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Abstract: In this article, we study the existence and the asymptotic behavior of positive continuous solutions for the
following elliptic coupled system

—Au = p(x)u“v" in D,

—Av=q(x)u’Vv’ in D,

Uiop =Vyep =0,

lim u(x) = ‘llim v(x)=0,
X|—0

| x>0

where D is an unbounded regular domain in R”, n > 3, with a compact boundary. The exponents a, f € (-1, 1),a,b € R
such that (1 — |a|)(1—|£]) — |ab| > 0 and p, g are positive continuous functions on D satisfying some suitable assumptions
with reference to Karamata regular variation theory.
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1. Introduction and preliminaries

The study of nonlinear elliptic systems has a strong motivation and important research efforts have been made
recently for these systems intending to use the results of existence and asymptotic behavior of positive solutions in
applied fields. Coupled nonlinear elliptic systems occur in various nonlinear phenomena, such as pattern formation,
population evolution, chemical reaction where for instance, # and v correspond to the concentrations of two species in
the process. Accordingly, positive solutions of such systems are attractive. Existence, uniqueness and boundary behavior
of positive solutions of nonlinear elliptic systems in both bounded and unbounded domains with various boundary
conditions, have been extensively investigated in the literature with various methods [1-10].

In [1], Ghergu considered the following elliptic system
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—Au=u’v" in Q,
—Av=u"" in Q, )

Ujpn =Vieo =0,

in a bounded domain Q < R" (n > 1) with a smooth boundary, a, # <0 and @, b < 0. The author showed that system (1)
has at least one solution if,

I-a)(1—=p)—ab>0
and one of the following conditions is satisfied:
(7) a + amin(1, 2+b ) >—land h>-2.
(ii) b+ pmin(1, fﬂ) >—-1anda> 2.
-

(iii) a, f<—1 and a, b> —2.

Later, Zhang [2] derived the existence, boundary behavior and uniqueness of solutions for system (1) for a different
range of exponents to those in [1]. He assumed that a, # <0, a, b < 0 satisfying one of the following conditions:

@Op-1<aa+ a(lz;b) <-landa—-1<b,f+ b(2+a) <—1.
@p-1>a,a+ a(12+b) >—landa—1>b,f+ b(2J;a) >—1,

Then, the author proved that system (1) has at least one classical solution (u, v) satisfying for x € Q,

2(1-+a)

md(x) < u(x) < M (d(x))"H-<
and

2(1-a+b)

md(x) < v(x) < M (d(x)) 0P

where m and M are positive constants and d(x) denotes the Euclidean distance from x € Q to the boundary 6Q.
In [3], Kawano and Kusano considered the elliptic system

—Au = p(x)u“v* in R",
—Av=gq(x)u"v’ in R", ()
lim u(x) = hm v(x) 0,

[x|—

where n>3, a, f <0 and p, ¢ are nonnegative locally Holder continuous functions in R". The authors assumed that there
exist locally Holder continuous functions ¢, y : R, — R, such that

p(x) <4 x|) and g(x) <y(| x[), xeR"

and

J.: rg(r)dr <o and I: ry (r)dr < oo,

Then, they proved by using the method of sub- and super-solutions that system (2) has entire positive solutions
eitherifa+a<1,p+b<lorifa+a>1,p+b>1.
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Noussair and Swanson [4] discussed a class of coupled systems of semilinear elliptic partial differential equations
in an exterior domain in R", n > 3. They established necessary and sufficient conditions for the existence of positive
solution dominated by |x|*” when |x| — oo

In this article, we are concerned with the investigation of the following nonlinear elliptic system

—Au = p(x)u“v* in D,
—Av=gq(x)u’V* in D,
Uap =Vyop =0, G

‘llim u(x)= ‘l‘im v(x) =0,

where a, f € (=1, 1), a, b € R such that y := (1 — |a|)(1 —|B|) — |ab| > 0 and D is an unbounded regular domain in R”,
n > 3, with a compact boundary. The positive weight functions p and g are required to be continuous on D that may
be singular at the boundary 0D or unbounded near « and satisfying some assumptions with reference to the Karamata
classes /C, and /C,, (see Definition 1.4 below).

Our intention is to prove the existence of positive continuous solutions with an exact asymptotic behavior for
system (3).

We point out that there are two main features of this work. The first one is the fact that we consider system (3) in D,
which is an exterior domain. In this sense, system (3) can be considered as a natural extension of the following elliptic
boundary value problem

—Au = p(x)u’® in D,
=0, @)
l‘im u(x) =0,

|x|—>o0

studied in [11] with ¢ < 1. But dealing with system (3) presents some difference because of, as far as we know, the lack
of a meaningful maximum principle for systems in exterior domains. Indeed, to obtain an existence result for problem
(4), the authors in [11] applied the sub- and super-solution method which is based on the maximum principle; see [12].
Hence, it seems that the method employed in the study of problem (4) does not carry over naturally to system (3).
Therefore, we have to work around this difficulty and we shall apply the Schiuder fixed point theorem which requires
invariance of a convex set under an appropriate integral operator. This restricts us to dealing with only the cases a,
p € (-1, 1). The second one is that our paper deals with a large class of nonlinearities that may be singular at 6D or
unbounded near 0. Moreover, we do not make a restriction on the sign of the exponents.

Throughout this paper, we will use the following notations and definitions:

(i) Let E be a domain of R", n > 3.

* Forx, y € E, Gg(x, y) denotes the Green function of the Dirichlet Laplacian.

* For x € E, 0,(x) denotes the Euclidean distance from x € E to JF, the boundary of E.

(ii) Let x, € R"\D and > 0 such that B(x,, 7) := {x € R": |x — x,| <} < R"\D. Then we have

Gp(x,y)=r""G, (22,20 forx,yeD

—— r r
-

and

X=X,

8y() =18, (

r

), forx € D.
r

Hence, we may suppose without loss of generality, that B(0, 1) < R"\D.
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(iii) For x e D, we denote by d(x) = J,(x) and p(x) = lf;)(ci) :

(iv) Let fand g be two nonnegative functions defined on a set S. Then, we write f(x) = g(x) in S, if there exists a
constant ¢ > 0 such that for each x € S, % 2(x) <f(x) < cg(x).

(v) B(D) is the collection of Borel measurable functions in D and B'(D) is the collection of nonnegative ones.

(vi) C,(D) is the space of continuous functions fin D vanishing at D and satisfying f(x) — 0 as | x| — oo, within D.

(vii) For a function f € B'(D), we denote by Vf the potential of £ defined on D by

V() =[Gy (e 0) S ().
We point out that if /'is a nonnegative function in L, (D) such that Vf e L, (D), then we have in the distributional
sense —“A(Vf) =fin D; see ([13], p.52).
Definition 1.1 A function ¢ € B(D) is in the class K(D) if ¢ verifies the following assumptions:

limsup PO G (x) |4 | dy =0

720 xep ¥ (v-rizrnn P(X)

and

tim sup[ LD (5 3) g(0) | dy =0,

M40 yop d pznn p(X)
Remark 1.2 ([14], Proposition 3.4)
Themap ¢ :x—| x| (8(x))* e K(D)=> A<2<

Proposition 1.3 Let ¢ € K(D) be a nonnegative function. Then, we have

(i) Vq € Cy(D).

(ii) The family § = {V( f), f € B(D);|f| < g} is relatively compact in Cy(D).
Proof. (i) See ( [14], Proposition 3.7 ).

(ii) Let f'e B(D) satisfying | /]| <gq.

For x € D, we have

[ Vi) | = Va(x).
Using (i), we have
V@ <[Vgll. <.
Thus the family § is uniformly bounded. On the other hand, as in the proof of Proposition 3.7 in [14], we prove
that the family § is equicontinuous in Cy(D).
Consequently, Ascoli’s theorem implies that § is relatively compact in Cy(D).
Now, we introduce the Karamata classes of regularly varying functions.

Definition 1.4 [15]
(7) The class K, is the collection of all Karamata functions L defined on (0, #] by

L(t)=c exp(jtﬂ @ds),
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for some 7 > 0, where ¢ > 0 and z is a continuous function on [0, 7], with z(0) = 0.
(if) The class IC, is the set of Karamta functions L defined on [1, ) by

L(t)=c exp(jl' ZTs)ds),

where ¢ > 0 and z is a continuous function on [1, ) such that lim z(¢) = 0.
. t—©
It is easy to check the next result.

Proposition 1.5 (i) A function L defined on (0, 7], # > 0, belongs to /K, if and only if L is a positive function in
C'((0, 5]), such that

lim w =0.
t—0" L(t)

(i) A function L belongs to /C, if and only if L is a positive function in C' ([1, o)), such that

limw =0.
t—w L(t)

Remark 1.6 [16] If L € K, then there exists m > 0 such that for every » > 0 and > 1, we have
(A+r)"L(t)<L(r+1t)<(1+r)"L@).

As a typical example of a function belonging to the class /C, (resp. IC.,), we give
m d & _ m -
L) = [1(log, ()% (vesp. L()=exp| [1(log, (@) ).

where

log,x =logologo...olog x,
|y ——

k times

& € R (resp. 7, € (0, 1)) and d is a sufficiently large positive real number such that the function L is defined and positive
on (0, ], for # > 1 (resp. on [1, 0)).

Let us consider the following hypothesis:

(H) p and ¢ are positive continuous functions on D satisfying for x € D

px) = (p(x)) " M (p(x) | x [ N( x]),

q(x) = (p(x))" K(p(x)) | x[" L(| x|),
where A, i, 0,7 € Rand M, K € K, defined on (0, #], (> 1), N, L € K.

Additional assumptions are needed to establish our main result, we recall that we assume that the exponents a, f €
(-1, 1), a, b € R satisfy the hypothesis:

x == e = |p])—lab|> 0.

Hence the constant
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wo=((1-a)(1—-p)—ab>0.

For simplicity, we set:

1) =min(LMj’ 5, = (l_ﬁ)(2—1)+a(2—o-)’

4]

5 - (1—05)(2—0')+b(2—ﬂ)’ 5, :min[l’z—aj’
a, _

m[ ZLMJ 2 O=p=2)vatr=2)
1-p o

3

:(1—06)(7—2)+b(/1_2)’ v, _mln(n 2, L= 2]
P, 1-p

Remark 1.7 We point out that:
(i) 6, = 2—/1_+aa§3 nd d; = 2—;’)‘_-;752 .

(if) v, = 22 2::‘/3 and v, = 7_12+bV2 )

Now, we give sufficient hypotheses which permit us to show our main result for the existence and the asymptotic
behavior of solutions for system (3).

(A) One of the following assumptions is satisfied

(A)A<1+a+ad,oc<2+bandK satisfies [:@dzmo ifo=2+b.

(Api=1l+atad,c<2+b,o#xl+b+p.

(A)0<g,<land0<d,<1.

(A4)/1:2 +ad,0<2,0# 1+ pand M, K satisfy

M (t)

dt<ooifoc<1+,

(it) j" ity PP gr<ooif 1 +p<o<.

(B) One of the following assumptions is satisfied

(B) u>n—aln—2)av,y=2~b(n —2) and L satisfies | ()dt<oon°y 2 bn—2).
(Bz),u=n—a(n—2)—av1,y>2—b(n—2),y¢n—(ﬁ+b)(n—2)
By)0<v,<m—2and0<v;<n-—2.

Byu=2-av,,y>2,y#n—p(n—2)and N, L satisfy

(i) j]w@dz<ooify>nfﬁ(n72),

i) [" 2 gy <onif 2 <y <n—pn—2).

Our main result is the following.

Theorem 1.8 Assume (H), (4) and (B). Then the nonlinear elliptic system (3) has a positive solution (u, v) € Cy(D)
x Cy(D) satisfying for x € D,

p()

u(x) =
| x|

M(p(x)N( x)

and
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p()

(X)~| 7 K(po)L(| x)).

Here 4, u, o, y are nonnegative real numbers, M, K are in K, and N, L belong to /C,.

The rest of the paper is organized as follows. In Section 2, we present some basic properties of the functions in the
classes Ky and /C,.. In particular, we recall some sharp estimates on some suitable potential functions. In Section 3, we
prove our main result given in Theorem 1.8.

2. Karamata classes /C, and /C

In what follows, we list some basic properties of the functions belonging to Karamata classes X, and /C,.. Then, we
give estimates on some potential functions.

Lemma 2.1 ([16-18])

(i)Letp e Rand L, L, € K, (resp. K,)). Then the functions L, + L,, L,L, and L} are in the class /I, (resp. KC,.).

(if) Lete>0and L € K, (resp. KC,)). Then we have

lim t*L(¢) =0 (resp. limz“L(¢) =0).
t—0" >

Lemma 2.2 ( Karamata’s Theorem [16, 18])
(D) Lety € Rand L € K, defined on (0, #], # > 0. Then we have the following assertions:

@) Ify>—1, then_[ t’L(t)dt converges and I S'L(s)ds ~ ! Lo

-0t 1H7
1+
@) Ify<— 1thenj t’L(t)dt diverges and_[ S'L(s)ds ~ —%.
t—>0"

(II) Let L € K, and Ve R. Then we have the following:
(i) If y <—1, then j t’L(t)dt converges and j S"L(s)ds e

ML)
1+y -

1+,
(i) If y > —1, then .[1 t'7L(t)dt diverges and L s'L(s)ds ~ * lyfy(') .
t—>0
Lemma 2.3 [16, 19]

(i) Let L € K, defined on (0, 7], > 1. Then lim L@

= 0. Particularly, ¢+ J.t” @ ds e K,. If further,

) o [ Eas
J.o (s )ds converges, then te
L() L(S)
=0andt— .
tirg} JtL(s)d an I €k
° s

(if) Let L € KC,, then lim Lo —y, Particularly, ¢ J-lm L(Ts)ds e K. If further, jlw @ds converges, then

t
t—ow0 L(s)ds
1 s

L(@) L(S)
’ggj‘w&d =0a dti—)J ——=dsek,.
s

To simplify our statements, we introduce the following assumption.
(C) h is a function defined on D by:

h(x) = (p() ™" Li(p(x) [ x [ Ly (| x ),

where v<2 <7, L, € K,defined on (0, #], 7> 1 and L, € K, satisfy

Volume 2 Issue 12021 43 Contemporary Math tics




jo”t‘*v L (t)dt and Lwtl* L, (t)dt < . (5)

Remark 2.4 We note that due to Lemma 2.2, we need to verify (5) only if v=2 or z = 2.
Now, we recall the following key sharp estimates.
Proposition 2.5 [11] Let /4 satisfying (C). Then for x € D, we have

(p(x))min(z—v,l)

Vh(x) ~ | x |mjn(r,2,,,,2) CDLI WV (p(x))\PLz,r (‘ X |)9

where for ¢ € (0, 7),

1, if v<l,
j"ﬁd; if v=1,
D, ()= C¢
Y L), if I<v<2,
j’—LI(é!)dg, if v=2,
°© g
and for ¢ € [1, o),
j“’—Lz@dg, if =2,
S
Y ()= L, (1), if 2<7<n,
P L@ L
‘[ ——==d¢, if t=n,
tg
1, if 7>n

3. Proof of Theorem 1.8

In this section, we aim to prove Theorem 1.8.

Proposition 3.1 If / is a function satisfying (C), then & € K(D).

Proof. The proof results from Proposition 2.8 in [20] and Kelvin transformation.

The next result plays an important role in the proof of Theorem 1.8.

Proposition 3.2 Suppose that the condition () is satisfied. In addition, suppose that there exist two nonnegative
functions 6 and y satisfying:

(i) 6 and w are in Cy(D).

(if) The functions p@“y* and ¢@"y” are in K(D) such that on D:

V(p0“y“)~0 and V(q0"y") = y. (6)
Then system (3) has a positive solution (u, v) € Cy(D) x C,(D) such that for x € D,
u(x)=6(x) and v(x) = y(x).

Proof. Using (6), we deduce the existence of ¢ > 1 such that
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l&SV(pG“w“)SCH (7
C
and

1
s V(gl'y’)<cy. ®)

1-| Bl +|a| -la|+
Such mentioned above, we have y = (1 — |a[)(1 — |A]) — lab| > 0. Set e, = ¢ 7~ and ¢, = ¢+ . With the aim of

using a fixed point argument, we define the non-empty convex closed set A by

A={(u,v)e(C0(D))2 Lo<u <c0; i1//3\/£021,z/}.

G )
We consider the operator 7, defined on A by
T(u,v) = (V(puv"), V(qu'v")).

We aim at proving that the operator 7 has a fixed point in (C,(D))’. First, we prove that TA is relatively compact in
(Cy(D))* endowed with the norm ||.|| which is defined by ||(«, v)|| = || ]|, + || V||..- Let (u, v) € A, then we have

1 a a a _.a a a a a
Wp@ v < pu“v' < poty 9)
1 =2
and
1
T b0’ yw" <bu’ V' <'bO"y". (10)
1 =2

Using the fact that p6“y* and 6"y’ are in K(D) and applying Proposition 1.3 (ii), we conclude that the sets of
functions

{x =V (pu®v*)(x), (u,v) e A}
and
{x =V (bu v )(x), (u,v) e A}

are relatively compact in C,(D). Which implies that TA is relatively compact in (C,(D))’. Next, we prove that TA < A.
Let (1, v) € A. According to (7), (8), (9) and (10), we have

1
— OV (PO y ) <cd o
CC1 c2

and

1
Wlﬂ < V(bgbl//ﬂ) < CClbl C‘ZB‘(//.
cCyC
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Since cel' ' = ¢,, ec!' ' = ¢, and TA < (Cy(D))’, we deduce that TA < A.

Finally, we shall show the continuity of the operator 7 in (C,(D))’ with respect to the norm ||. ||. For this end, we
consider a sequence ((u, v;)); in A which converges to (i, v) € A with respect to the norm || . ||.

For k € N, we have for each x € D,

|V (pug vO)(x) =V (puv*)(x) | < I Gp (x5, P | (v )() = @ v )(y) | dy.
Further from (9), we have
plufvi —uv*| < 2 po* y*
Since V( p0“y*) < o, we conclude by the dominated convergence theorem that for each x € D,
V(pui vi)(x)=V(pu“v*)(x) > 0 as k — .

Similarly, we obtain that for each x € D, V(quv’)(x) — V(qu'v")(x) — 0 as k — c.

Moreover, since TA is relatively compact in (C,(D))’, we deduce that the pointwise convergence implies the
uniform convergence, namely,

|| T(uy, vi) — T(u, v)|| converges to 0 as k — .

This proves that 7"is a continuous mapping from A into itself. Hence, applying the Schéuder’s fixed point theorem,
we conclude the existence of (u, v) € A satisfies 7(u, v) = (u, v). Then we have (u, v) € Cy(D) % Cy(D) such that

u=V(puv*)and v = V(qu""). (11)

Using the fact that (1, v) € (C,(D))’, hypothesis (H) and (11), we obtain that the functions pu“v* and V(pu’v") are
in L},.(D). This implies that, in the distributional sense,

“A(M(pu™V")) = pu™" in D.

Similarly, we have in the distributional sense,
~A(V(qu™V")) = qu"v" in D.

Finally, since (u, v) € A, we conclude that (u, v) is a positive continuous solution of (3) satisfying for each x € D,
u(x) = 0(x) and v(x) = y(x).

This ends the proof.

Now, we are devoted to prove our main result.

Proof of Theorem 1.8

We shall distinguish several cases. In each case, we will give the explicit expressions of the functions & and
which are of the form:

(,O(X))

O(x) = ~——7— PG

S M (p(x)N (| x )

and
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(p(x)?

| x [

y(x) =~——=—K(p(x))L(| x ),

where 1, i, o, y are nonnegative real numbers, the functions M, K are in K, and N, L belong to K. We first verify that
the functions @ and y are in Cy(D). Then, we consider the functions pf“y* and g0"w”. From hypothesis (H), we obtain
that forx € D,

P01y~ O e R ) NR Y % )

| X ‘,qua,qua;/

and

40" ()~ LO T i RN LR Y ).

| X |7+bﬁ+ﬂ7

(p(x))_}‘w’):”&

It is enough to prove that the functions % : x — (M MK (p(x))(NN“LY)(|x|) and k : x >

_ P |x|,u+a/]+af
o+bA+pé . o~
(p(‘x‘)y)W(K MbKﬂ)(p(x))(LN pr)(\xD) satisfy respectively the condition (C). On the one hand, by the virtue of
X
Proposition 3.1, we conclude that the functions pf“y* and ¢g8”y” are in K(D). On the other hand, in view of Proposition
2.5, we estimate the potentials V(pf”y") and ¥(¢6"y") and by straightforward computations, we reach (6). This allows

us to apply Proposition 3.2 which implies that system (3) has a positive solution (u, v) € Cy(D) x Cy(D) satisfying on D,
u~6Bandv=y.

Thus, Theorem 1.8 is proved.

Note that throughout the proof, we use Lemmas 2.1 and 2.3 to verify that some functions are in &, or C,,.
Case 1 Assume (H), (4,) and (B,).

We define the functions 8 and y on D by

0(x) = |p(|x)
and
v - (’T S |)) R(p(o)L( <,
where
1 if o<l+b+p,

1

U" @dtjlﬂ if o=1+b+p,

" p(x) ¢
K(p(x))=7 L
K™ (p(x))

(I:(x)—Kt(t)dtjlﬂ if o=2+b,

(12)

—

f 1+b+f<0<2+b,
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and

1 if y>n—-(f+b)(n-2),

e

Lixh=1 1 (13)
L7 (| x|) if 2-b(n-2)<y<n—(B+b)(n-2),
Uf@mj”} if y=2-b(n-2).

Using Hypotheses (4,), (B,), Proposition 1.5, Lemmas 2.1 and 2.3, we get that the functions 6 and y are in Cy(D).
Using (H), we have for x € D,

(p(x))—ﬂ+a+a51

W) = (MK ) p())NL)( x|)

= (P Li(p()) | x[7 Ly (| x ).

Sincev=A—a—ad, <l,t=u+oan—2)+av,>n, L, € K,and L, € K, we deduce by Lemma 2.2 that (5) is
fulfilled. Hence, the function 4 satisfies the assumption (C).
On the other hand, by hypothesis (H) we obtain that

()7

ko) = (KK Y (po)LL" ) x)

= ()" Li(p()) [ x [ Ly(| x]).

By simple calculus we obtain that for x € D, (p(x)) "L,(p(x)) =f(p(x)), where

(P() 7" K(p(x) if o<l+b+p,
A
(p(x)" K(p(x))[ j;’(x)%’)drj” if o=1+b+p,
S(p(x) = ~o+b+2ps e (14)
(p(x) " (K(p(x))” if 1+b+B<o<2+b,
A
(P()) K (p(x)) ( jop(’”%’)dtj” if o=2+b.

Besides, a simple computation shows that for x € D, |x| "L,(|x|) = g(|x|), where
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|x [ L (| x]) it y>n—(B+b)(n-2),

B
x| L(|x|>(f”@drj‘ﬂ it y=n—(f+b)n-2),

g(lx)) = —y—b(n-2)+25

1 (15)
B N O (E))

—

f 2-b(n-2)<y<n—(B+b)n-2),

x|

B
| x| L(|x|)(j°°@dt)” if y=2-b(n-2).

So, from (14) and (15), one can see that v<2 <7, L, € K, L, € K, satisfies (5). It follows that the function &
satisfies the hypothesis (C).
Case 2 Assume (H), (4,) and (B,). We define the functions € and w on D by

o) = L5 ¥ x),

|x [
where
Uln)d@dtj'“ if y>n—(B+b)(n-2),
NxD= PR "
wadt if 2-b(n-2)<y<n-(B+b)n-2)
and

2] ~ -
W(x) = %K(p(x»m x)),

where K is the function given by (12) and

1 if y>n—(B+b)(n-2),

[ (17)

L(xp=1 o (NI
* det it 2-b(n-2)<y<n—(B+b)n-2).

(x| |,

Due to Proposition 1.5, Lemmas 2.1 and 2.3, the functions 8 and y are in Cy(D).
Now, we consider two subcases.

Subcase 1 [fy>n—(f+b)(n—2)then u =n—(a+ a)(n—2).

From hypothesis (H), we have for x € D,

a

~Aratad ~a 1+|x 1-a
_eW) ik )(p(x))N(|x|)(jl '@dt)

h(x)
|x]"

=(p(x) " L (P [x[7 Ly (| x ).
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We note that v=14 — a — ad, < 1, T = n and the functions L, and L, are respectively in K, and IC,, satisfying (5).
Hence the function /4 fulfills the condition (C).
Now, by (H) we have

b
—o+b+ o ~ 1+l —a
k) = m—ﬁ,w(mﬁ)wu))m x )( [ %’)drj

=(P()) " Li(p()) [x[7 Ly(|x ),
=S x[" Ly(|x)),

n
where f'is the function defined by (14). So, we have v <2 and L, € K, such that .[0 7L (t)dt < co. Moreover, since 7> n
and L, € K, Lemma 2.2 gives that _[l t'"VL,(t)dt < oo. Thus, k satisfies (C).
SubcaseZIf2—b(n—2)<y<n—(ﬂ+b)(n—2)then,u:n—a(n—2)—aw .
From hypothesis (H), we have K
-8

=1+

—A+a+ad — a_ " #
hx) =%<MK Koy [

|n

= ()" Li(p(x)) | x [ Ly(| x]).

Wehavev=A—a—rd, <l,z=nand L, € K, L, € IC, satisfying (5).
Consequently, 4 satisfies the assumption (C).
On the other hand, by (H), we have

2]

—o+b+ o ~
ko =L (kK o)) |

L (NL)(2)
x| ’

1
dr| L7 (x|)
=(PCN " Li(p() [ x [T Ly(| x])
=f(pGN [ x[T Ly(| x]),
where f'is the function defined by (14). Hence, we get that v <2 and L, € K, such that J-:tlf"Ll(t)dt < 0. Besides,

since 7 € (2, n) and L, € K, we obtain by Lemma 2.2 that J‘]thLz(t)dt < 0. We deduce that the function £ fulfills the
condition (C).

Case 3 Assume (H), (4,) and (B5).
We define the functions & and y on D by

=g a
000 =L (N o Loy x))

| x|

and
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_(p(x)° e

v =20 K(p(e)D(N“L e )(| x]),

where K is the function given by (12).
From Proposition 1.5, Lemmas 2.1 and 2.3, we deduce that the functions 0 and y are in Cy(D).

Using (H), we have for x € D,

1= a
h(x) = (p(x)) O M (p(x) | x [“727 (N @ L) x ]).

Using (4,) and (H), we have 2 — & — ad, <1 and M € K,. Due to Lemma 2.2, we have Jlj tl_}'+“+”5‘M(t)dtw< 0.
From (B;) and Remark 1.7, we get that 2 < u + av, + av;<nand since N ¢ L» € K, Lemma 2.2 implies that II £
w23 (NS LS ()dt < oo.

Therefore, the function / satisfies (C).

Now, by hypothesis (H), we have forx € D,

l-a b

—o+b+ 55 =h ~r=bv=Bv3i (T & Ao
k(x) = (p(x)) " KK ) (p() | x [ (Lo Ne)(| x)).
Obviously, we have for x € D,

() (KK ) p() = (p(x) ™ L (p(x) = £ (p(x).

where f'is the function defined by (14). So, we have v < 2 and L, € K; satisfying the condition of integrability I: (7L (t)dt

< 0.

The function L%N - is in K. Since by Remark 1.7 and hypothesis (B;), we have y + bv, + fv; € (2, n), then
Lemma 2.2 implies that /777 273N oL FT&)(t)dt converges.

We deduce that £ fulfills the hypothesis (C).

Case 4 Assume (H), (4,) and (B,).

We define the functions & and y on D by

1

U“Mdt)‘“ if y>n-pn-2),

x| t
0(x) = p(x) B =L
L:Mdt if 2<y<n-pB(n-2)
and
1 if y>n-pn-2),

b

@

_(p)" & 1 -
v x| (Pt L (I x)) L:Mdt if 2<y<n-pBn-2),

where X is the function defined by (12).
By hypotheses (H), (B,), Proposition 1.5 and Lemmas 2.1 and 2.3, we have 6 and y are in Cy(D).
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Now, we consider two subcases.
Subcase 1 [f y>n—f(n—2)then u =2 — a(n — 2).
Using (H), we have forx € D,

w Nt(t) dtjl—a

x|

hx) = (PG N (MK )(p() [ x| N(|x |)( J

=) Li(p()) | x [ Ly(| x]).

We remark that v=A4—a —ad, <1, 7= 2. From Lemmas 2.1, 2.2 and 2.3 we have L, € K, such that _[: £7L\(t)dt < oo,
Using (B,) and applying Lemmas 2.1 and 2.3, the function L, € K, and we have

© 1 _ L)
L t Lz(t)dt—L =i

:I“MU N(é)dgja dt

4

1

:(l—a)U Né‘f) g] Y cw.

Hence, the function / satisfies (C).
Now, by (H) we have

b

k(x) = (pG) " (KR Y p(x)) | w7702 Uf th) dtj L x)

=(p()) " Li(p(0)) [ x [ Ly (L(| x1)),
=[P x [T Ly(L(| x ),
where fis the function defined by (14). Then, we have v <2 and L, e I, such that _[ 7 L,(¢)dt < oo. Moreover, since 7=

y+pn—2)>n>2and L, € K,, we deduce from Lemma 2.2 that J. t'Ly(t)dt < oo.
We deduce that £ fulfills the condition (C). )
v

SubcasezIf2<y<n—ﬁ(n—2),then/1—2—aﬁ.
From hypothesis (H), we have

1/7
= (o) 5 MR Yo ¢ (V7 e [0

= (P Li(p()) | x[7 Ly (| x ]

We have v=4—a —ad, <1, 7 =2. Using (B,) and Lemmas 2.1, 2.2 and 2.3, we can easily see that L, L, are
respectively in K, and K, such that (5) is satisfied.
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So, A fulfills the hypothesis (C).
On the other hand, by (H), we have

b
—7+28

_ o (NLP o
K@) = (™ KR oy x| | [ a7 )

=(p)) " Li(p(x) | x 7 Ly (| x ).

By simple calculus, we have

(p(x) " L (p(x)) = f(p(x)),

n
where fis the function defined by (14). So, we obtain that v <2 and L, € K, such that _I.O 7L (t)dt < o. Besides, taking

into account that 7 = 71__%; e (2, n) and L, € K, Lemma 2.2 implies that L t'""L(t)dt < . Hence, k satisfies the
condition (C).

Case 5 Assume (H), (4,) and (B,).
We define the functions § and w on D by

000 =L ¥ (p(x)),

‘x|n72
where
e
U”( )MT(’)drj“’ if o<l+f+b,
px
. 18
M(p(x) = L (18)
-
j”( )(MKI—)(t)dt if 1+B+b<o<2+b,
px
and

(p(x)"

wm=|W1%wmimﬂ

where L is the function given by (13) and

1 if o<l+b+p,
g (19)
if 1+b+f<0<2+b.

]Z’(p(x)) = (MKé )(?) u

K@@m>ﬂﬂ

Using Proposition 1.5 and Lemmas 2.1 and 2.3, we get that the functions € and y are in Cy(D).
Now, we consider two subcases.

Subcase 1 [fo<1+b+ftheni=1+a+a.
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Using (H), we have forx € D,

)= —LOD__ g (p(x))(j:(x)MT(t)dt]la (NL')(x))

‘ X |y+a(n—2)+av1

= (P LG [x [ Ly(| x ).

Itis clear that v=1,7=u + a(n —2) + av, > n, L, € Kyand L, e K, such that [ 1 L,(0)di<ooand [ 1" Ly(t)di < oo.
Hence, 4 satisfies (C).
Now, by (H) we have

b
-o+b+f " T -
e e e C RS (P

| X |y+b(n—2)+/i'v] t

= (PN Li(p() | X[ Ly(| x ]

7
Sincev=c—b—f<1land L, € K, Lemma 2.2 implies that _[0 £7Ly(¢)dt < oo.
On the other hand, by a simple computation, we get for x € D,

lx["Ly(1x[) = (| x]),

where g is the function defined by (15). So, one have 7> 2 and L, € K, such that .[1 t' Ly (¢)dt < oo.
Then, we deduce that £ satisfies the assumption (C).

SubcaseZIfl+b+ﬁ<g<2+bthenwehave/1=1+a+a2—a+b.

From hypothesis (H), we have I=p
)
-1 I_L MK ¢ o
h) =—LD gy peep| [T ME DO g ity x)
| x| i p(x)

= (PN L (p() [ X[ Ly(| x ]

Wehavev=1,t=pu+a(mn—2)+av,>nand L, € K, L, € K, satisfying IO” 7VL,(t)dt < o0 and J.]w t'Ly(t)dt < 0.
Hence, the function /4 fulfills (C).
On the other hand, by (H), we have

—o+b+2/ a PS

1-p L . -5 ~
ko =Lk ooy [P IE O g 11y

| X ‘}/+b(n72)+ﬂ1/] (p(x)

=(P)) " Li(p() [ x [T Ly (| x D

. o-b-2p . 7,
Since L, € Kyand v = 5 € (1, 2), Lemma 2.2 gives that '[0 t "Ly(t)dt < 0.

Besides, by simple calculus, we have

lx["Ly(|x ) = (| x ]),
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where g is the function defined by (15). So, we have 7> 2 and L, € K, such that JTO ¢!

verifies (C).
Case 6 Assume (H), (4,) and (B,).
We define the functions 6 and w on D by

po(x) ~

9()—| =

= M (p(e)N( ),

where M and N are the functions given respectively by (18) and (16) and

(p(x)"

S K(p(o)L( x ),
| x|

y(x)=

“'Ly(t)dt < o0. We conclude that &

where K and L are the functions given respectively by (19) and (17). Using Proposition 1.5, Lemmas 2.1 and 2.3, we

get that the functions 8 and y are in Cy(D).
Now, we consider four subcases.

Subcase 1 [fo<1+b+pfandy>n—(f+b)(n—2)thenl=1+a+aandu=n—(a+a)(n—2).

From hypothesis (H), we have

a

h(x) = (p|( D p1(p ())(j (t)dtj_ N( x |>Uf”@dtj““

=(p() " Li(p()) [ x [ Ly(| x]).

We note that v =1 and 7= n. Applying Lemmas 2.1, 2.3 and 2.2, we can easily see that L, € IC, L, € I, such that (5)

is fulfilled. So, the assumption (C) is well satisfied by the function 4.
Now, by (H) we have

b

—o+b+p n 1-a 1+]x —-a
k(x)=mml<(p(x»(jp “)dtj L(|x|)(j O, j

=(p(x) " Li(p()) | x [ Ly(| x]).

b

Itisclearthatv=oc—b—f<landr=y+ (f+ b)(n —2) > n. Due to Lemmas 2.1, 2.3 and 2.2, we deduce that L,

Ko, L, € K, satisfying (5). Hence, k verifies the condition (C).

Subcase 2 If o<1 +b+pfand2 —bn—2)<y<n—(F+b)(n—2)theni=1+a+aandu=n—an —2) —

y—=2+b(n-2)
a T .
From (H), we have

h(x):MM(p(x))U;x)M_(t)dt -

t

|xI"

x(NL)(1 x| [
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=(p(x) " L ()| x D" Ly (| x ]

Since v = 1, 7 = n and the functions L, and L, are respectively in K, and IC,, then Lemma 2.2 implies that (5) is
reached. So, we deduce that /4 satisfies (C).
Moreover, we have

b

—-o+b+f " T ne
k= O ko [7, M| @

|x| 7

b

y Ium (LN'=)(t) dt
1 t

=(p()) " Li(p() | x [T Ly (| x .

It is obvious to see that the function & verifies the hypothesis (C) withv=c—b—f <l and r= % e (2, n).

Subcase31f1+b+ﬂ<a<z+bandy>n—(ﬁ+b)(n—2)then/1:1+a+a2fﬂ+b and 4 =n— (a+a)n - 2).
Using (H), we get
1-p

-1 a ” #
i) = Bk ooy [ CE

| p(x)

XN (| x |)[f”@dzj‘a

= () Li(p()) | x [ Ly(| x]).

Since L, € Ky and L, € K, then one can see that / satisfies (C) with v=1and r=n.
Besides, we have

@ b

"’ I~ n é 1+|x] Q
k) = PO K (o) Ip(x)—(MK t D 4 L(x|)U1 '@mj

| X ‘7+(ﬂ+b)(n*2)

—o+b+2p

= ()" Li(p() [ X[ Ly(| x ]

We note that v = G_ll:gzﬁ e€(1,2),t>nand L, € K,, L, € K, satisfy the condition (5). Hence, k fulfills the
hypothesis (C).
Subcase 4 If 1 +b+f<o<2+band2 —b(n—2)<y<n—(B+b)(n—2)theni=1 +a+a2;"+b and y=n—
an—2)—a y—2+b(n-2) -
1-8
We have on D,
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(PG MK "))

h(x) =-——"=— il

O™ (k77 o) [,

-8

142

Ay [TV,

=) Li(p()) [ X[ Ly(| x ]

One can see that the function /4 verifies the hypothesis (C) with v=1 and 7 = n.
On the other hand, we have

b
—o+b+2 .

1-p 1 ,
ko= K (o) [

y+b(n-2)-2
1-p

Mdt Lq(|x\)

| x|

N ij\ (NLg)(t) dr

t

= () Li(p()) | x [ Ly(| x]).

It is clear that £ fulfills (C) with v € (1, 2) and 7 € (2, n).
Case 7 Assume (H), (4,) and (B).
We define the functions & and y on D by

p(x) ~ L

9()—| z M(p()(N @ L)(| x ),

where M is the function given by (18) and

(p(x))*

e K(p(x ))(N“’L ) x D,

y(x)=-—"——"—

where K is the function given by (19).
It is obvious from Proposition 1.5, Lemmas 2.1 and 2.3, that the functions 6 and y are in Cy(D).

Using hypotheses (H) and (4,), we obtain

1-f a
= LO T ey

| |2+V2

Volume 2 Issue 1]2021| 57 Contemporary Mathematics



M(p(x))UZ(X)MT(t)dtjla ifo<l+b+p,
) 1-p
MK )0)

(MK )(p(x)) j;’m ifl4b+B<c<2+b

=(P()) " Li(p() | x[7 Ly (| x .

We notice that v = 1 and by hypothesis (B;), we have =2 + v, e (2, n). Hence, in view of Lemmas 2.1, 2.3 and 2.2,
the functions L,, L, belong respectively to Iy and K, and satisfy (5). We conclude that 4 verifies (C).
Moreover, we have on D,

—orbipy b la
k<x>=%ww )x)

b

K(p(x)) UZ(X)MT(t)dtjla ifo<l+b+p,

MK0)

1
K" (p(x)) j;x) ifl+b+ B <o <2+b,

= () Li(p()) [ X[ Ly(| x ]

Remark that (C) is satisfied withv=0—5b— 6, <2 and t=2 + v, € (2, n).
Case 8 Assume (H), (4,) and (B,).
We define the functions 8 and w on D by

1

U”Mdzj” if y>n-pn-2),

x| t
0(x) = p(x)M (p(x)) W L

ijcﬁ if 2<y<n-pn-2),

where M is the function given by (18) and

1 if y>n-pn-2),

ISHES

P = 1 1
V= x| Ko L' (x)) j M if 2<y<n-pn-2),

where K is the function given by (19).
Using (B,) and Proposition 1.5, Lemmas 2.1 and 2.3, we get that the functions 8 and y are in Cy(D).
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Now, we consider four subcases.
Subcase 1 Ifo<1+b+fandy>n—pm—2)theni=1+a+aand u=2—an —2).
From hypothesis (H), we have

o a

= Ly ())(I" MO dtJ“’quD(f@dt)”

|x .

=(P)) " Li(p() | x[7 Ly(|x ]

Using (B,) and Lemmas 2.1, 2.3 and 2.2, we can easily see that the function 4 fulfills (C) with v=1 and 7= 2.
Now, by (H) we have

b b

(p(x) " r M@ e “N@ )
)= 8 o[, 2 ) s [ 22

= () Li(p()) | x [T Ly(| x]).

It is clear that £ satisfies (C) withv=c—b—f<landt=y+ fi(n —2)>n.
2

Subcase 2 Ifo<1+b+pfand2<y<n—pm—2)theni=1+a+aandu=2—-al= .
-
From (H), we have

a

i )—(p(xl)) M(p ())U” M(’)dtj'“

| t

1=f

[}

—1+

15 ﬂ
| [ L0
= () L(p(0) | x| Ly(x]).

We notice that v=1 and 7 = 2. From Lemmas 2.1, 2.3 and 2.2, we have L, € ; such that j: 7L ,(t)dt < . Using
(B,) and Lemmas 2.1 and 2.3, the function L, belonging to K, and we have

© 1 _(~ L)
L 1L, (0)dt _J'l =

[ (NLé YD) | = (NLé )(E)
_Il .[1 £

. 5
I (NLP)(&)
g

d& < 0.
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It follows that £ verifies (C).
Moreover, we have

-o+b+f " % 1
k() = %K(p(x))[jp(x)M—“)drj £ x)

t
| x|

Ly |
e,

= () Li(p()) | x [ Ly(| x]).

Using (B,) and Lemmas 2.1, 2.3 and 2.2, we deduce that the function % satisfies (C) withv=0c—b—f <1 and 7=
125 e (2,n)
-5 > 1

Subcase 3 If | +b+ﬁ<0<2+bandy>n*ﬁ(n*2)then/1=1+a+a2?ﬂ and u =2 —a(n—2).
Using (H), we get K

1+ﬂ

a ®

- a , -
) = Bk oo [

XN(| x |)U:@dtj”

= () Li(p()) | x [ Ly(| x]).

So, one can see that v=1 and 7 = 2. Furthermore, by (B,) and Lemmas 2.1, 2.3 and 2.2, we deduce that L, € C,, L,
€ K, satisfies the condition (5).

Consequently, / fulfills (C).

On the other hand, we have

b
—o+b+2 Py

1-p L "
ko =L K (| [

| X |;/+ﬂ(n—2)

MK YD)

xL(| x |)Uj@dtj“’

= ()" Li(p() | X[ Ly(| x .

—-b-2
We note that £ satisfies (C) with v = = - £ e(l,2)andz=y+p(n—-2)>n.

— -2
Subcase4lf1+b+/)’<0<2+band2<y<n—/3(n—2)then/1=1+a+a21_al;b andﬂzz—aly_—ﬂ.

We have on D,
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MK YD)

ho) - (p<x|)>

| (MK Y(p(x) [,

-5

£

1 ﬁ
x| [P

= () Li(p()) | x [ Ly(| x]).

Using (B,) and Lemmas 2.1, 2.3 and 2.2, we can easily see that the function 4 verifies (C) with v=1 and 7= 2.
On the other hand, we have

b
—o+b+2 a_ ©
b =L oy | [ DO,
x|
1- ﬂ
t

= ()" Li(p()) | x [ Ly(| x]).

Since v € (1, 2) and 7 € (2, n), then (B,), Lemmas 2.1, 2.3 and 2.2 imply that £ fulfills the hypothesis (C).
Case 9 Assume (H), (4;) and (B,).
We define the functions & and y on D by

o(x) = L (|)) L (M K p()

and

5 la
W(x) = (‘T S‘ﬁ) MK o) x,

where L is the function defined by (13).
By using hypothesis (H), Proposition 1.5 and Lemmas 2.1 and 2.3, it is obvious to see that the functions § and

belong to Cy(D).
From hypothesis (/) and Remark 1.7, we have

6,2 4 a ~a
hx) = %(M * K*)(p()NI' ) x).

Using (4;) and (B,), we deduce that % satisfies the assumption (C) withv=2 -6, € (1,2)and =y + a(n —2) +
av, > n.
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On the other hand, by hypothesis (H) and Remark 1.7, we obtain that

532 la b -
k() = lx(f(’f—”),j(K o MY pCONLL ) x]).

La b
By hypothesis (45), we have 2 — J; € (1, 2). Therefore, Lemmas 2.1 and 2.2 imply that K « M o € I, satisfying

T 4 La b
[ ko Mo (t)dt < oo.
Now, by simple calculus, we obtain that for x € D,

a7 (LY x ) = x [ Ly(x]) = g (| x .

where g is the function defined by (15). So, we have 1> 2 and L, € K, satisfying the condition of integrability

_L t'7L,(¢)dt < 0. We deduce that k verifies the condition (C).
Case 10 Assume (H), (45) and (B,).
We define the functions § and w on D by

o(x) = (ffr” (M ® KoY p()F( ],

where N is the function defined by (16) and

53 b la -
W(x) = %(MMK Y pNL( ).

where

1 if y>n—(B+b)(n-2),

Lxh=1 o |
U L"Mw it 2-b(n-2)<y<n—(B+b)(n-2).

(xD

It is obvious from Proposition 1.5 and Lemmas 2.1 and 2.3 that the functions € and y are in Cy(D).
Using hypotheses (H) and Remark 1.7, we obtain

5-2 - a
) = L& (| x)|) (M * K*)(p(x))
N( x |)Uf”@dtj’” if 7 >n—(B+b)n-2),
X —l+ﬁ
(NLY( x ) jl”"“wdt if 2-b(n-2)<y<n—(B+b)(n-2),

=(p() " Li(p()) | x [ Ly(| x]).

Contemporary Mathematics 62 | Zagharide Zine El Abidine, et al.



We notice that # satisfies (C) withv=2 -9, € (1,2)and r=n.
Moreover, we have on D

k) =— Lok o )(p()

| X |;/+b(1172)+[]v1

b

L( x |)( jll*'*@dtj“’ it y>n—(B+b)n-2),

b
X 2

NI |
1 H(NLt )(t)dt

27 (x| [ if 2-b(n-2)<y <n-(B+b)n-2),

=(p)) " Li(p() | x[7 Ly (| x ).

We can easily see that £ fulfills the condition (C) with v € (1, 2) and 7> 2.
Case 11 Assume (H), (45) and (B;).
We define the functions & and y on D by

& 1o 125 e
0(x) =“f+33<M o KOYp()(N @ L2)(x))
and
v (x) = %(M%h(p(x»(zv%;)q x).

Due to Proposition 1.5 and Lemma 2.1, we get that § and  are in Cy(D).
Using hypothesis (H), we obtain

o -5 a p a
h(x) = (p(x)) 4% (M o Ke)(p(x) [ x [ (N @ Lo)( x])

=(p(x) " L (P [x[7 Ly (| x ]

From (45), (B;) and Remark 1.7, we have v=1 — ad, — ad; € (1, 2) and 1 = u + av, + av; € (2, n). Applying
Lemmas 2.1 and 2.2, we deduce that £ satisfies (C).
Moreover, we have

(p(x))—a+h(>‘2+ﬂﬁ3 b l-a b 1-a

k(x) (MK @ ) p(x))(NL® )(| x])

| X |}/+b1/2 +pvs

= ()" Li(p()) | x [ Ly(| x]).

We notify that & verifies (C) with v=0 — bd, — 0, € (1,2) and t=7y + bv, + Bv, € (2, n).
Case 12 Assume (H), (4;) and (B,).
We define the functions 8 and w on D by
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1

Uf%ﬂdtjl_a if y>n-pn-2),

5 a
0(x) = (p(x)™ (M @ K*)(p(x)) . =
L:Mdt if 2<y<n-pB(n-2),
and
1 if y>n-pn-2),
(p)* b e P
y(x)=-"——"—(M"K » )(p(x))y ! - (NL-
* lx[™ * L (x)) LX‘Mw if 2<y<n-pBn-2).

It is obvious from (B,), Proposition 1.5 and Lemmas 2.1 and 2.3 that the functions # and y belong to Cy(D).
Using hypothesis (H) and Remark 1.7, we obtain

6,-2 = a
h(x) =%(M o Ko)(p(x))

| x

N(x|)(j:@dtjl'“ if y>n—pn-2),
x a ‘”%

(NL-?Y(| x ) L:wdt if 2<y<n-p(n-2),

=(P)) " Li(p() | x 7 Ly (| x .

By hypothesis (B,), we obtain that v=2 — J, € (1, 2) and we have 7 = 2. Hence in view of (4,) and Lemmas 2.1, 2.3
and 2.2, the function / satisfies (C).

On the other hand, we have

&2 b e
k() =%(Mwl< “)(p(x)

b

L(|x|)(.“:¥dtjla ity >n-pn-2),

I D) ijm if 2<y<n-p(n-2),

= (P Li(p(x) | x 7 Ly (| x ]
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We remark that & verifies the condition (C) with v € (1, 2) and 7=y + fv, > 2.
Case 13 Assume (H), (4,) and (B)).
We define the functions & and y on D by

O(x) =—— M(p(x)),
| x|
where
( jop(’”MT(t)dzj'“ if o<l+p,
M(p(x)) = . = (20)
IOP(X)Mdt if 1+f<o<2,
and
5 B
v = %K(p(xm x,
where L is the function given by (13) and
1 if o<l+p,
K(p(x)=1 1 kR g @1)
PRI (p(x)) jo”‘ )Mdt if 1+f<o<2.

By hypotheses (H), (4,), (B,), Proposition 1.5 and Lemmas 2.1, 2.3 and 2.2 we have 0 and y are in Cy(D).
Now, we consider two subcases.

Subcase 1 [f o<1+ fthenA=2+a.

Using (H), we have for x € D,

o

- o[ M| (W)

( ) - ‘ x |y+a(n—2)+av| 0

= ()" Li(p() | X[ Ly(| x ]

We remark that v=2, 7=y + a(n — 2) + av, > n. From (B,), (4,), Lemmas 2.1, 2.3 and 2.2, we have L, € K, L, €
IC,, satisfying (5). It follows that /4 fulfills the hypothesis (C).
Now, by (H) we have

b

(p(x) 7

| X |}/+b(n72)+ﬁvl

k(x) = K(p(x))( [ "(’"MT(’)dt]l‘“ @y«

0

=(p()) " Li(p() | x[7 Ly (| x ]
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One can easily see that v=0 — f < 1. Using Lemmas 2.1, 2.3 and 2.2, we obtain that L, € K, satisfies I: 17L(1)
dt < 0.
By elementary calculus, we obtain that for x € D,

|x " Ly(|x D) = g(| x),

where g is the function defined by (13). So, we have t > 2 and L, € K, such that L t'"Ly(t)dt < 0. We deduce that k
satisfies (C).

Subcase 2 If 1 +ﬁ<o<2then1=2+af:—;.
From hypothesis (H), we have

-5
P

—1+

) _a_ o(x ﬁ
)= — L iy [ D

| X |‘u+a(n72)+av1 0

(NL)(| x])

= () Li(p() | X[ Ly(| x ]

Using (4,), (B,) and Lemmas 2.1, 2.3 and 2.2, we can easily see that £ fulfills (C) withv=2andr=u + a(n —2) +
av, > n.

On the other hand, by (H), we have

2}

de| (@L”)(x))

-o+2p

1-p 1 o(x #

0

= (PN Li(p() | X[ Ly(| x .

Using (4,) and Lemmas 2.1 and 2.3, we get that L, € K and since v = Ul__zﬁ'g
o 1 Ly(t)dt < oo,
Now, by simple calculus, we have

e (1, 2), Lemma 2.2 implies that

|x " Ly(|x D) = g(| x1),

where g is the function defined by (13). Then, we have 1> 2 and L, € K, such that L t' Ly (t)dt < oo.
Therefore, the function k verifies the assumption (C).

Case 14 Assume (H), (4,) and (B,).
We define the functions 8 and w on D by

0(x) = #M(p(x))qu x)),

where M and N are respectively given by (20) and (16) and

(P %

w(x) —K(p(x))
| x|
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1 if y>n—(B+b)n-2),

b

o
X

i (NL'P
1 H(NLt )[63) dr

L7 (x)) ) if 2—b(n-2)y <n—(B+b)(n-2),

where X is the function given by (21).
Using hypothesis (4,), Proposition 1.5 and Lemmas 2.1 and 2.3, we get that the functions 6 and y are in Cy(D).
Now, we consider four subcases.
Subcase 1 [fo<1+fandy>n—(f+b)(n—2),theni=2+aand u =n—(a+a)(n—2).
From hypothesis (H), we have

a

oy = LD M(p(x))(j”” a dt]'“ N(x )[f”'@d’jm

|xl" ot

= (PN L(p() | X[ Ly(| x ]

From (4,), Lemmas 2.1, 2.3 and 2.2, we can easily see that 4 satisfies (C) with v=2 and 7 =n.
Now, by (H), we have

s pLx 1-a 1+]x] 1-
S [ T e

t

b b
a

=(p(x) " Li(p(x)) | x [ Ly(| x]).

Using hypothesis (4,) and Lemmas 2.1, 2.3 and 2.2, we deduce that £ fulfills (C) withv=0c—-f<landz=p+ (f+
b)(n—2)>n.

Subcase2 [fo<1+fand2—b(n—2)<y<n—(f+b)(n—2),theni=2+aganduy=n—a(n—2)—a

From (H), we have

y—2+b(n-2)
1-8 '

a

oy = LD~ M(P(x))( [ "(")MT(’)dzj““

| x| 0

_1+—£
P

X(NL7 )( x)) L”"f‘—(NLlj O 4

= (P Li(p()) [ X[ Ly(| x ]

From (4,) and by Lemmas 2.1, 2.3 and 2.2, the function L, is in K, satisfying j: 7L ,(t)dt < 0. Besides, since L, €

K, and 7 = n, we obtain by Lemma 2.2 that L t'7L,(¢)dt < oo. So, the function / verifies the condition (C).
Moreover, we have

Volume 2 Issue 1/2021| 67 Contemporary Math tics




e >

b

R P —-a L 1+|x é
k) = Ko [ | 1 )

E

=(P()) " Li(p() | x [T Ly (| x D

y=2B+b(n-2)

We note that £ satisfies the hypothesis (C) withv=0—f<1and r= 5 € (2, n).
Subcase 3 If 1 +ﬁ<0<2andy>n—(,[)’+b)(n—2),then/1:2+a2_—6 andu=n-(a+a)n—2).
1-p
Using (H), we get
A
x ™ (MK' s t
h(x) = (p|( D™ MK Y p() (7RO g, t iz
1+x N (t ﬁ
xN(| x )Ul ﬁdtj
t

= (PN Li(p)) [x [ Ly (| x ).
So, one can see that / fulfills the hypothesis (C) with v=2 and 7 = n.
Besides, we have

—o+28 ® b

-5 plx +|x] 1—a

k(x) = | x |y+<ﬂ+b)<n—2>

=(P()) " Li(p() | x[7 Ly(| x ]

-2
We note that v = 017 £ € (1, 2) and 7> n. From (4,), Lemmas 2.1, 2.3 and 2.2, we have L, € K, L, € IC, satisfying (5).

Hence, £ satisfies (C). /
Subcase 4 If 1 + f<o<2and2—b(n—2)<y<n-—(f+b)(n—2),then 1= 2+a2—‘7and,u—n—a(n—2)—

y=2+b(n-2) 1-8
-5 :
We have on D,
—I+17ﬂ
plx ﬂ
h(x)—(p|(x)) MK o) [N t 0
1-B

x(NL)( x| | IH‘X‘—(NLI;/} ) 4

=(P)) " Li(p(x) | x 7 Ly (| x ).
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In view of (4,), Lemmas 2.1, 2.3 and 2.2, the functions L,, L, belong respectively to K, and /C, and satisfy (5).
Hence, 4 fulfills (C).
On the other hand, we have

b
—-o+28 a ‘w
-4 1 olx [ L
k) =LK (o) [ )%df L7 x)
-

| x|

@

§ Inm (NLP)(t) u
! t

=(p)) " Li(p() | x [T Ly (| x ).

Using (4,), Lemmas 2.1, 2.3 and 2.2, k satisfies the assumption (C) with v € (1, 2) and 7 € (2, n).
Case 15 Assume (H), (4,) and (B;).
We define the functions 8 and y on D by

a

,v - a
0(x) = #'M(p(x))(zv o Lo)( x|

| x|
where M is the function defined by (20) and
O ~ b la
v = (’T(x—l)m(x))(m D

where K is the function given by (21).
It is obvious from (4,) and Lemmas 2.1 and 2.3 that the functions & and w belong to Cy(D).
Using hypothesis (H) and Remark 1.7, we obtain

2 12f e
hx) =L (o o) x))

| X |2+v2
M(P(x))(.[op (X)MTU)‘#)M tosh
N a —1+%
(MK )(p(x)) fop(X)Mdt s

=(p() " Li(p() [x [T Ly (| x]).
We notice that v =2 and by assumption (B;), we have =2 + v, € (2, n). Hence, by the virtue of (4,), Lemmas 2.1, 2.3

and 2.2, the function # fulfills (C).
Moreover, we have on D
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b l-a

—o+ [0y
PO~ (NoLw ) x))

| |2+v

k(x) =

b

K(p(x ))Up()Mm j -

a

px -5
Ko (oo [ VK0,

= (P Li(p()) | x[7 Ly (| x ).

if o<1+p,

if 1+f<o0<2,

Remark that v=0c— 6, <2 and =2 + v; € (2, n). Using same arguments as above, we deduce that & satisfies the

hypothesis (C).
Case 16 Assume (H), (4,) and (B,).

We define the functions 8 and w on D by
L
[ [ dtj“’ if
X
-

[ SNEYD |
[x| t

0(x) = M (p(x))

where M is the function given by (20) and

(p(x))* R(p(x)d 1

y(x)=-——""— e =

where K is the function given by (21).

w (NL# )(©)
) jl S dt

}/>n—ﬂ(n—2),

2<y<n

- B(n=2),

if y>n-pn-2),

if 2<y<n—pf(n-2),

Using (4,), (B,), Proposition 1.5 and Lemmas 2.1 and 2.3, we get that the functions ¢ and  belong to Cy(D).

Now, we consider four subcases.

Subcase 1 [fo<1+fandy>n—pf(n—2)thenA=2+aand u =2 —a(n — 2).

From hypothesis (H), we have

a

(p(x)”*
[x

= (PN Li(p() | X[ Ly(| x .

h(x) = ———

o177 ]

N )
t

x|

Using (4,), (B,), Lemmas 2.1, 2.3 and 2.2, we can easily see that / verifies (C) with v=2 and 7= 2.

Now, by (H), we have
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b b

() " o M@ V- N@ 4 )
k(x):|x|y+p(n72) K(p ())U dt) L(|x )U ; dt)

= () Li(p()) | x [ Ly(| x]).

From (4,), (B,), Lemmas 2.1, 2.3 and 2.2, we deduce that the function & satisfies (C) withv=c—f<land =y +
pn—2)>n.

Subcase2 [fo<l+fand2<y<n—pm—2)theni=2+agand u=2 - a}/

From (H), we have

2
-5

a

b = L iy [0 )0

-5

14—

1 ﬁ
v x| [ A

=(P()) " Li(p() | x[7 Ly (| x ]

Using (4,4), (B,), Lemmas 2.1, 2.3 and 2.2, we get that the functions L, and L, are respectively in I, and /C,
satisfying (5). So, 4 fulfills the assumption (C).
Moreover, we have

b

o+f » L
ko =LY~ ko ())U A ) L7 x)

72ﬂ
x|

J [FOLD0
Ixl t

=(p()) " Li(p() | x[7 Ly (| x ]

. . . -2
In view of (4,), (B,), Lemmas 2.1, 2.3 and 2.2, we deduce that £ satisfies (C) withv=0c—f <1 and 7= yl_ﬁﬂ € (2, n).
Subcase 3 If 1 +ﬁ<a<2andy>n—ﬁ(n—2)thenz:2+af:_; and =2 — a(n - 2).

Using (H), we get

Ip( 0 (MK"™ & )
t

(MK '3)( (x))

o) — (p|<x))

a

qux)(j M0 j
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= (PN Li(p() | X[ Ly(| x ]

So, one can see that / satisfies the hypothesis (C) with v=2 and 7= 2.
Besides, we have

b
-o+2p a @

() o) (MK (1)
ko) = K ﬂ(())j —

dr| L(|x])

X (J‘wmdtjla
[x ¢
=(p(x) " Li(p(x) | x[7 Ly (| x|

-2
We note that k fulfills (C) with v = % e(1,2)andt=y+p(n—2)>n.
Subcase 4 If 1 + f<g<2and2<y<n—fn—2)theni=2+a 2= and u =2 — al=%.
-5 -7
We have on D,

s

=1+

(p(x)*
|x [

(MK 5)( (x))

p lﬁ
hx) = J~<>(MKt )0 .

-8

_1+—£

7
vy x| [ DO,

=(P)) " Li(p() | x 7 Ly (| x .

Remark that v =7 = 2. In view of (4,), (B,), Lemmas 2.1, 2.3 and 2.2, 4 satisfies the hypothesis (C).
On the other hand, we have

b
—o+2p @

1-p
) T iy

J- p(x) (MK v )¢)
- t

k(x) dr | L7 (| x|)

| x|

o (NP
e,

= (PN L(p()) [x [T Ly (| x ).
It is obvious that the function £ fulfills (C) with v € (1, 2) and 7 € (2, n).

To expound our main result, we present the following example.
Example 3.3 Let o, f € (-1, 1), a, b € R such that
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lal<l-|a| and |b|<1-]B].
This implies that y = (1 — |a|)(1 = |B]) — |rs| > 0and so w = (1 —a)(1 — ) —rs > 0.

Let p and g be two positive continuous functions on D such that for x € D

p(x) = (p(x))" | x[* and g(x)=|x[>""? [IOg(ﬁ)j ,

where 4, 4 € R.
It is clear that hypothesis (H) is well satisfied. We note that

_(1=pR-D+2a o _2A1-a)+b(2-12)
- w ’ T w ’

5 =1, &, s, =1,

=(1—,8)(;1—2)—;1?(71—2) v =—b(1—a)(n—2)+b(,u—2) Y =—b(n—2)
10} » 10} »oe 1-4 '

v, =0, v,

cIfA<1l+a+a, u>n—oan—2),then hypotheses (4,) and (B,) are satisfied and by Theorem 1.8, system (3)
possesses a positive solution (u, v) € Cy(D) x Cy(D) such that for each x € D:

and

3 )-8
v(x)zp(x)(log(—)j .

| x|

cIfAi<l+a+a, 0<v,<n—2and0 <v,<n— 2 then hypotheses (4,) and (B,) are satisfied and by Theorem 1.8,
system (3) possesses a positive solution (u, v) € Cy(D) X Cy(D) such that for each x € D:

u(x) ~ &?(mg(i)] ’
HASRT]

and

2(1-a)

p(x)

v(x) =
| x|

(log(i)j
| x|
rs(n—2)

clfA<l+tata,u=2+ R b<0and 2a > 1 — f, then hypotheses (4,) and (B,) are fulfilled and by Theorem
1.8, system (3) possesses a positive solution (u, v) € Cy(D) % Cy(D) such that for each x € D:

1-B-2a

u(x) = p(x) [log(i))

| x|
and
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b+2a-2

W) = %(leg(%]

| x|
|x| '

eIfA=1+a+r, u>n—aln—2), then hypotheses (4,) and (B,) are fulfilled and by Theorem 1.8, system (3)
possesses a positive solution (u, v) € Cy(D) x Cy(D) such that for each x € D:

1

u(x) sz)z(log( 3 )j
H

and

3 Y
v(x)zp(x)(log(—)j .

| x]

eIf A=1+a+a,0<v,<n-—2and0 <y, <n— 2 then hypotheses (4,) and (B,) are satisfied and by Theorem 1.8,
system (3) possesses a positive solution (u, v) € Cy(D) x Cy(D) such that for each x € D:

—2a

u(x) ~ P& (log(i)]” [log(i)j ’
=) B

and

“2(1-a)

V@)~ @[log(i)j

| x[* | x|

elfi=1+ta+ta,u=2+ rsl(f;f) , b<0and 2a>1—f, then hypotheses (4,) and (B,) are satisfied and by Theorem

1.8, system (3) possesses a positive solution (u, v) € Cy(D) x Cy(D) such that for each x € D:

“2a+1-p

u(x)zp(x)(log( & )J [log(i>j
p(x) | x|

and

b+2a-2

W) = %(mgﬁ)]

| x| 7

*If0<0,<1,0<0;<1and u>n — a(n — 2) then hypotheses (4;) and (B,) are fulfilled and by Theorem 1.8,
system (3) possesses a positive solution (u, v) € Cy(D) X Cy(D) such that for each x € D:

_ (p(x)*

| X |n72

u(x)
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and
V(@) ~ (p(x)" (log(iﬂ”’ .

| x|

cIf0<0,<1,0<06,<1,0<v,<m—2and 0 <v; <n—2 then hypotheses (4;) and (B5) are fulfilled and by
Theorem 1.8, system (3) possesses a positive solution (u, v) € Cy(D) x Cy(D) such that for each x € D:

—2a

u(x) = M(log(i)] ¢
| x|

| x[”

and

“2(1-a)

v(x) ~ M(]Og(i)j ¢

| x[” | x|

-2
cIf0<8,<1,0<d,<1,u=2+ ”l(f 5 ) b <0and2a> 1 - f then hypotheses (4;) and (B,) are satisfied and by

Theorem 1.8, system (3) possesses a positive solution (u, v) € Cy(D) x Cy(D) such that for each x € D:

—2a+1-4
u(x) ~ (p(x)* [mg(i)]
[ x|
and
s b+2a-2
3 3
v(x) = %[log(—)]
g | x|
| x|
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