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Abstract: In this article, we study the existence and the asymptotic behavior of positive continuous solutions for the 
following elliptic coupled system
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where D is an unbounded regular domain in Rn, n ≥ 3, with a compact boundary. The exponents α, β ∈ (−1, 1), a, b ∈ R 
such that (1 − |α|)(1−|β |) − |ab| > 0 and p, q are positive continuous functions on D satisfying some suitable assumptions 
with reference to Karamata regular variation theory.
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1. Introduction and preliminaries
The study of nonlinear elliptic systems has a strong motivation and important research efforts have been made 

recently for these systems intending to use the results of existence and asymptotic behavior of positive solutions in 
applied fields. Coupled nonlinear elliptic systems occur in various nonlinear phenomena, such as pattern formation, 
population evolution, chemical reaction where for instance, u and v correspond to the concentrations of two species in 
the process. Accordingly, positive solutions of such systems are attractive. Existence, uniqueness and boundary behavior 
of positive solutions of nonlinear elliptic systems in both bounded and unbounded domains with various boundary 
conditions, have been extensively investigated in the literature with various methods [1-10].

In [1], Ghergu considered the following elliptic system
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in a bounded domain Ω ⊂ Rn (n ≥ 1) with a smooth boundary, α, β ≤ 0 and a, b < 0. The author showed that system (1) 
has at least one solution if,

(1 − α)(1 − β) − ab > 0

and one of the following conditions is satisfied:
(i) α + amin(1, 2+

1
b
β−

) ≥ −1 and b > −2.

(ii) b + βmin(1, 2
1

a
α

+
−

) ≥ −1 and a > −2.

(iii) α, β ≤ −1 and a, b > −2.
Later, Zhang [2] derived the existence, boundary behavior and uniqueness of solutions for system (1) for a different 

range of exponents to those in [1]. He assumed that α, β ≤ 0, a, b < 0 satisfying one of the following conditions:

(i) β − 1 < a, α + (2 )
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Then, the author proved that system (1) has at least one classical solution (u, v) satisfying for x ∈ −Ω,
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where m and M are positive constants and d(x) denotes the Euclidean distance from x ∈ −Ω to the boundary ∂Ω.
In [3], Kawano and Kusano considered the elliptic system
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where n ≥ 3, α, β < 0 and p, q are nonnegative locally Hölder continuous functions in Rn. The authors assumed that there 
exist locally Hölder continuous functions φ , ψ : R+ → R+ such that

( ) (| |) and ( ) (| |),  np x x q x x xφ ψ≤ ≤ ∈

and

00
( )  and ( ) .r r dr r r drφ ψ

∞ ∞
< ∞ < ∞∫ ∫

Then, they proved by using the method of sub- and super-solutions that system (2) has entire positive solutions 
either if α + a < 1, β + b < 1 or if α + a > 1, β + b > 1.

(1)

(2)
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Noussair and Swanson [4] discussed a class of coupled systems of semilinear elliptic partial differential equations 
in an exterior domain in Rn, n ≥ 3. They established necessary and sufficient conditions for the existence of positive 
solution dominated by | x |2−n when | x | → ∞.

In this article, we are concerned with the investigation of the following nonlinear elliptic system
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where α, β ∈ (−1, 1), a, b ∈ R such that χ := (1 − |α |)(1 − | β |) − | ab | > 0 and D is an unbounded regular domain in Rn, 
n ≥ 3, with a compact boundary. The positive weight functions p and q are required to be continuous on D that may 
be singular at the boundary ∂D or unbounded near ∞ and satisfying some assumptions with reference to the Karamata 
classes K0 and K∞ (see Definition 1.4 below).

Our intention is to prove the existence of positive continuous solutions with an exact asymptotic behavior for 
system (3).

We point out that there are two main features of this work. The first one is the fact that we consider system (3) in D, 
which is an exterior domain. In this sense, system (3) can be considered as a natural extension of the following elliptic 
boundary value problem
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studied in [11] with σ < 1. But dealing with system (3) presents some difference because of, as far as we know, the lack 
of a meaningful maximum principle for systems in exterior domains. Indeed, to obtain an existence result for problem 
(4), the authors in [11] applied the sub- and super-solution method which is based on the maximum principle; see [12]. 
Hence, it seems that the method employed in the study of problem (4) does not carry over naturally to system (3). 
Therefore, we have to work around this difficulty and we shall apply the Schäuder fixed point theorem which requires 
invariance of a convex set under an appropriate integral operator. This restricts us to dealing with only the cases α, 
β ∈ (−1, 1). The second one is that our paper deals with a large class of nonlinearities that may be singular at ∂D or 
unbounded near ∞. Moreover, we do not make a restriction on the sign of the exponents.

Throughout this paper, we will use the following notations and definitions:
(i) Let E be a domain of Rn, n ≥ 3.
• For x, y ∈ E, GE(x, y) denotes the Green function of the Dirichlet Laplacian.
• For x ∈ E, δE(x) denotes the Euclidean distance from x ∈ E to ∂E, the boundary of E.
(ii) Let x0 ∈ Rn \ −D and r > 0 such that −B(x0, r) := {x ∈ Rn : | x − x0 | ≤ r} ⊂ Rn \ −D. Then we have

0
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Hence, we may suppose without loss of generality, that −B(0, 1) ⊂ Rn \ −D.

(3)

(4)
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( iii) For x ∈ D, we denote by δ(x) = δD(x) and ρ(x) = ( )
1 ( )

x
x

δ
δ+

.

(iv) Let f and g be two nonnegative functions defined on a set S. Then, we write f (x) ≈ g(x) in S, if there exists a 
constant c > 0 such that for each x ∈ S, 1

c g(x) ≤ f(x) ≤ cg(x).
(v) B(D) is the collection of Borel measurable functions in D and B+(D) is the collection of nonnegative ones.
(vi) C0(D) is the space of continuous functions f in  −D vanishing at ∂D and satisfying f(x) → 0 as | x | → ∞, within D.
(vii) For a function f ∈ B+(D), we denote by Vf the potential of f defined on D by

( ) ( , ) ( ) .DD
Vf x G x y f y dy= ∫

We point out that if f is a nonnegative function in L1
loc(D) such that Vf ∈ L1

loc(D), then we have in the distributional 
sense −∆(Vf ) = f in D; see ([13], p.52).

Definition 1.1 A function q ∈ B(D) is in the class K(D) if q verifies the following assumptions:

(| | )0

( )limsup ( , ) | ( ) | 0
( )x y r D

Dr x D

y G x y q y dy
x

ρ
ρ− ≤ ∩→ ∈

=∫

and

(| | )

( )lim sup ( , ) | ( ) | 0.
( )y M D

DM x D

y G x y q y dy
x

ρ
ρ≥ ∩→+∞ ∈

=∫

Remark 1.2 ([14], Proposition 3.4)

The map : | | ( ( )) ( ) 2 .q x x x K Dλ µ λδ λ µ− − ∈ ⇔ < <

Proposition 1.3 Let q ∈ K(D) be a nonnegative function. Then, we have
(i) Vq ∈ C0(D). 
(ii) The family F = {V( f ), f ∈ B(D); | f | ≤ q} is relatively compact in C0(D).
Proof. (i) See ( [14], Proposition 3.7 ).
(ii) Let f ∈ B(D) satisfying | f | ≤ q.
For x ∈ D, we have

| Vf (x) | ≤ Vq(x).

Using (i), we have

| Vf (x) | ≤ || Vq ||∞ < ∞.

Thus the family F is uniformly bounded. On the other hand, as in the proof of Proposition 3.7 in [14], we prove 
that the family F is equicontinuous in C0(D). 

Consequently, Ascoli’s theorem implies that F is relatively compact in C0(D).  
Now, we introduce the Karamata classes of regularly varying functions.
Definition 1.4 [15]
(i) The class K0 is the collection of all Karamata functions L defined on (0, η] by

( )( ) : exp( ),
t

z sL t c ds
s

η
= ∫
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for some η > 0, where c > 0 and z is a continuous function on [0, η], with z(0) = 0.
(ii) The class K∞ is the set of Karamta functions L defined on [1, ∞) by

1

( )( ) : exp( ),
t z sL t c ds

s
= ∫

where c > 0 and z is a continuous function on [1, ∞) such that lim
t→∞

 z(t) = 0.
It is easy to check the next result.
Proposition 1.5 (i) A function L defined on (0, η], η > 0, belongs to K0 if and only if L is a positive function in 

C1((0, η]), such that

0

( )lim 0.
( )t

tL t
L t+→

′
=

(ii) A function L belongs to K∞ if and only if L is a positive function in C1 ([1, ∞)), such that

( )lim 0.
( )t

tL t
L t→∞

′
=

Remark 1.6 [16] If L ∈ K∞ then there exists m ≥ 0 such that for every r > 0 and t ≥ 1, we have

(1 + r)−mL( t ) ≤ L(r + t) ≤ (1 + r)mL(t).

As a typical example of a function belonging to the class K0 (resp. K∞), we give

1 1
( ) ( )) (resp. ( )= exp (( ))( ),k k

m m

k k
k k

dL t log L t log dt
t

ξ τ

= =

 = ∏ ∏   
 

where

 times 

... ,k

k

log x log log log x=   



ξk ∈ R (resp. τk ∈ (0, 1)) and d is a sufficiently large positive real number such that the function L is defined and positive 
on (0, η], for η > 1 (resp. on [1, ∞)).

Let us consider the following hypothesis:
(H) p and q are positive continuous functions on D satisfying for x ∈ D

( ) ( ( )) ( ( )) | | (| |),p x x M x x N xλ µρ ρ− −≈

( ) ( ( )) ( ( )) | | (| |),q x x K x x L xσ γρ ρ− −≈

where λ, µ, σ, γ ∈ R and M, K ∈ K0 defined on (0, η], (η > 1), N, L ∈ K∞.
Additional assumptions are needed to establish our main result, we recall that we assume that the exponents α, β ∈ 

(−1, 1), a, b ∈ R satisfy the hypothesis:

χ = (1 − |α |)(1 − |β |) − |ab | > 0.

Hence the constant
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ω = (1 − α)(1 − β) − ab > 0.

For simplicity, we set:

1 2
2 (1 )(2 ) (2 )min 1, , ,

1
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Remark 1.7 We point out that:
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1
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.
Now, we give sufficient hypotheses which permit us to show our main result for the existence and the asymptotic 

behavior of solutions for system (3).
(A) One of the following assumptions is satisfied
(A1) λ < 1 + α + aδ1, σ ≤ 2 + b and K satisfies 

0

η

∫ ( )K t
t

dt < ∞ if σ = 2 + b.
(A2) λ = 1 + α + aδ1, σ < 2 + b, σ ≠ 1 + b + β.
(A3) 0 < δ2 < 1 and 0 < δ3 < 1. 
(A4) λ = 2 + aδ4, σ < 2, σ ≠ 1 + β and M, K satisfy

(i) 0

η

∫ ( )M t
t dt < ∞ if σ < 1 + β,

(ii) 
0

η

∫ 1( )( )aMK t

t
β− dt < ∞ if 1 + β < σ < 2.

(B) One of the following assumptions is satisfied
(B1) µ > n − α(n − 2) aν1, γ ≥ 2 − b(n − 2) and L satisfies 

1

∞

∫ ( )L t
t dt < ∞ if γ = 2 − b(n − 2).

(B2) µ = n − α(n − 2) − aν1, γ > 2 − b(n − 2), γ ≠ n − (β + b)(n − 2).
(B3) 0 < ν2 < n − 2 and 0 < ν3 < n − 2. 
(B4) µ = 2 − aν4, γ > 2, γ ≠ n − β(n − 2) and N, L satisfy
(i) 

1

∞

∫ ( )N t
t

dt < ∞ if γ > n − β(n − 2),

(ii) 
1

∞

∫ 1( )( )aNL t

t
β− dt < ∞ if 2 < γ < n − β(n − 2).

Our main result is the following.
Theorem 1.8 Assume (H), (A) and (B). Then the nonlinear elliptic system (3) has a positive solution (u, v) ∈ C0(D) 

× C0(D) satisfying for x ∈ D,
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Here λ̃, µ̃, σ̃, γ̃ are nonnegative real numbers,  M̃, K̃ are in K0 and Ñ,  L̃ belong to K∞.
The rest of the paper is organized as follows. In Section 2, we present some basic properties of the functions in the 

classes K0 and K∞. In particular, we recall some sharp estimates on some suitable potential functions. In Section 3, we 
prove our main result given in Theorem 1.8.

2. Karamata classes K0 and K∞

In what follows, we list some basic properties of the functions belonging to Karamata classes K0 and K∞. Then, we 
give estimates on some potential functions.

Lemma 2.1 ([16-18])
(i) Let p ∈ R and L1, L2 ∈ K0 (resp. K∞). Then the functions L1 + L2, L1L2 and Lp

1 are in the class K0 (resp. K∞).
(ii) Let ε > 0 and L ∈ K0 (resp. K∞). Then we have

-

0
lim ( ) 0 (resp. lim ( ) 0) .

tt
t L t t L tε ε

+ →∞→
= =

Lemma 2.2 ( Karamata’s Theorem [16, 18])
(I) Let γ ∈ R and L ∈ K0 defined on (0, η], η > 0. Then we have the following assertions:
(i) If γ > −1, then 

0

η

∫ t γL(t)dt converges and 0
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1 ( )
1
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0

η
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−
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1
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+
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(II) Let L ∈ K∞ and γ ∈ R. Then we have the following:
(i) If γ < −1, then 1
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∫ sγL(s)ds 
t→∞
 −
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1

t L tγ
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t L tγ
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Lemma 2.3 [16, 19]
(i) Let L ∈ K0 defined on (0, η], η > 1. Then 

0
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t +→ ( )
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L s
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η
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To simplify our statements, we introduce the following assumption.
(C) h is a function defined on D by:

1 2( ) ( ( )) ( ( )) | | (| |),h x x L x x xLν τρ ρ− −=

where ν ≤ 2 ≤ τ , L1 ∈ K0 defined on (0, η], η > 1 and L2 ∈ K∞ satisfy

1

1

t +

∫
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1 1
1 20 1
( )  and ( ) .t L t dt t L t dt

η ν τ∞− − < ∞∫ ∫
Remark 2.4 We note that due to Lemma 2.2, we need to verify (5) only if ν = 2 or τ = 2.
Now, we recall the following key sharp estimates.
Proposition 2.5 [11] Let h satisfying (C). Then for x ∈ D, we have

1 2

min(2 ,1)

, ,min( 2, 2)

( ( ))( ) ( ( )) (| |),
| | L Ln

xVh x x x
x

ν

ν ττ

ρ ρ
−

− −≈ Φ Ψ

where for t ∈ (0, η),

1

1

,
1

1
0

1, if 1,
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, if 1,
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ν
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ξ ν
ξ

ν
ξ

ξ ν
ξ
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Φ =  < <


=


∫

∫

and for t ∈ [1, ∞),
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2

2
,

1 2

( )
, if 2,

( ), if 2 ,
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( )
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1, if .

t

L
t

t

L d

L t n
t

L d n

n

τ

ξ
ξ τ

ξ
τ

ξ
ξ τ

ξ
τ

∞

+

 =


< <
Ψ = 

 =



>

∫

∫

3. Proof of Theorem 1.8
In this section, we aim to prove Theorem 1.8.
Proposition 3.1 If h is a function satisfying (C), then h ∈ K(D).
Proof. The proof results from Proposition 2.8 in [20] and Kelvin transformation.
The next result plays an important role in the proof of Theorem 1.8.
Proposition 3.2 Suppose that the condition (H) is satisfied. In addition, suppose that there exist two nonnegative 

functions θ and ψ satisfying:
(i) θ and ψ are in C0(D).
(ii) The functions pθ αψa and qθbψβ are in K(D) such that on D:

( )  and ( ) .a bV p V qα βθ ψ θ θ ψ ψ≈ ≈

Then system (3) has a positive solution (u, v) ∈ C0(D) × C0(D) such that for x ∈ D,

u(x) ≈ θ(x) and  v(x) ≈ ψ(x).

Proof. Using (6), we deduce the existence of c > 1 such that

(5)

(6)
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1 ( )aV p c
c

αθ θ ψ θ≤ ≤

and

1 ( ) .bV q c
c

βψ θ ψ ψ≤ ≤

Such mentioned above, we have χ = (1 − |α |)(1 − |β |) − |ab | > 0. Set c1 = c
1-| | | |aβ

χ
+

 and c2 = c
1-| | | |bα

χ
+

. With the aim of 
using a fixed point argument, we define the non-empty convex closed set Λ by

( )2
0 1 2

1 2

1 1{( , ) ( ) : ; }.u v C D u c v c
c c

θ θ ψ ψΛ = ∈ ≤ ≤ ≤ ≤

We consider the operator T, defined on Λ by

( , ) ( ( ), ( )).a bT u v V pu v V qu vα β =

We aim at proving that the operator T has a fixed point in (C0(D))2. First, we prove that TΛ is relatively compact in 
(C0(D))2 endowed with the norm || . || which is defined by ||(u, v)|| = ||u ||∞ + ||v ||∞. Let (u, v) ∈ Λ, then we have

| | | |
1 2| | | |

1 2

1 a a a a
a p pu v c c p

c c
α α α α

α θ ψ θ ψ≤ ≤

and

| | | |
1 2| | | |

1 2

1 .b b b b
b b bu v c c b

c c
β β β β

β θ ψ θ ψ≤ ≤

Using the fact that pθ αψa and bθbψ β are in K(D) and applying Proposition 1.3 (ii), we conclude that the sets of 
functions

{ }( )( ), ( , )ax V pu v x u vα  ∈ Λ

and

{ }( )( ), ( , )bx V bu v x u vβ  ∈ Λ

are relatively compact in C0(D). Which implies that TΛ is relatively compact in (C0(D))2. Next, we prove that TΛ ⊂ Λ. 
Let (u, v) ∈ Λ. According to (7), (8), (9) and (10), we have

| | | |
1 2| | | |

1 2

1 ( )a a
a V p cc c

cc c
α α

α θ θ ψ θ≤ ≤

and

| | | |
1 2| | | |

1 2

1 ( ) .b b
b V b cc c

cc c
β β

β ψ θ ψ ψ≤ ≤

(7)

(8)

(9)

(10)
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Since cc1
|α | c2

|a | = c1, cc1
|b | c2

|β | = c2 and TΛ ⊂ (C0(D))2, we deduce that TΛ ⊂ Λ.
Finally, we shall show the continuity of the operator T in (C0(D))2 with respect to the norm || . ||. For this end, we 

consider a sequence ((uk, vk))k in Λ which converges to (u, v) ∈ Λ with respect to the norm || . ||.
For k ∈ N, we have for each x ∈ D,

| ( )( ) ( )( ) | ( , ) ( ) | ( )( ) ( )( ) | .a a a a
k k D k kD

V pu v x V pu v x G x y p y u v y u v y dyα α α α    − ≤ −∫

Further from (9), we have

| | | |
1 2| | 2 .a a a a

k kp u v u v c c pα α α α    θ ψ− ≤

Since V( pθ αψa) < ∞, we conclude by the dominated convergence theorem that for each x ∈ D,

( )( ) ( )( ) 0 as .a a
k kV pu v x V pu v x kα α− → → ∞

Similarly, we obtain that for each x ∈ D, V(qub
k v β

k )(x) − V(qubv β)(x) → 0 as k → ∞.
Moreover, since TΛ is relatively compact in (C0(D))2, we deduce that the pointwise convergence implies the 

uniform convergence, namely,

|| T (uk , vk ) − T (u, v) || converges to 0 as k → ∞.

This proves that T is a continuous mapping from Λ into itself. Hence, applying the Schäuder’s fixed point theorem, 
we conclude the existence of (u, v) ∈ Λ satisfies T(u, v) = (u, v). Then we have (u, v) ∈ C0(D) × C0(D) such that

u = V( puαva) and v = V(qubv β ).

Using the fact that (u, v) ∈ (C0(D))2, hypothesis (H) and (11), we obtain that the functions puαva  and V(puαva) are 
in L1

loc(D). This implies that, in the distributional sense,

−∆(V(puαva)) = puαva  in D.

Similarly, we have in the distributional sense,

−∆(V(qubv β)) = qubv β in D.

Finally, since (u, v) ∈ Λ, we conclude that (u, v) is a positive continuous solution of (3) satisfying for each x ∈ D,

u(x) ≈ θ(x) and v(x) ≈ ψ(x).

This ends the proof. 
Now, we are devoted to prove our main result.
Proof of Theorem 1.8
We shall distinguish several cases. In each case, we will give the explicit expressions of the functions θ and ψ 

which are of the form:

( ( ))( ) ( ( )) (| |)
| |

xx M x N x
x

λ

µ

ρθ ρ=




 

and

(11)
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( ( ))( ) ( ( )) (| |),
| |

xx K x L x
x

σ

γ

ρψ ρ=




 

where λ̃, µ̃, σ̃, γ̃ are nonnegative real numbers, the functions  M̃, K̃ are in K0 and Ñ,  L̃ belong to K∞. We first verify that 
the functions θ and ψ are in C0(D). Then, we consider the functions pθ αψa and qθ bψ β. From hypothesis (H ), we obtain 
that for x ∈ D,

( ( ))( ) ( )( ( ))( )(| |)
| |

a
a a a

a

xp x MM K x NN L x
x

λ αλ σ
α α α

µ αµ γ

ρθ ψ ρ
− + +

+ +≈






   

and

( ( ))( ) ( )( ( ))( )(| |).
| |

b
b b b

b

xq x KM K x LN L x
x

σ λ βσ
β β β

γ µ βγ

ρθ ψ ρ
− + +

+ +≈






   

It is enough to prove that the functions h : x  ( ( ))

| |

a

a
x

x

λ αλ σ

µ αµ γ
ρ − + +

+ +







(M  M̃ αK̃a)( ρ(x))(NÑ α L̃a)(| x |) and k : x 
( ( ))

| |

b

b
x

x

σ λ βσ

γ µ βγ
ρ − + +

+ +







(K  M̃b  K̃
β
)(ρ(x))(L Ñ b L̃

β
)(|x |)) satisfy respectively the condition (C). On the one hand, by the virtue of 

Proposition 3.1, we conclude that the functions pθαψa and qθ bψ β are in K(D). On the other hand, in view of Proposition 
2.5, we estimate the potentials V(pθαψa) and V(qθ bψ β) and by straightforward computations, we reach (6). This allows 
us to apply Proposition 3.2 which implies that system (3) has a positive solution (u, v) ∈ C0(D) × C0(D) satisfying on D,

u ≈ θ and v ≈ ψ.

Thus, Theorem 1.8 is proved.
Note that throughout the proof, we use Lemmas 2.1 and 2.3 to verify that some functions are in K0 or K∞.
Case 1 Assume (H), (A1) and (B1).
We define the functions θ and ψ on D by

2

( )( )
| |n

xx
x
ρθ −=

and

 

1

1

( ( ))( ) ( ( )) (| |),
| |

xx K x L x
x

δ

ν

ρψ ρ=

where



1
1

( )

1
1

1
1( )

0

1 if 1 ,

( ) if 1 ,

( ( ))
( ( )) if 1 2 ,

( ) if 2 ,

x

x

b

K t dt b
t

K x
K x b b

K t dt b
t

βη

ρ

β

βρ

σ β

σ β

ρ
ρ β σ

σ

−

−

−

< + +

  = + + 
 = 

 + + < < +

  = +  

∫

∫

(12)
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and



1
11 | |

1

1
1

1
1

| |

1 if ( )( 2),

( ) if ( )( 2),

(| |)
(| |) if 2 ( 2) ( )( 2),

( ) if 2 ( 2).

x

x

n b n

L t dt n b n
t

L x
L x b n n b n

L t dt b n
t

β

β

β

γ β

γ β

γ β

γ

−+

−

−∞

> − + −

  = − + − 
 = 

 − − < < − + −

  = − −  

∫

∫

Using Hypotheses (A1), (B1), Proposition 1.5, Lemmas 2.1 and 2.3, we get that the functions θ and ψ are in C0(D).
Using (H), we have for x ∈ D,

 

1

1( 2)

( ( ))( ) ( )( ( ))( )(| |)
| |

a a a

n a

xh x M K x N L x
x

λ α δ

µ α ν

ρ ρ
− + +

+ − +=

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

Since ν = λ − α − aδ1 < 1, τ = µ + α(n − 2) + aν1 > n, L1 ∈ K0 and L2 ∈ K∞, we deduce by Lemma 2.2 that (5) is 
fulfilled. Hence, the function h satisfies the assumption (C).

On the other hand, by hypothesis (H) we obtain that

 

1

1( 2)

( ( ))( ) ( )( ( ))( )(| |)
| |

b

b n

xk x K K x LL x
x

σ βδ
β β

γ βν

ρ ρ
− + +

+ − +=

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

By simple calculus we obtain that for x ∈ D, (ρ(x))−ν L1(ρ(x)) = f (ρ(x)), where

11

( )

2 1
1 1

1( )2

0

( ( )) ( ( )) if 1 ,

( )( ( )) ( ( )) if 1 ,

( ( )) :
( ( )) ( ( ( ))) if 1 2 ,

( )( ( )) ( ( )) if 2 .

b

x

b

x

x K x b

K tx K x dt b
t

f x
x K x b b

K tx K x dt b
t

σ β

β
βη

ρ

σ β
β β

β
βρ

ρ ρ σ β

ρ ρ σ β

ρ
ρ ρ β σ

ρ ρ σ

− + +

−−

− + +
− −

−−

 < + +

   = + + 

 = 
 + + < < +

   = +   

∫

∫

Besides, a simple computation shows that for x ∈ D, |x |−τL2(|x |) = g(|x | ), where

(13)

(14)
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( )( 2)

11 | |

1

( 2) 2 1
1 1

12

| |

| | (| |) if ( )( 2),

( )| | (| |) if ( )( 2),

(| |) :
| | ( (| |)) if 2 ( 2) ( )( 2),

( )| | (| |) if 2 ( 2)

b n

xn

b n

x

x L x n b n

L tx L x dt n b n
t

g x
x L x b n n b n

L tx L x dt b n
t

γ β

β
β

γ β
β β

β
β

γ β

γ β

γ β

γ

− − + −

−+−

− − − +
− −

−∞−

> − + −

  = − + − 
 

=
− − < < − + −

  = − − 
 

∫

∫ .













So, from (14) and (15), one can see that ν ≤ 2 ≤ τ, L1 ∈ K0, L2 ∈ K∞ satisfies (5). It follows that the function k 
satisfies the hypothesis (C).

Case 2 Assume (H), (A1) and (B2). We define the functions θ and ψ on D by



2

( )( ) (| |),
| |n

xx N x
x
ρθ −=

where



1
11 | |

1

1

11 | |

1

( ) if ( )( 2),

(| |)
( )( ) if 2 ( 2) ( )( 2)

x

a

x

N t dt n b n
t

N x
NL t dt b n n b n

t

α

β
ω

β

γ β

γ β

−+

−

−+


  > − + −  

=   
− − < < − + − 

  

∫

∫ ，

and

 

1

1

( ( ))( ) ( ( )) (| |),
| |

xx K x L x
x

δ

ν

ρψ ρ=

where K  is the function given by (12) and

 1 11 | |1
1

1 if ( )( 2),

(| |) ( )( )(| |) if 2 ( 2) ( )( 2).

b
a

x

n b n

L x NL tL x dt b n n b n
t

ω
β

β

γ β

γ β
−+−

> − + −

  =   

− − < < − + −  
  

 

∫

Due to Proposition 1.5, Lemmas 2.1 and 2.3, the functions θ and ψ are in C0(D).
Now, we consider two subcases.
Subcase 1 If γ > n − (β + b)(n − 2) then µ = n − (α + a)(n − 2).
From hypothesis (H), we have for x ∈ D,



1 11 | |

1

( ( )) ( )( ) ( )( ( )) (| |)
| |

a xa

n

x N th x M K x N x dt
tx

α
λ α δ αρ ρ

− + + −+ =  
 ∫

1 2: ( ( )) (( ( ))) | | (| |).x L x x L xν τρ ρ− −=

(15)

(16)

(17)
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We note that ν = λ − α − aδ1 < 1, τ = n and the functions L1 and L2 are respectively in K0 and K∞ satisfying (5). 
Hence the function h fulfills the condition (C).

Now, by (H) we have



1 11 | |

( )( 2) 1

( ( )) ( )( ) ( )( ( )) (| |)
| |

b
b x

b n

x N tk x K K x L x dt
tx

σ βδ αβ

γ β

ρ ρ
− + + −+

+ + −

 =  
 ∫

1 2: ( ( )) ( ( )) | | (| |),x L x x L xν τρ ρ− −=

2( ( )) | | (| |),f x x L xτρ −=

where f is the function defined by (14). So, we have ν ≤ 2 and L1 ∈ K0 such that 
0

η

∫ t1−νL1(t )dt < ∞. Moreover, since τ > n 
and L2 ∈ K∞, Lemma 2.2 gives that 

1

∞

∫ t 1−νL2(t )dt < ∞. Thus, k satisfies (C).
Subcase 2 If 2 − b(n − 2) < γ < n − (β + b)(n − 2) then µ = n − α(n − 2) − a 2 ( 2)

1
b nγ

β
− + −

−
.

From hypothesis (H), we have



1

11

11 | |1
1

( ( )) ( )( )( ) ( )( ( ))( )(| |)
| |

a
aa xa

n

x NL th x M K x NL x dt
tx

β
ω

λ α δ β
βρ ρ

−
− +

− + + −+−

 
 

=  
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

We have ν = λ − α − rδ1 < 1, τ = n and L1 ∈ K0, L2 ∈ K∞ satisfying (5).
Consequently, h satisfies the assumption (C).
On the other hand, by (H), we have



1
111 | | 1

( 2) 2 1
1

( ( )) ( )( )( ) ( )( ( )) (| |)
| |

b
r

b x

b n

x NL tk x K K x dt L x
t

x

ω
σ βδ ββ β

γ β
β

ρ ρ
− + + −+ −

+ − −
−

 
 

=  
 
 
∫

1 2( ( )) ( ( )) | | (| |)x L x x L xν τρ ρ− −=

2( ( )) | | (| |),f x x L xτρ −=

where f is the function defined by (14). Hence, we get that ν ≤ 2 and L1 ∈ K0 such that 
0

η

∫ t1−νL1(t )dt < ∞. Besides, 
since τ ∈ (2, n) and L2 ∈ K∞, we obtain by Lemma 2.2 that 

1

∞

∫ t 1−τL2(t )dt < ∞. We deduce that the function k fulfills the 
condition (C).

Case 3 Assume (H), (A1) and (B3).
We define the functions θ and ψ on D by

2

1( )( ) ( )(| |)
| |

axx N L x
x

β
ω ω

ν

ρθ
−

=

and
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1

3

1( ( ))( ) ( ( ))( )(| |),
| |

bxx K x N L x
x

αδ
ω ω

ν

ρψ ρ
−

=

where K  is the function given by (12).
From Proposition 1.5, Lemmas 2.1 and 2.3, we deduce that the functions θ and ψ are in C0(D).
Using (H), we have for x ∈ D,

2 31

1

( ) ( ( )) ( ( )) | | ( )(| |).
a

aah x x M x x N L x
β

µ αν νλ α δ ω ωρ ρ
−

− − −− + +=

Using (A1) and (H), we have λ − α − aδ1 < 1 and M ∈ K0. Due to Lemma 2.2, we have 
0

η

∫ t1−λ+α+aδ1M(t )dt < ∞. 
From (B3) and Remark 1.7, we get that 2 < µ + αν2 + aν3 < n and since N

1 β
ω
−

L
a
ω  ∈ K∞, Lemma 2.2 implies that 

1

∞

∫ t1−µ−

αν2−aν3 (N
1 β

ω
−

L
a
ω )(t )dt < ∞.

Therefore, the function h satisfies (C).
Now, by hypothesis (H), we have for x ∈ D,

 2 31

1

( ) ( ( )) ( )( ( )) | | ( )(| |).
b

bbk x x K K x x L N x
α

β γ ν βνσ βδ ω ωρ ρ
−

− − −− + +=

Obviously, we have for x ∈ D,

1
1( ( )) ( )( ( )) ( ( )) ( ( )) ( ( )),bx K K x x L x f x

βσ βδ νρ ρ ρ ρ ρ− + + −= =

where f is the function defined by (14). So, we have ν ≤ 2 and L1 ∈ K0 satisfying the condition of integrability 
0

η

∫ t1−νL1(t )dt 
< ∞.

The function L
1 α

ω
−

N
b
ω  is in K∞. Since by Remark 1.7 and hypothesis (B3), we have γ + bν2 + βν3 ∈ (2, n), then 

Lemma 2.2 implies that ∫ 1
∞ t1−γ−bν2−βν3(N

b
ω L

1 α
ω
−

)(t )dt converges.
We deduce that k fulfills the hypothesis (C).
Case 4 Assume (H), (A1) and (B4).
We define the functions θ and ψ on D by

1
1

| |

1

1

| |

( ) if ( 2),

( ) ( )
( )( ) if 2 ( 2)

x

a

x

N t dt n n
t

x x
NL t dt n n

t

α

β
ω

β

γ β

θ ρ

γ β

−∞

−

−∞


  > − −  

=   
< < − − 

  

∫

∫ ，

and



1

4
1 1

1
| |

1 if ( 2),

( ( ))( ) ( ( )) ( )( )| | (| |) if 2 ( 2),

b
a

x

n n

xx K x NL tx L x dt n n
t

δ
ω

βν β

γ β

ρψ ρ
γ β

−∞−

> − −

  =   

< < − −  
  

 

∫

where K  is the function defined by (12).
By hypotheses (H), (B4), Proposition 1.5 and Lemmas 2.1 and 2.3, we have θ and ψ are in C0(D).
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Now, we consider two subcases.
Subcase 1 If γ > n − β(n − 2) then µ = 2 − a(n − 2).
Using (H), we have for x ∈ D,

1
12

| |

( )( ) ( ( )) ( )( ( )) | | (| |)
aa

x

N th x x M K x x N x dt
t

α
αλ α δρ ρ

−∞− + + −  =  
 ∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

We remark that ν = λ − α − aδ1 < 1, τ = 2. From Lemmas 2.1, 2.2 and 2.3 we have L1 ∈ K0 such that 
0

η

∫ t1−νL1(t )dt < ∞.  
Using (B4) and applying Lemmas 2.1 and 2.3, the function L2 ∈ K∞ and we have

1 2
21 1

( )
( )

L tt L t dt dt
t

τ∞ ∞− =∫ ∫

1

1

( ) ( )
t

N t N d dt
t

α
αξ ξ

ξ

−∞ ∞ 
=  

 
∫ ∫

1
1

1

( )(1 ) .N d
αξα ξ

ξ

−∞ 
= − < ∞ 

 
∫

Hence, the function h satisfies (C).
Now, by (H) we have

1
1( 2)

1 | |

( )( ) ( ( )) ( )( ( )) | | (| |)
b

b n

x

N tk x x K K x x dt L x
t

αβσ βδ γ βρ ρ
−∞− + + − − −

+

 =  
 ∫

1 2: ( ( )) ( ( )) | | ( (| |)),x L x x L L xν τρ ρ− −=

2( ( )) | | ( (| |)),f x x L L xτρ −=

where f is the function defined by (14). Then, we have ν ≤ 2 and L1 ∈ K0 such that 
0

η

∫ t1−νL1(t )dt < ∞. Moreover, since τ = 
γ + β(n − 2) > n > 2 and L2 ∈ K∞, we deduce from Lemma 2.2 that 

1

∞

∫ t 1−τL2(t )dt < ∞.
We deduce that k fulfills the condition (C).
Subcase 2 If 2 < γ < n − β(n − 2), then µ = 2 − a 2

1
γ

β
−
− .

From hypothesis (H), we have

1

11

1
2 1

| |

( )( )( ) ( ( )) ( )( ( )) | | ( )(| |)

a
a

aa

x

NL th x x M K x x NL x dt
t

β
ω

β
λ α δ βρ ρ

−
− +

−∞− + + − −

 
 

=  
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

We have ν = λ − α − aδ1 < 1, τ = 2. Using (B4) and Lemmas 2.1, 2.2 and 2.3, we can easily see that L1, L2 are 
respectively in K0 and K∞ such that (5) is satisfied.
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So, h fulfills the hypothesis (C).
On the other hand, by (H), we have

1

2 11
1 1

| |

( )( )( ) ( ( )) ( )( ( )) | | (| |)

b
a

b

x

NL tk x x K K x x dt L x
t

ω
γ β ββσ βδ β βρ ρ
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=  
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

By simple calculus, we have

1( ( )) ( ( )) ( ( )),x L x f xνρ ρ ρ− =

where f is the function defined by (14). So, we obtain that ν ≤ 2 and L1 ∈ K0 such that 0

η

∫ t1−νL1(t )dt < ∞. Besides, taking 
into account that τ = 2

1
γ β

β
−
−  ∈ (2, n) and L2 ∈ K∞, Lemma 2.2 implies that 

1

∞

∫ t 1−τL2(t )dt < ∞. Hence, k satisfies the 
condition (C).

Case 5 Assume (H), (A2) and (B1).
We define the functions θ and ψ on D by



2

( )( ) ( ( )),
| |n

xx M x
x
ρθ ρ−=

where



1
1

( )

1

1

( )

( ) if 1 ,

( ( ))
( )( ) if 1 2 ,

x

a

x
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∫

∫

and
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x
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ν

ρψ ρ=

where L  is the function given by (13) and

 1 1
1

( )
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b
a

x

b

K x MK tK x dt b b
t

ω
βηβ

ρ
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ρ
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−
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∫

Using Proposition 1.5 and Lemmas 2.1 and 2.3, we get that the functions θ and ψ are in C0(D).
Now, we consider two subcases.
Subcase 1 If σ < 1 + b + β then λ = 1 + α + a.

(18)

(19)
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Using (H), we have for x ∈ D,



1

1 1

( 2) ( )

( ( )) ( )( ) ( ( )) ( )(| |)
| |

a

n a x

x M th x M x dt N L x
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αη
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ρ ρ
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 =  
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1 2: ( ( )) (( ( ))) | | (| |).x L x x L xν τρ ρ− −=

It is clear that ν = 1, τ = µ + α(n − 2) + aν1 > n, L1 ∈ K0 and L2 ∈ K∞ such that 
0

η

∫ t1−νL1(t)dt < ∞ and 
1

∞

∫ t 1−τL2(t )dt < ∞. 
Hence, h satisfies (C).

Now, by (H) we have
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1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

Since ν = σ − b − β < 1 and L1 ∈ K0, Lemma 2.2 implies that 0

η

∫ t1−νL1(t )dt < ∞.
On the other hand, by a simple computation, we get for x ∈ D,

| x |−τ L2(| x |) = g(| x |),

where g is the function defined by (15). So, one have τ ≥ 2 and L2 ∈ K∞ such that 1

∞

∫ t 1−τL2(t )dt < ∞. 
Then, we deduce that k satisfies the assumption (C).
Subcase 2 If 1 + b + β < σ < 2 + b then we have λ = 1 + α + a 2

1
bσ

β
− +
− .

From hypothesis (H ), we have
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∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

We have ν = 1, τ = µ + α(n − 2) + aν1 > n and L1 ∈ K0, L2 ∈ K∞ satisfying 
0

η

∫ t1−νL1(t )dt < ∞ and 
1

∞

∫ t 1−τL2(t )dt < ∞.  
Hence, the function h fulfills (C).

On the other hand, by (H), we have
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Since L1 ∈ K0 and ν = 
2

1
bσ β

β
− −

−  ∈ (1, 2), Lemma 2.2 gives that 
0

η

∫ t1−νL1(t )dt < ∞. 
Besides, by simple calculus, we have

| x |−τ L2(| x |) = g(| x |),
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where g is the function defined by (15). So, we have τ ≥ 2 and L2 ∈ K∞ such that 
1

∞

∫ t 1−τL2(t )dt < ∞. We conclude that k 
verifies (C).

Case 6 Assume (H), (A2) and (B2).
We define the functions θ and ψ on D by

 

2

( )( ) ( ( )) (| |),
| |n

xx M x N x
x
ρθ ρ−=

where M  and N  are the functions given respectively by (18) and (16) and
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xx K x L x
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δ

ν
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where K  and L  are the functions given respectively by (19) and (17). Using Proposition 1.5, Lemmas 2.1 and 2.3, we 
get that the functions θ and ψ are in C0(D).

Now, we consider four subcases.
Subcase 1 If σ < 1 + b + β and γ > n − (β + b)(n − 2) then λ = 1 + α + a and µ = n − (α + a)(n − 2).
From hypothesis (H), we have
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We note that ν = 1 and τ = n. Applying Lemmas 2.1, 2.3 and 2.2, we can easily see that L1 ∈ K0, L2 ∈ K∞ such that (5) 
is fulfilled. So, the assumption (C) is well satisfied by the function h.

Now, by (H) we have
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It is clear that ν = σ − b − β < 1 and τ = γ + (β + b)(n − 2) > n. Due to Lemmas 2.1, 2.3 and 2.2, we deduce that L1 ∈ 
K0, L2 ∈ K∞ satisfying (5). Hence, k verifies the condition (C).

Subcase 2 If σ < 1 + b + β and 2 − b(n − 2) < γ < n − (β + b)(n − 2) then λ = 1 + α + a and µ = n − α(n − 2) − 
a 2 ( 2)

1
b nγ

β
− + −

−
.

From (H), we have
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1 2: ( ( )) ( ( ))(| |) (| |).x L x x L xν τρ ρ− −=

Since ν = 1, τ = n and the functions L1 and L2 are respectively in K0 and K∞, then Lemma 2.2 implies that (5) is 
reached. So, we deduce that h satisfies (C).

Moreover, we have
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It is obvious to see that the function k verifies the hypothesis (C) with ν = σ − b − β < 1 and τ = ( 2) 2
1

b nγ β
β

+ − −
−

 ∈ (2, n).

Subcase 3 If 1 + b + β < σ < 2 + b and γ > n − (β + b)(n − 2) then λ = 1 + α + a 2
1

bσ
β

− +
−  and µ = n − (α + a)(n − 2).

Using (H), we get
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Since L1 ∈ K0 and L2 ∈ K∞, then one can see that h satisfies (C) with ν = 1 and τ = n.
Besides, we have
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We note that ν = 2
1
bσ β

β
− −

−  ∈ (1, 2), τ > n and L1 ∈ K0, L2 ∈ K∞ satisfy the condition (5). Hence, k fulfills the 
hypothesis (C).

Subcase 4 If 1 + b + β < σ < 2 + b and 2 − b(n − 2) < γ < n − (β + b)(n − 2) then λ = 1 + α + a 2
1

bσ
β

− +
−

 and µ = n − 
α(n − 2) − a 2 ( 2)

1
b nγ
β

− + −
−

.
We have on D,
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One can see that the function h verifies the hypothesis (C) with ν = 1 and τ = n.
On the other hand, we have
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It is clear that k fulfills (C) with ν ∈ (1, 2) and τ ∈ (2, n).
Case 7 Assume (H), (A2) and (B3).
We define the functions θ and ψ on D by
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β
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where M  is the function given by (18) and
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ν

ρψ ρ
−

=

where K  is the function given by (19).
It is obvious from Proposition 1.5, Lemmas 2.1 and 2.3, that the functions θ and ψ are in C0(D).
Using hypotheses (H) and (A2), we obtain
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1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

We notice that ν = 1 and by hypothesis (B3), we have τ = 2 + ν2 ∈ (2, n). Hence, in view of Lemmas 2.1, 2.3 and 2.2, 
the functions L1, L2 belong respectively to K0 and K∞ and satisfy (5). We conclude that h verifies (C).

Moreover, we have on D,
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Remark that (C) is satisfied with ν = σ − b − βδ1 < 2 and τ = 2 + ν3 ∈ (2, n).
Case 8 Assume (H), (A2) and (B4).
We define the functions θ and ψ on D by
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where M  is the function given by (18) and
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∫

where K  is the function given by (19).
Using (B4) and Proposition 1.5, Lemmas 2.1 and 2.3, we get that the functions θ and ψ are in C0(D).
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Now, we consider four subcases.
Subcase 1 If σ < 1 + b + β and γ > n − β(n − 2) then λ = 1 + α + a and µ = 2 − a(n − 2).
From hypothesis (H), we have
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Using (B4) and Lemmas 2.1, 2.3 and 2.2, we can easily see that the function h fulfills (C) with ν = 1 and τ = 2.
Now, by (H) we have
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It is clear that k satisfies (C) with ν = σ − b − β < 1 and τ = γ + β(n − 2) > n.
Subcase 2 If σ < 1 + b + β and 2 < γ < n − β(n − 2) then λ = 1 + α + a and µ = 2 − a 2
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−
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.
From (H), we have

1 1

2 ( )

( ( )) ( )( ) ( ( ))
| | x

x M th x M x dt
tx

α
αη

ρ

ρ ρ
− − =  

 ∫

11

1
1

| |

( )( )( )(| |)

a
a

x

NL tNL x dt
t

β
ω

β
β

−
− +

−∞−

 
 

×  
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

We notice that ν = 1 and τ = 2. From Lemmas 2.1, 2.3 and 2.2, we have L1 ∈ K0 such that 
0

η

∫ t1−νL1(t )dt < ∞. Using 
(B4) and Lemmas 2.1 and 2.3, the function L2 belonging to K∞ and we have
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It follows that h verifies (C).
Moreover, we have
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Using (B4) and Lemmas 2.1, 2.3 and 2.2, we deduce that the function k satisfies (C) with ν = σ − b − β < 1 and τ = 
2

1
γ β

β
−
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Subcase 3 If 1 + b + β < σ < 2 + b and γ > n − β(n − 2) then λ = 1 + α + a 2
1
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−

 and µ = 2 − a(n − 2).
Using (H), we get
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So, one can see that ν = 1 and τ = 2. Furthermore, by (B4) and Lemmas 2.1, 2.3 and 2.2, we deduce that L1 ∈ K0, L2 
∈ K∞ satisfies the condition (5).

Consequently, h fulfills (C).
On the other hand, we have
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We note that k satisfies (C) with ν = 
2

1
bσ β

β
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−  ∈ (1, 2) and τ = γ + β(n − 2) > n.
Subcase 4 If 1 + b + β < σ < 2 + b and 2 < γ < n − β(n − 2) then λ = 1 + α + a 2

1
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We have on D,
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Using (B4) and Lemmas 2.1, 2.3 and 2.2, we can easily see that the function h verifies (C) with ν = 1 and τ = 2.
On the other hand, we have
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Since ν ∈ (1, 2) and τ ∈ (2, n), then (B4), Lemmas 2.1, 2.3 and 2.2 imply that k fulfills the hypothesis (C).
Case 9 Assume (H), (A3) and (B1).
We define the functions θ and ψ on D by
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where L  is the function defined by (13).
By using hypothesis (H), Proposition 1.5 and Lemmas 2.1 and 2.3, it is obvious to see that the functions θ and ψ 

belong to C0(D).
From hypothesis (H) and Remark 1.7, we have
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Using (A3) and (B1), we deduce that h satisfies the assumption (C) with ν = 2 − δ2 ∈ (1, 2) and τ = µ + α(n − 2) + 
aν1 > n.



Contemporary Mathematics 62 | Zagharide Zine El Abidine, et al.

On the other hand, by hypothesis (H) and Remark 1.7, we obtain that
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By hypothesis (A3), we have 2 − δ3 ∈ (1, 2). Therefore, Lemmas 2.1 and 2.2 imply that K
1-α
ω M

b
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Now, by simple calculus, we obtain that for x ∈ D,
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where g is the function defined by (15). So, we have τ ≥ 2 and L2 ∈ K∞ satisfying the condition of integrability 
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∫ t 1−τL2(t )dt < ∞. We deduce that k verifies the condition (C).
Case 10 Assume (H), (A3) and (B2).
We define the functions θ and ψ on D by
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where N  is the function defined by (16) and
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It is obvious from Proposition 1.5 and Lemmas 2.1 and 2.3 that the functions θ and ψ are in C0(D).
Using hypotheses (H) and Remark 1.7, we obtain
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We notice that h satisfies (C) with ν = 2 − δ2 ∈ (1, 2) and τ = n.
Moreover, we have on D
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We can easily see that k fulfills the condition (C) with ν ∈ (1, 2) and τ > 2.
Case 11 Assume (H), (A3) and (B3).
We define the functions θ and ψ on D by
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Due to Proposition 1.5 and Lemma 2.1, we get that θ and ψ are in C0(D).
Using hypothesis (H), we obtain

2 3 2 3
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β β
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− −
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1 2: ( ( )) (( ( ))) | | (| |).x L x x L xν τρ ρ− −=

From (A3), (B3) and Remark 1.7, we have ν = λ − αδ2 − aδ3 ∈ (1, 2) and τ = µ + αν2 + aν3 ∈ (2, n). Applying 
Lemmas 2.1 and 2.2, we deduce that h satisfies (C).

Moreover, we have
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We notify that k verifies (C) with ν = σ − bδ2 − βδ3 ∈ (1, 2) and τ = γ + bν2 + βν3 ∈ (2, n).
Case 12 Assume (H), (A3) and (B4).
We define the functions θ and ψ on D by
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∫

It is obvious from (B4), Proposition 1.5 and Lemmas 2.1 and 2.3 that the functions θ and ψ belong to C0(D).
Using hypothesis (H) and Remark 1.7, we obtain
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By hypothesis (B3), we obtain that ν = 2 − δ2 ∈ (1, 2) and we have τ = 2. Hence in view of (A4) and Lemmas 2.1, 2.3 
and 2.2, the function h satisfies (C).

On the other hand, we have
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We remark that k verifies the condition (C) with ν ∈ (1, 2) and τ = γ + βν4 > 2.
Case 13 Assume (H), (A4) and (B1).
We define the functions θ and ψ on D by
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where
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where L  is the function given by (13) and
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∫

By hypotheses (H), (A4), (B1), Proposition 1.5 and Lemmas 2.1, 2.3 and 2.2 we have θ and ψ are in C0(D).
Now, we consider two subcases.
Subcase 1 If σ < 1 + β then λ = 2 + a.
Using (H), we have for x ∈ D,
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We remark that ν = 2, τ = µ + α(n − 2) + aν1 > n. From (B1), (A4), Lemmas 2.1, 2.3 and 2.2, we have L1 ∈ K0, L2 ∈ 
K∞ satisfying (5). It follows that h fulfills the hypothesis (C).

Now, by (H) we have
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(20)

(21)
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One can easily see that ν = σ − β < 1. Using Lemmas 2.1, 2.3 and 2.2, we obtain that L1 ∈ K0 satisfies 
0

η

∫ t1−νL1(t )
dt < ∞. 

By elementary calculus, we obtain that for x ∈ D,

2| | (| |) (| |),x L x g xτ− =

where g is the function defined by (13). So, we have τ ≥ 2 and L2 ∈ K∞ such that 1

∞

∫ t 1−τL2(t )dt < ∞. We deduce that k 
satisfies (C).

Subcase 2 If 1 + β < σ < 2 then λ = 2 + a 2
1

σ
β

−
−

.
From hypothesis (H), we have



1

11

2 1( )1
( 2) 0

( ( )) ( )( )( ) ( )( ( )) ( )(| |)
| |

a
a

x a

n a

x MK th x MK x dt N L x
tx

β
ρ

βρβ
µ α ν

ρ ρ

−
− +

− −
−

+ − +

 
 

=  
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

Using (A4), (B1) and Lemmas 2.1, 2.3 and 2.2, we can easily see that h fulfills (C) with ν = 2 and τ = µ + α(n − 2) + 
aν1 > n.

On the other hand, by (H), we have



1

2
11 1( )1

( 2) 0

( ( )) ( )( )( ) ( ( )) ( )(| |)
| |

b
a

x

b n

x MK tk x K x dt LL x
tx

σ β ω
β βρ ββ

γ βν

ρ ρ

− +
− −

−
+ − +

 
 

=  
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

Using (A4) and Lemmas 2.1 and 2.3, we get that L1 ∈ K and since ν = 
2

1
σ β

β
−
− ∈ (1, 2), Lemma 2.2 implies that 

0

η

∫ t1−νL1(t )dt < ∞.
Now, by simple calculus, we have

2| | (| |) (| |),x L x g xτ− =

where g is the function defined by (13). Then, we have τ ≥ 2 and L2 ∈ K∞ such that 
1

∞

∫ t 1−τL2(t )dt < ∞.
Therefore, the function k verifies the assumption (C).
Case 14 Assume (H), (A4) and (B2).
We define the functions θ and ψ on D by
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where M  and N  are respectively given by (20) and (16) and
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1 11 | |1
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∫

where K  is the function given by (21).
Using hypothesis (A4), Proposition 1.5 and Lemmas 2.1 and 2.3, we get that the functions θ and ψ are in C0(D).
Now, we consider four subcases.
Subcase 1 If σ < 1 + β and γ > n − (β + b)(n − 2), then λ = 2 + a and µ = n − (α + a)(n − 2).
From hypothesis (H), we have
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From (A4), Lemmas 2.1, 2.3 and 2.2, we can easily see that h satisfies (C) with ν = 2 and τ = n.
Now, by (H), we have
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Using hypothesis (A4) and Lemmas 2.1, 2.3 and 2.2, we deduce that k fulfills (C) with ν = σ − β < 1 and τ = γ + (β + 
b)(n − 2) > n.

Subcase 2 If σ < 1 + β and 2 − b(n − 2) < γ < n − (β + b)(n − 2), then λ = 2 + a and µ = n − α(n − 2) − a 2 ( 2)
1

b nγ
β

− + −
− .

From (H), we have

2 1( )

0

( ( )) ( )( ) ( ( ))
| |

x

n

x M th x M x dt
tx

α
αρρ ρ

− − =  
 ∫

11

11 | |1
1

( )( )( )(| |)

a
a

x NL tNL x dt
t

β
ρ

β
β

−
− +

−+−

 
 

×  
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

From (A4) and by Lemmas 2.1, 2.3 and 2.2, the function L1 is in K0 satisfying 
0

η

∫ t1−νL1(t )dt < ∞. Besides, since L2 ∈ 
K∞ and τ = n, we obtain by Lemma 2.2 that 

1

∞

∫ t 1−τL2(t )dt < ∞. So, the function h verifies the condition (C).
Moreover, we have
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We note that k satisfies the hypothesis (C) with ν = σ − β < 1 and τ = 
2 ( 2)
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b nγ β
β

− + −
−  ∈ (2, n).

Subcase 3 If 1 + β < σ < 2 and γ > n − (β + b)(n − 2), then λ = 2 + a 2
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Using (H), we get
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So, one can see that h fulfills the hypothesis (C) with ν = 2 and τ = n.
Besides, we have
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We note that ν = 
2

1
σ β

β
−
−  ∈ (1, 2) and τ > n. From (A4), Lemmas 2.1, 2.3 and 2.2, we have L1 ∈ K0, L2 ∈ K∞ satisfying (5). 

Hence, k satisfies (C).
Subcase 4 If 1 + β < σ < 2 and 2 − b(n − 2) < γ < n − (β + b)(n − 2), then λ = 2 + a 2

1
σ
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−
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We have on D,
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In view of (A4), Lemmas 2.1, 2.3 and 2.2, the functions L1, L2 belong respectively to K0 and K∞ and satisfy (5). 
Hence, h fulfills (C).

On the other hand, we have
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Using (A4), Lemmas 2.1, 2.3 and 2.2, k satisfies the assumption (C) with ν ∈ (1, 2) and τ ∈ (2, n).
Case 15 Assume (H), (A4) and (B3).
We define the functions θ and ψ on D by
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where M  is the function defined by (20) and
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where K  is the function given by (21).
It is obvious from (A4) and Lemmas 2.1 and 2.3 that the functions θ and ψ belong to C0(D).
Using hypothesis (H) and Remark 1.7, we obtain
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We notice that ν = 2 and by assumption (B3), we have τ = 2 + ν2 ∈ (2, n). Hence, by the virtue of (A4), Lemmas 2.1, 2.3 
and 2.2, the function h fulfills (C).

Moreover, we have on D
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Remark that ν = σ − βδ4 < 2 and τ = 2 + ν3 ∈ (2, n). Using same arguments as above, we deduce that k satisfies the 
hypothesis (C).

Case 16 Assume (H), (A4) and (B4).
We define the functions θ and ψ on D by
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where M  is the function given by (20) and
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∫

where K  is the function given by (21).
Using (A4), (B4), Proposition 1.5 and Lemmas 2.1 and 2.3, we get that the functions θ and ψ belong to C0(D).
Now, we consider four subcases.
Subcase 1 If σ < 1 + β and γ > n − β(n − 2) then λ = 2 + a and µ = 2 − a(n − 2).
From hypothesis (H), we have
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Using (A4), (B4), Lemmas 2.1, 2.3 and 2.2, we can easily see that h verifies (C) with ν = 2 and τ = 2.
Now, by (H), we have
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From (A4), (B4), Lemmas 2.1, 2.3 and 2.2, we deduce that the function k satisfies (C) with ν = σ − β < 1 and τ = γ + 
β(n − 2) > n.

Subcase 2 If σ < 1 + β and 2 < γ < n − β(n − 2) then λ = 2 + a and µ = 2 − a 2
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Using (A4), (B4), Lemmas 2.1, 2.3 and 2.2, we get that the functions L1 and L2 are respectively in K0 and K∞ 
satisfying (5). So, h fulfills the assumption (C).

Moreover, we have
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In view of (A4), (B4), Lemmas 2.1, 2.3 and 2.2, we deduce that k satisfies (C) with ν = σ − β < 1 and τ = 2
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Subcase 3 If 1 + β < σ < 2 and γ > n − β(n − 2) then λ = 2 + a 2
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Using (H), we get
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1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

So, one can see that h satisfies the hypothesis (C) with ν = 2 and τ = 2.
Besides, we have
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We note that k fulfills (C) with ν = 
2

1
σ β

β
−
−  ∈ (1, 2) and τ = γ + β(n − 2) > n.

Subcase 4 If 1 + β < σ < 2 and 2 < γ < n − β(n − 2) then λ = 2 + a 2
1

σ
β

−
−

 and µ = 2 − a 2
1
γ

β
−
−

.
We have on D,

11

2 1( )1
2 0

( ( )) ( )( )( ) ( )( ( ))
| |

a
a

xx MK th x MK x dt
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β
ω

βρβρ ρ

−
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− −
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=  
 
 
∫

11

1
1

| |

( )( )( )(| |)

a
a

x

NL tNL x dt
t

β
ω

β
β

−
− +

−∞−

 
 
 
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

Remark that ν = τ = 2. In view of (A4), (B4), Lemmas 2.1, 2.3 and 2.2, h satisfies the hypothesis (C).
On the other hand, we have

2
1 11 1( )1 1

2 0
1

( ( )) ( )( )( ) ( ( )) (| |)
| |

b
a

xx MK tk x K x dt L x
t

x

σ β ω
β βρβ β

γ β
β

ρ ρ

− +
− −

− −
−
−

 
 

=  
 
 
∫

1

| |

( )( )

b
a

x

NL t dt
t

ω
β−∞

 
 

× 
 
 
∫

1 2: ( ( )) ( ( )) | | (| |).x L x x L xν τρ ρ− −=

It is obvious that the function k fulfills (C) with ν ∈ (1, 2) and τ ∈ (2, n).
To expound our main result, we present the following example.
Example 3.3 Let α, β ∈ (−1, 1), a, b ∈ R such that
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| | 1 | |  and | | 1 | | .a bα β< − < −

This implies that χ = (1 − |α|)(1 − | β |) − | rs | > 0 and so ω = (1 − α)(1 − β) − rs > 0.
Let p and q be two positive continuous functions on D such that for x ∈ D

2
2 ( 2) 3( ) ( ( )) | | and  ( ) | | log( ) ,

| |
b np x x x q x x

x
λ µρ  

−
− − − + −  

≈ ≈  
 

where λ, µ ∈ R.
It is clear that hypothesis (H) is well satisfied. We note that

1 2 3 4
(1 )(2 ) 2 2(1 ) (2 )1, , , 1,a bβ λ α λδ δ δ δ

ω ω
− − + − + −

= = = =

1 2 3 4
(1 )( 2) ( 2) (1 )( 2) ( 2) ( 2)0, , , .

1
rs n b n b b nβ µ α µν ν ν ν

ω ω β
− − − − − − − + − − −

= = = =
−

• If λ < 1 + α + a, µ > n − α(n − 2), then hypotheses (A1) and (B1) are satisfied and by Theorem 1.8, system (3) 
possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:

2

( )( )
| |n

xu x
x
ρ

−≈
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1
13( ) ( ) log( ) .

| |
v x x

x
β

ρ

−
− 

≈  
 

• If λ < 1 + α + a, 0 < ν2 < n − 2 and 0 < ν3 < n − 2 then hypotheses (A1) and (B3) are satisfied and by Theorem 1.8, 
system (3) possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:

2

2

( ) 3( ) log( )
| || |
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and

3
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α
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• If λ < 1 + α + a, µ = 2 + 
( 2)
1

rs n
β
−

− , b < 0 and 2a > 1 − β, then hypotheses (A1) and (B4) are fulfilled and by Theorem 
1.8, system (3) possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:
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and
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2 2
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• If λ = 1 + α + r, µ > n − α(n − 2), then hypotheses (A2) and (B1) are fulfilled and by Theorem 1.8, system (3) 
possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:
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2
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• If λ = 1 + α + a, 0 < ν2 < n − 2 and 0 < ν3 < n − 2 then hypotheses (A2) and (B3) are satisfied and by Theorem 1.8, 
system (3) possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:
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1( ) 3 3( ) log( ) log( )
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• If λ = 1 + α + a, µ = 2 + ( 2)
1

rs n
β
−

− , b < 0 and 2a > 1 − β, then hypotheses (A2) and (B4) are satisfied and by Theorem 
1.8, system (3) possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:
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• If 0 < δ2 < 1, 0 < δ3 < 1 and µ > n − α(n − 2) then hypotheses (A3) and (B1) are fulfilled and by Theorem 1.8, 
system (3) possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:
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x
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and
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• If 0 < δ2 < 1, 0 < δ3 < 1, 0 < ν2 < n − 2 and 0 < ν3 < n − 2 then hypotheses (A3) and (B3) are fulfilled and by 
Theorem 1.8, system (3) possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:
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• If 0 < δ2 < 1, 0 < δ3 < 1, µ = 2 + 
( 2)
1

rs n
β
−

− , b < 0 and 2a > 1 − β then hypotheses (A3) and (B4) are satisfied and by 
Theorem 1.8, system (3) possesses a positive solution (u, v) ∈ C0(D) × C0(D) such that for each x ∈ D:
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