H̃i j).

Step 3 Determine the total CHF preference value H̃i (i = 1, 2, . . . , m) by calculating the scores s(H̃i) to order each
alternative and thereafter select the best option.

Step 4 Utilize s(H̃i), rank each alternative, and select the best option.
Step 5 End.

5.2 Advantages of defined algorithm over existing algorithm

The algorithms defined in [15–18] are based on HFSs. We can notice that HFS can cover the hesitancy of information.
However, these existing algorithms can never discuss the CHF values as discussed in the defined algorithm. The defined
algorithm can discuss the two-dimensional information as well as the hesitancy of the information. In the case of existing
notions, the loss of data increases due to the limitation of the structure of HFS.On the other hand, the introduced notions can
cover this data loss and provide more space for decision-makers to take their assessment in the form of CHFS. As a whole,
we can say that the defined algorithm is more flexible and reliable as compared to the existing algorithm. Additionally,
the flow chart of the defined algorithm is given in Figure 1.
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Figure 1. Flow chart of the proposed algorithm

5.3 Case study
The shift of power systems from centralized and fossil-based systems to decentralized and renewable-based systems

has accelerated the emergence of AI-controlled microgrids. A large industrial park in the manufacturing segment with
150 acres and 25 industrial buildings and complexes is experiencing power quality and reliability issues as well as the
integration of renewable energy. It is currently facing voltage fluctuations during the peak industrial processes and has
not been able to efficiently incorporate renewable energy into the facility. Currently, the industrial park uses about $4.2
million in electricity consumption, and the power demand is expected to rise by 15% within the next five years, therefore,
the management has opted to install the AI-controlled microgrid system. The microgrid will incorporate a significant
amount of renewable generation, such as solar photovoltaic (2.5 MW) and wind (1.5 MW) generation; the variability of
these sources necessitates the need for advanced energy storage to support the microgrid. The facility has a maximum
demand of 3.8 MW and a mean daily energy demand of 45 MWh, with notable load fluctuations during the day owing to
industrial applications. Present-day power quality problems lead to 120 hours of lost production time, which equates to
about $800,000 in lost revenues. The implementation of an appropriate energy storage system is crucial for:

• Ensuring the stability of power quality and the frequency of its supply in the industry standards.
• Supporting the ability to buy cheap at certain times of the day and sell expensive at other, more demand-intensive

times.
• To ensure smooth islanding operation during grid disturbances.
• Enhancing compatibility with the new higher-level AI control algorithms for predictive mode.
• To cater to future expansion plans and also to increase the generation of renewable energy.
• Reducing operating expenses and enhancing the stability of the entire system
Through market analysis and technical advice, decision-makers have defined five different types of energy storage

systems, outlined in Table 1.
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Table 1. Energy storage system descriptions

Symbols Energy storage systems Description

Å1 Lithium-ion Battery Banks

High-performance battery systems with new-generation cell chemistry
and enhanced battery control circuits. Has a very high energy density
of 200-300 Wh/kg, a short response time of less than 100 ms, and
reliability in grid-scale applications. It has integrated thermal

management, enhanced state of change estimation, and smart cell
equalization. Delivers cycling efficiency of 85-95% with a calendar
life of 10-15 years and cycle life of 3,000-5,000 cycles at 80%

depth of discharge.

Å2 Flow Batteries

New generation vanadium redox flow battery systems with power and
energy rating in parallel. It has a modular design which makes it easy
to expand the capacity by increasing the volume of the electrolyte.

Provides an extended operational lifetime of over 20 years, a deep discharge
capability of up to 100% depth of discharge, and low capacity loss.

Such as complex electrolyte control and the development of new membranes
for higher efficiency (75-85%). Suits large loads with a focus on energy time

shift and long-length use.

Å3 Flywheel Energy Storage

Advanced composite material and magnetic bearings mechanical storage
with high performance. With response times less than 20ms and cycle
efficiency higher than 90%. Includes vacuum isolation of the motor and
stator, active magnetic bearing regulation, and high-performance power

converters for connection to the power grid. This technology shows a very
high cycle life, low maintenance, and very good frequency control.

Most suitable for use in high power and low duration
circuits or systems.

Å4 Compressed Air Energy Storage (CAES)

A mass storage system that uses underground cavities or above-ground
tanks for air compression. Includes adiabatic compression with thermal
energy storage enhancement for efficiency of 70-75%. Includes variable

speed compression/expansion units, advanced controls, and multiple pressure
systems. Has a long service life of more than 30 years with low degradation
and high energy storage capacity. Ideal for large-scale energy storage and

long-term storage.

Å5 Hybrid Supercapacitor Systems

A new generation of hybrid system that integrates high power supercapacitor
with new generation battery technology. Incorporates advanced power
controlling features for efficient utilization of available power supplies

and quick switch performance. The supercapacitor component shows a high
power density of more than 10,000 W/kg, moderate energy density between
10-20 Wh/kg, and an almost infinite cycle life. These are sophisticated
thermal control systems and smart power delivery systems. Suitable for
use in applications that need both power and energy handling capabilities.

To assess these alternatives adequately, the experts have developed three key assessment criteria presented in Table
2 that cover the economic, technical, and operational requirements for effective microgrid management.

Contemporary Mathematics 3294 | Tahir Mahmood, et al.



Table 2. Key assessment criteria

Symbol Criteria Description

c1 Lifecycle Cost

Full economic cost including the first cost or capital cost (CAPEX), annual or recurring cost
for operation and maintenance (OPEX), replacement cost, and finally the cost of disposal
at the end of the structure’s useful life. Encompasses a specific evaluation of how system

efficiency affects operating costs, warranty terms and conditions, and possible sources of income
from grid services. Expressed in $/kWh of the system lifetime with degradation effects
and capacity augmentation requirements taken into account. It also considers installation
costs, space, and the possible effects that this will have on the company’s insurance.

c2 Technical Performance

Round trip efficiency, response time characteristics, cycle life under different operating
conditions, and flexibility in depth of discharge. Includes power quality improvement
features, overload capacity, self-discharge rates, and stability of the performance under

different environmental conditions. Takes into account reliability parameters, failure types,
and features of redundancy. These are supplemented with an assessment of monitoring

capabilities, fault detection systems, and maintenance requirements.

c3 Grid Integration Flexibility

The evaluation of the system’s capability to deliver multiple grid services concurrently,
communicate with advanced AI control schemes, and respond to different levels of renewable

power integration. Assesses communication schemes, controls interface performance,
and handling of changes in set-point. This entails assessment of black start capacity,
ability to island and grid forming. Takes into account the issues of extensibility,

compatibility with future technologies, and the possibility to enter new grid service markets.

Now we utilize the proposed algorithm to choose the best alternative using the WV ẃ = (0.24, 0.34, 0.42)T and
δ = 4 given by the decision expert. The steps of the solution are devised below.

Step 1 Assume that the information offered by the decision analyst is based on the CHFSs in Table 3.

Table 3. Complex hesitant fuzzy decision matrix

C1 C2 C3

A1 {(0.23 +ι 0.41)}
{(0.71 +ι 0.28),
(0.45 +ι 0.34)}

{(0.14 +ι 0.27),
(0.47 +ι 0.76),
(0.12 +ι 0.21)}

A2
{(0.42 +ι 0.52),
(0.44 +ι 0.57)}

{(0.28 +ι 0.58),
(0.43 +ι 0.64)}

{(0.46 +ι 0.18)}

A3
{(0.34 +ι 0.24),
(0.14 +ι 0.53)}

{(0.43 +ι 0.41),
(0.40 +ι 0.63),
(0.38 +ι 0.47)}

{(0.33 +ι 0.71)}

A4
{(0.44 +ι 0.57),
(0.54 +ι 0.66)}

{(0.44 +ι 0.79),
(0.48 +ι 0.76)}

{(0.45 +ι 0.64)}

A5

{(0.34 +ι 0.97),
(0.22 +ι 0.36),
(0.15 +ι 0.41)}

{(0.24 +ι 0.39)}
{(0.53 +ι 0.68),
(0.42 +ι 0.36)}

Step 2 Utilize the CHFDWA operator or CHFDWG operator to aggregate the data given in Table 3. The aggregated
results are given in Table 4.
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Table 4. Complex hesitant fuzzy decision matrix

CHFDWA CHFDWG

A1



(0.6515 + 0.3409),
(0.6527 + 0.7183),
(0.6515 + 0.3362),
(0.3854 + 0.3525),
(0.4451 + 0.7183),
(0.3853 + 0.3486)





(0.1665 + 0.2867),
(0.2969 + 0.3337),
(0.1441 + 0.2402),
(0.1665 + 0.3024),
(0.2967 + 0.3912),
(0.1441 + 0.2451)



A2


(0.4243 + 0.5281),
(0.4426 + 0.5815),
(0.4293 + 0.5425),
(0.4464 + 0.5878)



(0.3315 + 0.2142),
(0.3478 + 0.2142),
(0.3323 + 0.2142),
(0.3435 + 0.2142)



A3



(0.3843 + 0.6637),
(0.3648 + 0.6730),
(0.3536 + 0.6642),
(0.3774 + 0.6651),
(0.3552 + 0.6742),
(0.3419 + 0.6656)





(0.3515 + 0.3363),
(0.3483 + 0.3108),
(0.3452 + 0.3097),
(0.1878 + 0.4700),
(0.1878 + 0.5991),
(0.1601 + 0.5214)



A4


(0.4444 + 0.7451),
(0.4600 + 0.7144),
(0.4840 + 0.7468),
(0.4928 + 0.7177)



(0.4440 + 0.6288),
(0.4557 + 0.6280),
(0.4582 + 0.6683),
(0.4434 + 0.6668)



A5



(0.4777 + 0.9577),
(0.3777 + 0.9577),
(0.4763 + 0.6316),
(0.3707 + 0.3719)
(0.4762 + 0.6319),
(0.3701 + 0.3791),





(0.2873 + 0.4551),
(0.4015 + 0.3876),
(0.2553 + 0.4077),
(0.2903 + 0.3685),
(0.1962 + 0.4301),
(0.1960 + 0.3754),



Table 5. The score values of alternatives

A1 A2 A3 A4 A5

CHFDWA 0.4989 0.4978 0.5153 0.6001 0.5399
CHFDWG 0.2513 0.3002 0.3463 0.5491 0.3776

Step 4 Utilize s( ˜̂Hi), rank each alternative, and select the best option. Table 6 shows the ranking results.

Table 6. Ranking results

Ordering

CHFDWA A4 > A5 > A3 > A1 > A2

CHFDWG A4 > A5 > A3 > A2 > A1
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Step 5 End.
Hence, according to CHFDWA AO A4 is the best alternative and A4 is the best alternative according to CHFDWG

AOs.

6. Comparative analysis
This section compares the invented work to existing methodologies to show its superiority and correctness. We

cannot distinguish between superior and inferior without comparison. We apply previously published concepts to the
proposed theory and analyze the results, as shown in Table 7.

First, we make a list of selected theories:
• MADM using HF Dombi–Archimedean weighted (HFDAW) AOs by Liu et al. [15].
• MADM using HF Maclaurin Symmetric Mean Operators (MSMO) and Its Application to MADM by Liu et al.

[16].
• HF information aggregation in DM by Xia and Xu [17].
• HF AOs with their application in-group DM by Xia et al. [18].
• Probability Complex Fuzzy AOs by Rehman [26].
The selected theories mainly focus on aggregation, including DAW AOs, MSMO, HF information AOs, HF AOs,

and CF AOs. We compare these AOs to our proposed theory for Dombi AOs. We use Dombi AOs to calculate CHFNs
score values, and then use the mentioned operators to compare the results.

Based on Table 7, we conclude that all proposed theories do not align with our data and findings. We find that
these theories are unable to accommodate our terms and conditions, since all the existing operators can only manage the
hesitancy and cannot accommodate two-dimensional information in complex form.

Table 7. Comparative analysis of proposed work

Theories s(Á1) s(Á2) s(Á3) s(Á4) s(Á5) Ranking

Liu et al. [15] ××× ××× ××× ××× ××× ×××
Liu et al. [16] ××× ××× ××× ××× ××× ×××
Xia and Xu [17] ××× ××× ××× ××× ××× ×××
Xia et al. [18] ××× ××× ××× ××× ××× ×××
Rehman [26] ××× ××× ××× ××× ××× ×××

Proposed work (CHFDWA) 0.4989 0.4978 0.5153 0.6001 0.5399 Á4 > Á5 > Á3 > Á1 > Á2

Proposed work (CHFDWG) 0.7487 0.6998 0.6537 0.4509 0.6624 Á1 > Á2 > Á5 > Á3 > Á4

Moreover, the theory of MADMmethods based on CF AOs for the selection of data management system by Rehman
[26] can solve all complex information but cannot handle hesitancy. Hence, the developed approach is more general
and it can discuss the more advanced information. The above comparison shows that all the above-discussed theories in
Table 7 cannot solve our CHFS information because our information contains all the following characteristics hesitancy,
complex numbers data, and two-dimensional information. Therefore, the above comparison shows the effectiveness and
superiority of our work. Additionally, the model of comparative analysis is given in Figure 2.
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Figure 2. Geometrical model of data given in Table 7

7. Conclusion
The notion of CHFS based on Tamir’s CFS idea is a more reliable and accurate idea to discover uncertain and

ambiguous information. In this case, the chance of data loss decreases and this approach provides more space to decision
makers to handle the MADM problems more effectively. Since Decision-Making (DM) theory is central to nearly all
disciplines, we propose a novel complex hesitant fuzzy Multi-Criteria Decision-Making (MCDM) model. The proposed
notion of CHFDWA,CHFDOWA,CHFDWG, and CGFDOWGAOs can aggregate the CHFS data and provide an efficient
method to discuss the MCDM problems. This method can handle all sorts of real-life MCDM problems, where the data
contains uncertainty, hesitancy, and extra fuzzy information. The case study concerns energy storage system selection for
AI-controlled microgrids and shows how the theory we have developed can be applied to real-world challenges. Last, we
see how this proposed theory is superior to other theories and why it should be adopted.

7.1 Limitation and future research directions

The defined notions are limited because defined notions discuss only two-dimensional information aboutmembership
grade and cover hesitancy. However, if the decision-makers want to discuss the non-membership grade in the form of
hesitant information, then the developed notions fail to hold. In the future, we can apply these notions to the energy sector
as discussed in [32, 33] to revolutionize this sector by using the delivered approaches. Moreover, an MCDM approach
can be defined based on the proposed notions to discuss the superiority of the delivered approach as given in [34]. Some
new aggregation operators can be defined like Sugeno-Weber AOs [35] based on the developed notions. These notions
can be extended to complex fuzzy rough structures as given in [36, 37].
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