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Abstract: The impact of climate change has become a very important topic and can have a direct impact on predator-prey
interactions. Therefore, in this paper, we introduce a novel competitive predator-prey model under the negative effects of
climate change. Based on their different properties, Holling type I and II functional responses are considered to be two
different models for studying dynamic behaviors. Two approaches to the negative impacts of climate change are assumed:
static and periodic changes. Firstly, models with negative climate change are taken as static changes. The existence,
positivity, and boundedness of solutions are established. Local and global stability conditions are obtained for all feasible
equilibrium points. The Hopf bifurcation is investigated, by taking climate change constants, as bifurcation parameters,
which shows that the model with Holling type I is globally stable whenever there exists an internal equilibrium point.
However, the model with Holling type II contains two dynamics: stable and limit cycle dynamics. Uniform persistence
is proved, and various extinction scenarios have been analytically yielded. In addition, numerical simulations are used to
demonstrate and verify our theoretical findings. Negative climate impacts have a significant impact on system stability
as well as on the coexistence and extinction of species. Secondly, models with negative climate change are considered
periodic changes taking seasonality into account, which is considered tangible evidence of climate change. The dynamics
of these effects are investigated numerically. Due to the existence of seasonality, the dynamics become more complex and
different, as there are multiple cycles and chaos, whichmakes the systemsmore realistic for describing some environments
due to the presence of some environmental impacts. The findings of this study show many undesirable scenarios for
predator-prey interactions due to negative climate change. In light of these findings, many phenomena and changes due
to negative climate change in ecosystems can be explained and predicted from an ecological point of view.
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1. Introduction
Population models are one of the most important topics in applied mathematics, mathematical biology, and

mathematical ecology. They have received considerable attention from researchers because of their importance. One
of the most important population models is the predator-prey model. The Lotka [1] and Volterra [2] model is considered
the basis for these models. Since then, many researchers have proposed and developed different models to describe and
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track the dynamics of different predator-prey interactions in different environments; for instance [3–11]. The problems
in this field may seem at first glance simple to follow and describe mathematically, but there are many challenges and
difficulties that constitute an open field for many ideas and problems. Mathematical modeling plays a pivotal role in
understanding and predicting many environmental phenomena and thus has an important role in various contexts such as
controlling disease outbreaks, saving endangered species, etc.

Climate change and its effects are some of the most widely discussed topics these days because of their importance.
An important effect of climate change is the presence of many extreme climate events that will have a significant impact
on species dynamics in predator-prey systems. The impact of climate change on predator-prey interactions can include
adaptation, decrease, or extinction of populations that have not responded adequately to such changes [12–15]. Some
ecological studies have shown that climate change has a significant impact on the behavior of prey and predators, which
can lead to changes in encounter rates [16], and predation rates [17], and contribute to prey refuges [18]. Global warming
caused by human activities is the main cause of climate change, which has negative effects on living organisms and the
environment on Earth [19]. In the last century, the Earth’s temperature has increased by 0.6 degrees Celsius, but the danger
lies if the temperature rises, which may lead to environmental disasters and extreme events [20]. Some ecological studies
have addressed the environmental impact of climate change on species. Climate change also reduces the biodiversity of
predator-prey interactions as well as the rate of encounters, which can lead to destabilization and extinction [15, 17, 18, 21].

In the environment, seasonality refers to periodic changes in any parameters of any ecosystem over time. Seasonality
expresses seasonal fluctuations and changes in ecosystems. Therefore, understanding the relationship between the
magnitude of fluctuations in ecosystems and the complexity of the system is an important issue. Seasonality has been
examined in many studies on predator-prey systems, which showed important results in the diversity of dynamic behavior,
especially the presence of multiple cycles and chaos as an example of these studies [22–25]. Two-species nonlinear models
without seasonal fluctuations (i.e., constant parameters mode) display only the limit cycle or equilibrium state but become
more complex when seasonal fluctuations are assumed. Therefore, it is of great importance in explaining some ecological
phenomena, and thus it is taken into account in mathematical models.

There are many studies in the field of theoretical ecology that have addressed the topic of climate impact. In addition,
some of them recommended that future efforts should focus on studying the possible effects of climate change on species
and ecosystems and evaluating direct and indirect effects, such as [17]. However, in mathematical ecology, less attention
has been paid. Although there is a significant lack of mathematical models that examine the impact of climate change
on predator-prey interactions, some mathematical models have been proposed in recent studies. Gretkon et al. [26]
presented a deterministic model of predator-prey interactions with variable territory and used the carrying capacity and
intrinsic growth rate of the prey to incorporate climate change. Sengupta and Das [27] presented a non-autonomous
stochastic mathematical model with Holling type-III that incorporates climate and harvest variation for two prey and one
predator into the growth rates and carrying capacities of the prey and predators. A spatial gradient was also included
using a coupled reaction-diffusion equation for a predator-prey model against the increase in temperature arising from
climate change [28]. Sekerci [29] introduced a fractional predator-prey model to study the impact of climate change
by considering the predation rate as a function of time. Some deterministic and a stochastic mathematical models were
included, including the use of wind speed, seasonality, and global warming to express the effects of climate change, which
included modifications to the functional response [30–32]. Recently, Wayesa et al. [33] presented a deterministic model
that includes temperature changes due to climate change in reserved and unreserved areas for prey with Holling Type II.
Themodel includes temperature changes as a dynamic change by including a differential equation considering temperature
changes in the model.

Significant advances in analytical methods and the development of numerical tools using numerous computer
programs have improved our understanding of predator-prey interactions; we refer to some references that include
numerical schemes for solving predator-prey models and the mathematical models that contain climate change [34–38].

In contrast to the literature, in this work, we assume that climate change is directly added to the model and has its own
term. The primary objective of this study is to start investigating the negative effects of climate change on the dynamics of
competitive predator-prey models. These models use Holling types I and II as functional responses. Therefore, the main
contribution of this study is to provide predictive scenarios for some of the key dynamics of predator-prey models under
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the influence of climate change, such as stability, coexistence, and extinction, by using analytical methods and numerical
simulations.

According to the following structure, this paper is organized. Section 2 introduces novel models with integrated
static climate change. Section 3 addresses the theoretical perspectives of these models, which validate them and study
their dynamics, such as stability and the existence of limit cycles, the Hopf bifurcation is introduced, controlled by climate
change parameters, proving uniform persistence and obtaining different scenarios of extinction. To verify and explain our
theoretical results, numerical simulations are presented in Section 4. In Section 5, the models with forced seasonality
to represent periodic climate change are introduced, and they are computationally investigated. Section 6 presents the
conclusion of the paper.

2. The proposed of the models with climate static changes
The novel general competitive prey-predator model is proposed with climate change to investigate their long-term

effects on the dynamical behaviors. Functional and numerical responses are described by Holling types I and II. Holling
type II is the most widely used in numerous theoretical and experimental studies because it is the most realistic, given that
there is a handling time when the predator interacts with the prey. However, Holling type I can also be used in certain
laboratories or special environments such as filter-feeding crustacean Daphnia pulex preys upon a variety of edible algae.
The model without a climate change term has been utilized in prior studies with two and three interacting species to
investigate their dynamic behavior for different approaches (see [39–45]). Prey and predator populations are represented
by N and P, respectively, to describe their interactions. The general shape of the non-dimensional model is indicated as
follows:

dN
dt

= ζ N
(

1− N
K

)
−FNP−Q(t)N,

dP
dt

=−µP+GNP−GP2 −Q(t)P. (1)

Subject to

N(0) = N0 ≥ 0, P(0) = P0 ≥ 0.

Where we assume F and G represent functional and numerical responses, respectively, and also, the term Q(t) in
model (1) that represents static climate change. So, the models are as follows:

Model 1 The Holling type I predator-prey model with static changes:

dN
dt

= ζ N
(

1− N
K

)
−βNP−q1N = A1 (N, P) ,

dP
dt

=−µP+ eβNP− eβP2 −q2P = A2 (N, P) . (2)

Model 2 The Holling type II predator-prey model with static changes:
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dN
dt

= ζ N
(

1− N
K

)
− βNP

1+hβN
−q1N = B1(N, P),

dP
dt

=−µP+
eβNP

1+hβN
− eβP2

1+hβN
−q2P = B2(N, P). (3)

The systems are subject to positive initial conditions N(0) = N0 > 0 and P(0) = P0 > 0. The biological meanings of
the symbols are listed as follows:

• ζ indicates inherent growth rate of prey.
• K represents the system carrying capacity.
• β is the catching rate of the prey by a predator.
• µ is the rate of natural death of predator.
• e is conversion of consumed prey into predators.
• h is the prey handling time.
• q1 is climate change effects on prey population.
• q2 is climate change effects on predator population.
The biological significance of the terms and expressions in the models (2) and (3) is clarified as follows:

The logistic term ζ N
(

1− N
K

)
indicates an intraspecific competition-based growth rate for prey. βNP and

βNP
1+hβN

represent predator consumption of prey, which are classified as Holling types I and II functional responses, respectively.

In contrast, a change in predator density as a result of prey consumption is indicated by the terms eβNP and
eβNP

1+hβN
,

which are classified as Holling types I and II numerical responses, respectively. Predator death rates are expressed in µP.

eβP2 and
eβP2

1+hβN
indicate intraspecific competition between predators. The terms q1N and q2P represent static climate

change effects on prey and predator populations, respectively. For biological meaning, all parameters are assumed to be
positive values; also, 0 ≤ q1 ≤ 1 and 0 ≤ q2 ≤ 1.

3. The main analytical results
3.1 The existence, uniqueness, and positivity

In this subsection, we will show the existence, uniqueness, and positivity of the solutions of models (2) and (3).
Theorem 3.1 The solutions of models (2) and (3) exist, are unique, and are positive for all values of t ≥ 0.
We prove the existence, uniqueness, and positivity of model (3), which is a generalization of the model (2), so to

avoid repetition of the proofs, the proof of model (2) will be omitted.
Proof. Let

σ1(N, P) = ζ
(

1− N
K

)
− βP

1+hβN
−q1,

σ2(N, P) =−µ +
eβN

1+hβN
− eβP

1+hβN
−q2.

Thus, we can reduce the model (3) to:
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dN
dt

= Nσ1(N, P), N(0)> 0,

dP
dt

= Pσ2(N, P), P(0)> 0. (4)

It shows that Nσ1(N, P) and Pσ2(N, P) are continuous functions of N and P, as well as Lipschitzian functions locally
in R2

+. Therefore, a solution of model (3) exists and is unique on [0, ϑ), where 0 < ϑ < ∞.
According to equation (4), we have

dN
dt

= N(0)exp
[∫ t

0
σ1(N(s), P(s))

]
≥ 0,

dP
dt

= P(0)exp
[∫ t

0
σ2(N(s), P(s))

]
≥ 0.

Theorem proved.

3.2 The boundedness of the models

In this part, we prove the boundedness of the solution of models (2) and (3).
Theorem 3.2
(i) All the solutions of system (2) that start in R2

+ for t ≥ 0 are ultimately bounded.
(ii) All the solutions of system (3) that start in R2

+ for t ≥ 0 are ultimately bounded.
We prove the second part, which is a generalization of the first part, so the proof of the first part can be done in the

same manner and therefore is omitted.
Proof. For system (3), assume (N(t), P(t)) is any solution; we have

dN
dt

≤ ζ N
(

1− N
K

)
. (5)

The solution of equation (5) is N(t) =
Ket+Kc

−1+ et+Kc , c is an integration constant. Then

lim
t→∞

supN (t)≤ K∀t > 0. (6)

Now, we show that N (t)+P(t)≤ θ , ∀t ≥ 0. Consider Φ(t) ∈C1(R+ → R+) as

Φ(t) = N (t)+P(t)> 0.

The derivative of J with respect to time (t) is
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dΦ
dt

=
dN
dt

+
dP
dt

, (7)

dΦ
dt

= ζ N
(

1− N
K

)
− βNP

1+hβN
−q1N −uy+

eβNP
1+hβN

− eβP2

1+hβN
−q2P. (8)

Since limt→∞ supx(t)≤ K, max
{

rx
(

1− x
K

)}
=

4ζ
K
, then we can assume

dΦ
dt

≤ 4ζ
K

−q1N −uP+
eβKP

1+hβN
− eβP2

1+hβK
−q2P+Φ−Φ. (9)

The term
(

1−q2 −u+
eβK

1+hβK

)
P− eβP2

1+hβK
has a maximum value

(
1−q2 −u+

eβk
1+hβK

)2

(1+hKβ )

4eβ
= ξ ,

then

dΦ
dt

≤ 4ζ
K

+K +ξ , (10)

Let ϑ =
4r
K

+K +ξ

dΦ
dt

+Φ ≤ ϑ . (11)

Thus,

Φ(t)≤ ϑ + Φ(0)e−t ,

for t → ∞, then Φ ≤ ϑ . So, J is bounded. As a result, all the solutions of system (3) are contained within

ω =

{
(N, P) ∈ R2

+ : Φ = ϑ + ε

}
. (12)

Thus, the solutions of system (3) are ultimately bounded.
Remark 3.3 The positivity and boundedness of the solutions in the models validate them biologically.
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3.3 Equilibria, local and global stability analysis

In this subsection, we show the existence of nonnegative equilibria and study local and global stability. It is noticed
that the systems (1) and (2) have three types of equilibrium points for each system that are nonnegative and biologically
feasible.

3.3.1Equilibria of systems (2) and (3)

The systems (2) and (3) have three types of equilibrium points for both systems.
• The first type is the trivial equilibrium points, which present the two species going extinct from the system as

E0HI = E0HII = (N = 0, P = 0).
• The second type is the axial equilibrium points that show the coexistence of prey and extinction of predator; the

axial equilibrium points of the systems are E1 = E1HI = E1HII =

(
N =

(ζ −q1)K
ζ

, P = 0
)
. The axial equilibrium points

exist if ζ > q1.
• The third type is the interior equilibrium points that show the coexistence of both species. For the system (2), we

have E2 = E2HI =

(
N =

q2K + eKζ +Kµ
ζ e+ eKβ

, P =
eKζβ − eKq1 −ζ q2 −ζ µ

ζ eβ + eKβ 2

)
. However, for the system (3), we find Ē2

as follows:

Ē2 = E2HII = (N̄, P̄),

such that we get N̄ and P̄ through finding the positive root of the following algebraic equations:

ζ
(

1− N̄
K

)
− β P̄

1+hβ N̄
−q1 = 0

−µ +
eβ N̄

1+hβ N̄
− eβ P̄

1+hβ N̄
−q2 = 0. (13)

We introduce the following analysis to guarantee the feasibility of the interior equilibrium point Ē2 = E2HII = (N̄, P̄)

W (N̄, P̄) = ζ
(

1− N̄
K

)
− β P̄

1+hβ N̄
−q1 = 0. (14)

We get from the equation (14):

(i) When N̄ = 0, then P̄ =
ζ −q1

β
= P̄i, so P̄i > 0 when ζ > q1.

(ii) When P̄ = 0, then N̄ =
K(ζ −q1)

ζ
= N̄i, so N̄i > 0 when ζ > q1.

(iii)

dP̄
dN̄

=−

∂W
∂ N̄
∂W
∂ P̄

=

−ζ
K

+
hβ 2P̄

(1+hβ N̄)2

β
1+hβ N̄

.

Volume 6 Issue 3|2025| 2791 Contemporary Mathematics



Consequently,
dP̄
dN̄

< 0 under the following condition:

hβ 2KP̄ < ζ (1+hβ N̄)2.

We notice from the above analysis that the isocline (14) passes through points (N̄, 0) and (0, P̄). Also, we have P̄ as
a decreasing function of N̄, if the conditions ζ > q1 and hβ 2KP̄ < ζ (1+hβ N̄)2 are satisfied.

Let

Z(N̄, P̄) =−µ +
eβ N̄

1+hβ N̄
− eβ P̄

1+hβ N̄
−q2 = 0. (15)

We get from the equation (15):
(i) When N̄ = 0, then P̄ =

−µ −q2

eβ
= P̄ii, so P̄ii < 0 always.

(ii) When P̄ = 0, then N̄ =
µ +q2

eβ −µhβ −q2hβ
= N̄ii, so N̄ > 0 when e > µh+q2h.

(iii)

dP̄
dN̄

=−

∂Z
∂ N̄
∂Z
∂ P̄

=
hβ P̄+1
1+hβ N̄

.

Thus,
dP̄
dN̄

> 0 always.
The isocline (15) met the point (N̄ii, 0) with the condition e > µh+q2h; also, the slope is positive.
Based on the above analysis, the two isoclines met at a unique point N̄, P̄ with the following condition:

N̄ii < N̄i.

Figure 1 shows the unique interior equilibrium points of the models (2) and (3), respectively.
For more discussion of the existence of various interior equilibrium points, see for example [46, 47].
Theorem 3.4 The trivial equilibrium points E0H1 = E0H2 = (0, 0) are locally asymptotically stable if ζ < q1 and are

saddle points if ζ > q1.
Proof. By replacing N = 0 and P = 0, then the Jacobian matrix at E0H1 = E0H2 = (0, 0) is

J (0, 0) =

[
ζ −q1 0

0 −µ −q2

]
.

The eigenvalues are λ1 = ζ −q1 and λ2 =−µ −q2, which clarifies that E0 is stable if ζ < q1, but if ζ > q1, then E0

is a saddle point because −µ −q2 is always negative.
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Figure 1. Nullclines of the models (2) and (3), respectively, where the predator nullcline is represented by the red dashed curve and the prey nullcline by
the black curve (a) Nullclines for model (2) (i.e., Holling type I). The initial conditions and parameter values are N(0) = 0.5, P(0) = 0.3, ζ = 0.6, K =
2, β = 1.0, µ = 0.1, e = 0.5, q1 = 0.1, q2 = 0.1, (b) Nullclines for model (3) (i.e., Holling type II). The initial conditions and parameter values are
N(0) = 0.5, P(0) = 0.3, ζ = 0.8, K = 7, h = 0.5, β = 5.5, µ = 0.5, e = 0.5, q1 = 0.1, q2 = 0.1

Theorem 3.5 The axial equilibrium point E1HI =

(
N =

(ζ −q1)K
ζ

, P = 0
)
is locally asymptotically stable if ζ +

2q1K < 2ζ K +q1 and
eβ (ζ −q1)K

ζ
< µ +q2.

Proof. By replacing N =
ζ K −q1K

ζ
and P = 0, then the Jacobian matrix at E1HI =

(
N =

ζ K −q1K
ζ

, P = 0
)
is

J
(

N =
(ζ −q1)K

ζ
, 0

)
=


ζ −2ζ K +2q1K −q1 −βK(ζ −q1)

ζ

0 −µ −q2 +
eβ (ζ −q1)K

ζ

 .

The eigenvalues are λ1 = ζ − 2ζ K + 2q1K − q1 and λ2 = −µ − q2 +
eβ (ζ −q1)K

ζ
that imply the eigenvalues are

negative if ζ +2q1K < 2ζ K +q1 and
eβ (ζ −q1)K

ζ
< µ +q2, then E1HI is locally asymptotically stable.

Theorem 3.6 The axial equilibrium point E1HII =

(
N =

(ζ −q1)K
ζ

, P = 0
)
is locally asymptotically stable if ζ +

2q1K < 2ζ K +q1 and
eβ (ζ −q1)K

ζ +ζ hβ (ζ −q1)K
< µ +q2.

Proof. By replacing N =
ζ K −q1K

ζ
and P = 0, then the Jacobian matrix at E1HII =

(
N =

ζ K −q1K
ζ

, P = 0
)
is
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J
(

N =
(ζ −q1)K

ζ
, 0

)
=


ζ −2ζ K +2q1K −q1 − βK(ζ −q1)

ζ +hβζ (ζ −q1)

0 −µ −q2 +
eβ (ζ −q1)K

ζ +ζ hβ (ζ −q1)K

 .

The eigenvalues are λ1 = ζ −2ζ K +2q1K −q1 and λ2 =−µ −q2 +
eβ (ζ −q1)K

ζ +ζ hβ (ζ −q1)K
that imply the eigenvalues

are negative if ζ +2q1K < 2ζ K +q1 and
eβ (ζ −q1)K

ζ +ζ hβ (ζ −q1)K
< µ +q2, then E1HII is locally asymptotically stable.

Theorem 3.7 In R2
+, the interior equilibrium point E2HI is globally asymptotically stable whenever it exists.

Proof. Suppose F (x, y) =
1

NP
is a Dulac function, which is smooth in R2

+. Let L1 (N, P) =
dN
dt

and L2 (N, P) =
dP
dt

.
Now, the Dulac function is multiplied by the prey equation of system (2) and the partial derivatives are taken according
to N, which gives:

FL1 =
1

NP

(
ζ N

(
1− N

k

)
−βNP−q1N

)

FL1 =
1
P

(
ζ − ζ N

K

)
− 1

NP
βNP+

1
NP

q1N

FL1 =
ζ
P
− ζ N

KP
−β − q1

P
(16)

∂FL1

∂N
=− ζ

KP
(17)

In the same manner, the Dulac function is multiplied by the predator equation of system (2), and taking the partial
derivatives according to P, we get:

FL2 =
1

NP
(−µP+ eβNP− eβP2 −q2P)

FL2 =
−µP
NP

+
eβNP

NP
− eβP2

NP
− q2P

NP

FL2 =
−µ
N

+ eβ − eβP
N

− q2

N
(18)

∂FL2

∂P
=−eβ

N

Thus,
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∆(FL1, FL2) =
∂FL1

∂N
+

∂FL2

∂P
=− ζ

KP
− eβ

N
< 0. (19)

∆(FN1, FN2) is always negative and is not identically zero in R2
+, since N > 0, P > 0, and all parameters are positive.

Therefore, by the Poincare-Bendixson theorem, the interior equilibrium point E2HI is globally asymptotically stable.
Theorem 3.8 There is no periodic solution of the system (2) in R2

+.
Proof. Since the system (2) is globally asymptotically stable in R2

+ whenever the interior equilibrium point exists,
and using the Bendixson-Dulac criterion, the system (2) does not have a periodic solution.

Theorem 3.9 The interior equilibrium pointE2HII = (N̄, P̄) is locally asymptotically stable if the following conditions
are satisfied:

ζ − 2ζ N̄
K

− β P̄
(1+hβ P̄)2 −q1 < 0, (20)

−µ −q2 +
eβ (N̄ −2P̄)

1+hβ N̄
< 0. (21)

Proof. The Jacobian matrix of the system (3) when substituting the interior equilibrium point E2HII is obtained as
follows:

J (N̄, P̄) =


ζ − 2ζ N̄

K
− β P̄

(1+hβ N̄)2 −q1
−β N̄

1+hβ N̄

eβ P̄(1+hβ P̄)
(1+hβ N̄)2 −µ −q2 +

eβ (N̄ −2P̄)
1+hβ N̄

 ,

which can be rewritten as follows:

J (N̄, P̄) =

[
c11 −c12

c21 c22

]
,

where

c11 = ζ − 2ζ N̄
K

− β P̄
(1+hβ N̄)2 −q1,

c12 =
β N̄

1+hβ N̄
,

c21 =
eβ P̄(1+hβ P̄)
(1+hβ N̄)2 ,
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c22 =−µ −q2 +
eβ (N̄ −2P̄)

1+hβ N̄
.

Since c12 < 0 and c21 > 0, we have |J (N̄, P̄)| > 0 and Trace
(
J (N̄, P̄)

)
< 0, if c11 < 0 and c22 < 0. Therefore, the

interior equilibrium point E2HII = (N̄, P̄) with the conditions is locally asymptotically stable (20) and (21).
Theorem 3.10 In R2

+, the system (3) possesses periodic dynamics.

Proof. To prove the theorem, let T (N, P) =
1

NP
be a smooth Dulac function in R2

+.

Suppose S1 (N, P) =
dN
dt

and S2 (N, P) =
dP
dt

. The Dulac function is multiplied by the prey equation of system (3),
and the partial derivatives with respect to N are computed, yielding:

GS1 =
1

NP

(
ζ N

(
1− N

k

)
− βNP

1+hβN
−q1N

)

GS1 =
1
P

(
ζ
(

1− N
k

)
− αP

1+hβN
−q1

)

GS1 =
ζ
P
− ζ N

KP
− β

1+hβP
− q1

P
(22)

∂GS1

∂N
=− ζ

KP
+

hβ 2

(1+hβN)2 (23)

Also, taking the partial derivatives of P from the Dulac function multiplied by the predator equation of system (3)
results in:

GS2 =
1

NP

(
−µP+

eβNP
1+hαN

− eβ
1+hαN

P2
)

GS2 =
−µ
N

+
eβ

1+hβN
− eβP

N (1+hβN)
(24)

∂GS2

∂P
=− eα

N (1+hβN)

Thus,

∆(GS1, GS2) =
∂GS1

∂N
+

∂GS2

∂P
=− ζ

KP
+

hβ 2

(1+hβN)2 − eα
N (1+hβN)

(25)
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Given that N > 0 and P > 0, along with all parameters being positive, it follows that ∆(GS1, GS2) changes sign and
is non-zero in R2

+. Since the system (3) is bounded from Theorem 3.2 and utilizing the Poincare-Bendixson theorem, the
system (3) has periodic dynamics.

3.4 Hopf bifurcation

A Hopf bifurcation occurs when a system loses stability and transitions to a periodic solution as certain parameters
change. This subsection analyzes the Hopf bifurcation at the interior equilibrium point. The system (2) is globally stable,
as demonstrated by Theorem 3.7, so there is no bifurcation under any conditions. However, the internal point E2HII of
the system (3) can be stable or unstable. To investigate the Hopf bifurcation, we use q1 and q2 as bifurcation parameters,
which are the factors of climate change.

Theorem 3.11 System (3) exhibits a Hopf bifurcation around the internal equilibrium point (E2HII = (N̄, P̄)) at the

threshold q1 = q1H , where q1H = ζ − 2ζ N̄
K

− β P̄
(1+hβ P̄)2 .

Proof. If q1 > q1H , then q = q1H is the critical value where the stability of E2HII = (N̄, P̄) changes; the internal
equilibrium point E2HII = (N̄, P̄) will be unstable in this case.

Suppose that λ =A(m)+B(m)i is an eigenvalue in the Jacobianmatrix J((N̄, P̄); q1H)). Thus, λ is a purely imaginary
number, and when q = q1H , there is a Hopf bifurcation. We verify these conditions by substituting q1 with q1H , we obtain
that

Trace(J((N̄, P̄); q1H)) = 0, Det(J((N̄, P̄); q1H)) > 0 and
d(trace(J((N̄, P̄); q1H)))

dq1
= −1 ̸= 0. Thus, a Hopf

bifurcation occurs at the point q1 = q1H .
Theorem 3.12 System (3) exhibits a Hopf bifurcation around the internal equilibrium point (E2HII = (N̄, P̄)) at the

threshold q2 = q2H , where q2H =−µ +
eβ (N̄ −2P̄)

1+hβ N̄
.

Proof. The proof is similar to Theorem 3.12.

3.5 Persistence and extinction scenarios

In this part, we present a theoretical analysis to infer the conditions of persistence and extinction. Consider the
following notation: limt→∞ supP(t) = P̃.

Theorem 3.13 The system (3) is uniformly persistent under the following condition:

eβK > µ +µhβK. (26)

Proof. Let the average Lyapunov function be:

Λ(N, P) = NS1PS2 , (N, P) ∈ R2
+, (27)

where Λi > 0, for i = 1, 2. The function Λi represents a continuously differentiable non-negative function. The
differentiation of equation (27) with regard to t is as follows:
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Λ̇
Λ

= S1
Ṅ
N
+S2

Ṗ
P
, (28)

Ψ = S1

{
ζ
(

1− N
K

)
− βP

1+hβN
−q1

}
+S2

{
−µ +

eβN
1+hβN

}
, (29)

Ψ(0, 0) = S1(ζ −q1)+S2(−µ −q2). (30)

Assuming that

ζ > q1, (31)

it follows that Ψ(0, 0)> 0 for some S1, S2 > 0.

Ψ(K, 0) = q2

{
−µ +

eβK
1+βhK

}
, (32)

S1 and S2 are chosen so that Ψ(0, 0)> 0. Also, Ψ(K, 0)> 0, if the following condition is satisfied

eβK > µ +µhβK.

As a result, system (3) is uniformly persistent under the condition (26).
Remark Destabilization of boundary equilibrium points implies persistence.
Because Holling type II is more general than the Holling type I, the coexistence condition for the system (2) is

deduced, which is stated in the following theorem:
Theorem 3.14When the following condition is met, the system (2) is uniformly persistent:

eβK > µ. (33)

Theorem 3.15 Under the following condition:

ζ < q1, (34)

the prey population goes extinct from systems (2) and (3) in the long term.
Proof.
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dN
dt

= ζ N
(

1− N
K

)
− βNP

1+hβN
−q1N ≤ ζ N − βNP

1+hβN
−q1N,

< (ζ −q1)N,

=−I1N, where I1 = q1 −ζ > 0.

Therefore,

lim
t→∞

N(t) = 0.

This completes the proof.
Theorem 3.16 For the systems (2) and (3), the prey species go extinct with time under the following condition:

ζ < q1 +β P̃. (35)

Proof. Select δ such that 0 < δ < P̃− ζ −q1

β
. If ∀t > T , then ∃ T > 0 such that P(t)> P̃−δ .

dN
dt

= ζ N
(

1− N
K

)
− βNP

1+hβN
−q1N ≤ ζ N −βNP−q1N,

<
(
ζ −β (P̃−δ )−q1

)
N,

=−I2N, ∀t > T where I2 = q1 +β (P̃−δ )−ζ > 0.

Therefore,

lim
t→∞

N(t) = 0.

This completes the proof.
Theorem 3.17 In the systems (2) and (3), the predator species dies out with time under the following condition:

eβK < µ. (36)

Proof.
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dP
dt

=−µP+
eβNP

1+hβN
− eβP2

1+hβN
−q2P,

≤−µP+
eβNP

1+hβN
,

<−µP+ eβPN.

From Equ (6), limt→∞ supN (t)≤ K∀t > 0, we get

< (−µ + eβK)P,

=−I3P, ∀t > T where I3 = µ − eβK > 0.

Therefore,

lim
t→∞

P(t) = 0.

This completes the proof.
Theorem 3.18 In the systems (2) and (3), the predator species dies out with time under the following condition:

eβK < µ +q2. (37)

Proof. Select δ such that 0 < δ < P̃− ζ −q1

β
. If ∀t > T , then ∃ T > 0 such that P(t)> P̃−δ .

dP
dt

=−µP+
eβNP

1+hβN
− eβP2

1+hβN
−q2P,

≤−µP+
eβNP

1+hβN
−q2P,

<−µP+ eβPN −q2P.

From Equ (6), limt→∞ supN (t)≤ K∀t > 0, we get
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Z < (−µ + eβK −q2)P,

=−I4P, ∀t > T where I4 = µ +q2 − eβK > 0.

Therefore,

lim
t→∞

P(t) = 0.

This completes the proof.
Remark 3.19 The previous analysis in Subsections 3.2 and 3.3 shows that negative climate impacts play an important

role in system stability, as well as in the coexistence and extinction of species exposed to these impacts. Consequently,
species’ biological systems may adapt, their density may decline, or they may become extinct over time, depending on
the severity of these impacts.

4. Numerical simulations
In this section, we show several numerical simulations to verify and visualize our analytical results that are presented

in Section 3. The Mathematica software package is utilized to perform numerical simulations that display the impacts
of negative climate change on dynamical behaviors. The numerical simulations are executed using the “NDSOLVE”
command, and then they are plotted. For more details, seeWolfram’s website [48]. The initial conditions for all numerical
simulations are assumed as follows:

N(0) = 0.5, P(0) = 0.3. (38)

4.1 Numerical simulations for Holling type I

In this part, the results are shown for the model with Holling Type 1. The system (2) has been shown to be globally
stable without conditions (i.e., Theorem 3.7). The parameter values are assumed to satisfy Theorem 3.14, which means
that the species persist. On the other hand, we show the effects of climate change on the persistence and extinction of
species. The first set of parameter values is selected as follows:

ζ = 0.6, K = 2, β = 1.0, µ = 0.1, e = 0.5. (39)

With the free effects of climate change, Figure 2 illustrates that the dynamic behavior of the model (2) persists stably
around the equilibrium point (0.615, 0.415). This is consistent with condition (33) of Theorem 3.14. Figure 3 depicts
model (2) with (q1 = 0.1, q2 = 0.1), which indicates equal and minor effects of climate change on prey and predators.
The dynamic behavior of the model (2) remains stable near the equilibrium point (0.692, 0.292), as shown in Figure 3. This
meets condition (33) of Theorem 3.14. However, when assuming the existence of small enough effects of climate change
on the prey population and high enough effects of climate change on the predator population (that is, q1 = 0.1, q2 = 0.8) of
the model (2), Figure 4 explains that there is an extinction of the predator population and an increase of the prey population
but will not reach carrying capacity without the threat from the predator population to be around the equilibrium point
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(1.667, 0.0), which is a consequence of climate change. This satisfies condition (37) of Theorem 3.18. On the other hand,
Figure 5 shows that the system has collapsed for prey and predator populations when the effects of climate change are
high in the prey population and small enough in the predator population. In line with condition (35) of Theorem 3.16, the
extinction of the prey population leads to the extinction of the predator population, despite the small effects of climate
change on the predator population, resulting in the collapse of the predator-prey system.

Figure 2. Dynamics of the model (2) with free climate change effects on prey and predator populations (i.e., q1 = 0.0, q2 = 0.0), which shows they
persist stably around the equilibrium point (0.615, 0.415): (a) Time series, (b) Phase portrait trajectories. The first set of other parameter values (39) is
used

Figure 3. Dynamics of the model (2) with equal and small enough effects of climate change on prey and predator populations (i.e., q1 = 0.1, q2 = 0.1),
which shows they persist stably around the equilibrium point (0.692, 0.292): (a) Time series, (b) Phase portrait trajectories. The first set of other
parameter values (39) is used
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Figure 4. Dynamics of the model (2) with small enough effects of climate change on the prey population and high enough effects of climate change on
the predator population (i.e., q1 = 0.1, q2 = 0.8), which shows prey population persists and predator population extincts around the equilibrium point
(1.667, 0.0): (a) Time series, (b) Phase portrait trajectories. The first set of other parameter values (39) is used

Figure 5. Dynamics of the model (2) with high enough effects of climate change on the prey population and small enough effects of climate change on
the predator population (i.e., q1 = 0.8, q2 = 0.1), which shows collapse of the predator-prey system: (a) Time series, (b) Phase portrait trajectories. The
first set of other parameter values (39) is used

4.2 Numerical simulations for Holling type II

The dynamic behaviors with Holling type II of the model (3) are analytically explained in Section 3, which presents
two different dynamics: steady state and limit cycle, as shown through Theorems 3.9 and 3.10. Here, the effects of climate
change on the limit cycle of the dynamical shape of the model (3) are investigated. The second set of parameter values is
selected to satisfy Theorems 3.10 and 3.13, which means that the species periodically persists. The second set of parameter
values is selected to investigate the dynamics as follows:
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ζ = 0.8, K = 7, β = 5.5, h = 0.5, µ = 0.5, e = 0.5. (40)

Remark 4.1 In this subsection, the persistence of steady-state dynamic behavior is not shown numerically because
it shows similar figures as presented in subsection 4.1.

Figure 6. Dynamics of the model (3) with free climate change effects on prey and predator populations (i.e., q1 = 0.0, q2 = 0.0), which shows they
persist in a limit cycle: (a) Time series, (b) Phase portrait trajectories. The second set of other parameter values (40) is used

Figure 7. Dynamics of the model (3) with equal and small enough effects of climate change on prey and predator populations (i.e., q1 = 0.1, q2 = 0.1),
which shows they persist stably around the equilibrium point (1.916, 0.548): (a) Time series, (b) Phase portrait trajectories. The second set of other
parameter values (40) is used
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Figure 8. Dynamics of the model (3) with small enough effects of climate change on the prey population and high enough effects of climate change on
the predator population (i.e., q1 = 0.1, q2 = 0.8), which shows prey population persists and predator population extincts around the equilibrium point
(6.125, 0.0): (a) Time series, (b) Phase portrait trajectories. The second set of other parameter values (40) is used

Figure 9. Dynamics of the model (3) with high enough effects of climate change on the prey population and small enough effects of climate change on
the predator population (i.e., q1 = 0.8, q2 = 0.1), which shows collapse of the predator-prey system: (a) Time series, (b) Phase portrait trajectories. The
second set of other parameter values (40) is used

With free climate change effects, Figure 6 shows limit cycle dynamical behavior, and both populations persist, which
satisfies the conditions of Theorems 3.16 and 3.17. However, when assuming (q1 = 0.1, q2 = 0.1), which means that the
same and small effects of climate change hold on the prey and predator populations, Figure 7 shows that the dynamical
behavior of the system (3) appears that the dynamics have shifted significantly to become a steady coexisting state around
the equilibrium point (1.916, 0.548). This satisfies the condition (26) of Theorem 3.13. This result may be ecologically
interpreted as the adaptation of a predator-prey system with these effects or the existence of other factors such as the
existence of prey refuge, and it can persist stably even with lower prey and predator density. However, when assuming
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the existence of small enough effects of climate change on the prey population and high enough effects of climate change
on the predator population (i.e., q1 = 0.1, q2 = 0.8) of the model (3), Figure 8 explains that there is an extinction of the
predator population and an increase in the prey population, but it will not reach carrying capacity with no threat from
the predator population around the equilibrium point (6.125, 0.0); this is due to impacts of climate change. As shown in
Figure 9, the predator and prey populations have collapsed. According to Theorem 3.5, condition (34) shows that there
is an extinction of prey populations, resulting in the extinction of predator populations and the collapse of prey-predator
systems.

We summarize the results in the following Table 1:

Table 1. Description of Dynamical behavior for all cases

Values of climate change (q1 and q2) Dynamical behavior for every species Other notes

The model with Holling type I (i.e., Model (2))

Prey Predator

q1 = 0.0 and q2 = 0.0 (Figure 2) Persist (steady state) Persist (steady state) The equilibrium point is (0.615, 0.415)

q1 = 0.1 and q2 = 0.1 (Figure 3) Persist (steady state) Persist (steady state) The equilibrium point is (0.692, 0.292)

q1 = 0.1 and q2 = 0.8 (Figure 4) Persist (steady state) Extinct The equilibrium point is (1.667, 0.0)

q1 = 0.8 and q2 = 0.1 (Figure 5) Extinct Extinct -

The model with Holling type II (i.e., Model (3))

q1 = 0.0 and q2 = 0.0 (Figure 6) Persist (limit cycle) Persist (limit cycle) -

q1 = 0.1 and q2 = 0.1 (Figure 7) Persist (steady state) Persist (steady state)
Change the dynamics from limit cycle to
steady state around the equilibrium point

(1.916, 0.548)

q1 = 0.1 and q2 = 0.8 (Figure 8) Persist (steady state) Extinct The equilibrium point is (6.125, 0.0)

q1 = 0.8 and q2 = 0.1 (Figure 9) Extinct Extinct -

Remark 4.2 Some ecological justifications for the reasons behind extinction can be explained as follows:
Extinction may occur due to a shift from habitat to a more suitable one (i.e., migration from the environment) or due

to extreme events such as floods or forest fires, which may wipe out some or all species.
Remark 4.3 Real-world examples are given as follows:
Our results can be explained by relying on some real-world examples, such as the following: As polar bears prey

on seals, it was indicated that polar bears are a threatened species in the Arctic Ocean due to climate change and global
warming, which could disrupt the natural balance, as Sengupta and Das [49] indicated from “World Wildlife”. Another
real-world example is the impact of windy conditions on lions’ predation on springbok and zebra species more frequently
than on wildebeest [50].

5. Climate change effects with forced seasonality
One concrete evidence of climate change is the presence of seasonal changes over relatively short periods of time,

which may help scientists understand the evolution of impacts of climate change over longer periods of time. The climatic
effects on seasonality include their strength, frequency, and duration, and therefore there is a strong correlation between
climate change and seasonality [51]. The study of environmental variability is very important for population communities,
which may explain many of the dynamic changes in these communities. Some studies have been presented in this area,
which have clarified the effect of seasonality on the predator-prey system, for instance [24, 52, 53]. Therefore, we integrate
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the model (1) with forced seasonality terms as periodic climate change impacts by including a sinusoidal function. Since
Holling types I and II are used as functional responses, two models are formed as follows:

Model 3 Holling type I prey-predator model with seasonality effects (periodic changes through time):

dN
dt

= ζ N
(

1− N
K

)
−βNP−q1(1+(ν sin(wt)))N = A1 (N, P) ,

dP
dt

=−µP+ eβNP− eβP2 −q2(1+(ν sin(wt)))P = A2 (N, P) . (41)

Model 4 Holling type II prey-predator model with seasonality effects (periodic changes over time):

dN
dt

= ζ N
(

1− N
K

)
− βNP

1+hβN
−q1(1+(ν sin(wt)))N = B1(N, P),

dP
dt

=−µP+
eβNP

1+hβN
− eβP2

1+hβN
−q2(1+(ν sin(wt)))P = B2(N, P), (42)

where ν indicates the degree of seasonality strength and w represents angular frequency and subjects the systems to initial
conditions N(0) = N0 > 0 and P(0) = P0 > 0.

In this section, we computationally investigate the impacts of periodic climate change on the dynamical behavior of
the models (41) and (42) by performing several numerical simulations. It has been shown in section 3 that the dynamics are
in two forms: at the limit cycle or in a stable state. In contrast, ecological communities in nature exhibit extremely complex
dynamic behaviors. Mathematically, seasonality contributes to the manifestation of complex dynamic destabilization
states, such as multiple cycles and chaos cases, as indicated in some studies. Instability cases can increase the risk of
species extinction.

Figure 10. Dynamics of the model (41) with forcing small enough seasonality (i.e., ν = 0.2), which shows both populations persist in a limit cycle with
small cycle size: (a) Time series, (b) Phase portrait trajectories. The first set of other parameter values (39) and the value of w = 0.2 are used
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Figure 11. Dynamics of the model (41) with forcing high enough seasonality (i.e. ν = 0.9), which shows both populations persist in a limit cycle with
big cycle size: (a) Time series, (b) Phase portrait trajectories. The first set of other parameter values (39) and the value of w = 0.2 are used

Figure 12. Dynamics of the model (42) with forcing small enough seasonality (i.e. ν = 0.2), which shows both populations persist in a limit cycle with
big cycle size: (a) Time series, (b) Phase portrait trajectories. The second set of other parameter values (40) and the value of w = 0.2 are used

The initial conditions values are the same as those used in the set (38) for all figures. In models (41) and (42) and for
Figures 10-13, we use the same values as the sets (39) and (40), respectively, as well as the value of w = 0.2 that it does
not have in models (2) and (3). It is assumed that the impacts of climate change are equally affected on prey and predator
populations at q1 = 0.1 and q2 = 0.1, which satisfies the persistence conditions (33) and (26) of Theorems 3.13 and 3.14,
respectively, when assuming free seasonality effects; this is shown in Figure 3. In addition, the parameter ν that does not
appear in models (2) and (3), is a pivotal parameter to study the effect of periodic climate change, so the value of ν is
varied in the range [0, 1] for each case. However, the system (41) shows a significant shift in the dynamics of the system
to become a limit cycle when introducing seasonality effects by setting ν = 0.2, as shown in Figure 10. In addition, when
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increasing the strength of seasonality by setting ν = 0.9, the system (41) displays a limit cycle with increasing the size of
the cycle that approaches the axes, which indicates an increase in the probability of species extinction, as shown in Figure
11.

Figure 13. Dynamics of the model (42) with forcing high enough seasonality (i.e. ν = 0.9), which shows both populations persist in a limit cycle with
big cycle size: (b) Time series, (b) Phase portrait trajectories. The second set of other parameter values (40) and the value of w = 0.2 are used

In the system (42) with the second set (40), it was observed that there was an important shift in the dynamic behavior
when the impact of climate change was assumed as shown previously through in Figure 7. However, when introducing
seasonality effects by setting ν = 0.2, the dynamic behavior becomes destabilized, as shown in Figure 12. Also, the
destabilization state increases with increasing the strength of seasonality by setting ν = 0.9, as illustrated in Figure 13.

Figure 14. Dynamics of the model (42) with free forcing seasonality (i.e. ν = 0.0), which shows both populations persist in a limit cycle: (a) Time
series, (b) Phase portrait trajectories. The third set of other parameter values (43) and the value of w = 0.2 are used
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Figure 15. Dynamics of the model (42) with forcing small enough seasonality (i.e., ν = 0.2), which shows both populations persist in multiple cycles:
(a) Time series, (b) Phase portrait trajectories. The third set of other parameter values (43) and the value of w = 0.2 are used

Figure 16. Dynamics of the model (42) with forcing high enough seasonality (i.e., ν = 0.9), which shows both populations persist in chaos: (a) Time
series, (b) Phase portrait trajectories. The third set of other parameter values (43) and the value of w = 0.2 are used

Figures 14-16 display the impact of seasonality effects with the existence of climate changes on the dynamics of prey
and predator populations in the persistence destabilization state of the model (42), when assuming free seasonality effects
(i.e., ν = 0.0), this is consistent with Theorems 3.10 and 3.13, so the third set of parameter values is specified as follows:

ζ = 1.0, K = 10, β = 7.5, h = 0.5, µ = 0.25, e = 0.5, q1 = 0.1, q2 = 0.1, w = 0.2. (43)
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The values of ν are taken to be small enough (ν = 0.2) and high enough (ν = 0.9) for seasonality strength. Figure
14 shows the dynamics of the system (42) with free seasonality (ν = 0.0) as a limit cycle. However, when introducing
the seasonality, the dynamics become more complex with multiple cycles when the seasonality strength is small enough
(ν = 0.2), as shown in Figure 15, and the dynamics become chaotic behavior when the seasonality strength is high enough
(ν = 0.9), as shown in Figure 16.

We summarize the results in the following Table 2:

Table 2. Description of Dynamical behavior for all cases

Values of seasonality intensity (ν) Dynamical behavior for every species Other notes

The model with Holling type I (i.e., Model (41))

Prey Predator

ν = 0 (Figure 3) Persist (steady state) Persist (steady state) The equilibrium point is (0.692, 0.292)

ν = 0.2 (Figure 10) Persist (limit cycle) Persist (limit cycle) Small size of limit cycle

ν = 0.9 (Figure 11) Persist (limit cycle) Persist (limit cycle) Big size of limit cycle

The model with Holling type II (i.e., Model (42))

ν = 0 (Figure 7) Persist (steady state) Persist (steady state)
Change the dynamics from limit cycle to
steady state around the equilibrium point

(1.916, 0.548)

ν = 0.2 (Figure 12) Persist (limit cycle) Persist (limit cycle) Small size of limit cycle

ν = 0.9 (Figure 13) Persist (limit cycle) Persist (limit cycle) Big size of limit cycle

The model with Holling type II (i.e., Model (42))

ν = 0 (Figure 14) Persist (limit cycle) Persist (limit cycle) -

ν = 0.2 (Figure 15) Persist (multiple cycles) Persist (multiple cycles) -

ν = 0.9 (Figure 16) Persist (chaos) Persist (chaos) -

Remark 5.1 Some ecological justifications for multiple cycles and chaos dynamics can be explained as follows:
The Didinium-Paramecium predator-prey system is a standard laboratory tool for studying predator-prey dynamics.

[54] investigated how temperature affects this system, altering the shape of the cycles. In this context, [53] stated that one
possible reason for the emergence of multiple cycles and chaos dynamics is the overpredation of prey species; this can be
inferred by considering seasonality within the system, which serves as concrete evidence of climate change.

Remark 5.2 Conservation strategies can be presented:
There are some strategies that can be offered to mitigate the negative effects of climate change and preserve species,

such as increasing shelters, increasing nature reserves, preserving species through the rescue phenomenon, and other
strategies that may be future work in this direction.

6. Conclusions
In this paper, we examine a significant issue: the negative impact of climate change on predator-prey interactions.

Novel model is presented that directly includes negative climate change. This effect is modeled by assuming a negative
term so that the value of the climate change factor is between zero and one (i.e., 0 ≤ q1, q2 ≤ 1), thus having a biological
meaning. Our argument is also based on describing the impact of climate change as both constant and periodic changes.
This involves using the seasonality assumption in climate change factors, as seasonality and fluctuations are inherently
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linked to climate change and may encompass extreme events. Thus, the effect includes migration, extinction, or even
adaptation to climate change. Holling types of functional responses I and II are used in these models due to their wide use
in predator-prey models.

For constant changes, the existence, uniqueness, positivity, and boundedness of the solutions of these models have
been shown to be biologically valid, as presented in Theorems 3.1 and 3.2. Feasible equilibrium points have been obtained
and their stability studied, which shows that the model with Holling type I (i.e., model (2)) is globally stable whenever
an internal equilibrium point exists, but the model with Holling type II (i.e., model (3)) displays two dynamic behaviors:
stable and limit cycle states, as shown in Theorems 3.4-3.10. The Hopf bifurcation is examined, by taking climate change
constants, as bifurcation parameters. In addition, uniform persistence is proved, and different scenarios of extinction
have been obtained using theoretical analysis, as shown in subsection 3.5. The theoretical results have been numerically
verified. Negative climate changes are shown to play an important role in extinction when climate change is large enough.
However, in one case, as shown in Figure 7, it is shown that if climate change is small enough, it can be a stabilizing factor,
which can be explained by the appearance of adaptations of predator-prey interactions to these changes [12] or through
the presence of other factors, such as the presence of refuge for prey [55, 56], either harvesting the prey species, predator
species, or both [57], or wind speed [31] that have stabilizing effects on these systems and prevent extinction.

Periodic changes have been examined numerically but in a different way in which the climate change factor is fixed
and the seasonal intensity is assumed to be variable, which shows a greater diversity in dynamic behavior compared
with static models. Dynamical behaviors include multiple cycles and chaotic states. The diversity of dynamics due to
seasonality forced is compatible with the literature, as shown in [58–62].

In our study, numerous undesirable scenarios for predator-prey interactions were identified, including extinction and
complex dynamics that lead to chaotic states, which cannot be predicted later due to negative climate change. However,
other scenarios were shown that are capable of reaching states of stability and surviving predator-prey interactions with
less severe negative climate change and lower population densities. Therefore, more research can be conducted in future
work to obtain scenarios that help preserve biodiversity and species and stabilize ecosystems in the face of adverse climate
change.
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