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Abstract: In this manuscript, the space-time fractional Equal-width (s-tfEW) and the space-time fractional Wazwaz-
Benjamin-Bona-Mahony (s-tfWBBM) models have been investigated which frequently arises in nonlinear optics, solid 
states, fluid mechanics and shallow water. Jacobi elliptic function expansion integral technique has been used to build 
more innovative exact solutions of the s-tfEW and s-tfWBBM nonlinear partial models. In this research, fractional beta-
derivatives are applied to convert the partial models to ordinary models. Several types of solutions have been derived 
for the models and performed some new solitary wave phenomena. The derived solutions have been presented in the 
form of Jacobi elliptic functions initially. Persevering different conditions on a parameter, we have achieved hyperbolic 
and trigonometric functions solutions from the Jacobi elliptic function solutions. Besides the scientific derivation of the 
analytical findings, the results have been illustrated graphically for clear identification of the dynamical properties. It is 
noticeable that the integral scheme is simplest, most conventional and convenient in handling many nonlinear models 
arising in applied mathematics and the applied physics to derive diverse structural precise solutions.

Keywords: space-time fractional equal width equation, space-time fractional Wazwaz-Benjamin-Bona-Mahony, balance 
number, fractional beta-derivative, Jacobi elliptic function expansion method, analytical solutions

1. Introduction
In the current world, fractional derivatives have been applied to study the calculus of arbitrary order for modelling 

of nonlinear happening in different fields like fluid mechanics, signal processing, control theory, astrophysics, dynamical 
systems, plasma physics, non-linear biological systems, nanotechnology, and engineering. Many real-life problems 
of the above areas can be modelled by Partial Differential Equation (PDE) relating to the fractional derivatives. The 
concept of solitons, the top decisive way in applications to such models has played an important role to identify the 
complex incident in various fields of sciences. Up to days, many techniques have been introduced for deriving exact 
wave solutions of nonlinear models but the innovation reached is deficient. The precise mathematical methods to 
derive different classes of exact solutions namely; the inverse variational methods [1], the Darboux Transformation [2], 
the Exp-function technique [3], tanh method [4], the exp(-(Φ)η)-expansion method [5], first integral scheme [6], the 
tan(Θ/2)-expansion approach [7], the Hirota bilinear method [8-9], the sine-cosine analysis [10], the new extended (G'/
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G)-expansion method [11], the modified double sub-equation method [12], the mapping and ansatz methods [13-14], the 
Jacobi elliptic function expansion method [15-16] as well.

Moreover, it is very problematic to derive the exact solution of nonlinear fractional PDE via the best possible 
method. So, it is significant to arise the explicit solutions which are exact for advanced study of these nonlinear 
fractional models and have to realize the nonlinear phenomena. Many powerful and useful ways have been introduced 
to solve the exact solution of nonlinear fractional equations [17-18]. The Jacobi elliptic function expansion method [15-
16] is an excellent way to integrate fractional nonlinear differential models. 

In this research work, we start the research with s-tfEW [18] and s-WBBM [19-21] models to analyse the nonlinear 
phenomena Hosseini and Ayati [18] presented exact solutions of the s-tfEW with the help of Kudrayshov method. 
Benjamin-Bona-Mohony introduces the BBM equation [19]. Then Wazwaz modified this equation to WBBM [20]. 
This script considers the Jacobi elliptic function expansion method to integrate the s-tfEW and s-tfWBBM models 
for deriving exact solutions. This technique also bases on the homogeneous balance method which is an influential 
procedure for achieving solutions of fractional PDE introduced by Zhang and Zhang [17]. According to this method, 
fractional complex transform and some useful formulas of fractional beta-derivative [21-25] are applied to transform the 
nonlinear s-tfEW equation to ordinary differential equation.

2. Beta-fractional derivative
Let us review the beta-derivative [21-25] as follows:
Definition 1 Let ϕ : [a, ∞) → R, then the fractional beta-derivative of ϕ of order β is defined as 

1

0

1( ( ) ) ( )
( )( )( ) lim ,

x x x
D x

β

η
ε

φ ε φ
βφ
ε

-

→

+ + -
Γ

=  for all x ≥ a, β ∈ (0, 1]. If the limit of the above exists, then ϕ(x) is 

said to be beta-differentiable.
Some properties of the derivative for the functions ϕ(x) and ψ(x)

(i). ( ( ) ( )) ( ) ( ),D m x n x mD x nD xβ β βφ ψ φ ψ+ = +  where a and b are constants.

(ii). 1( ) .  .
( )

D x xβ α α βα α
β

-= + ∈ℜ
Γ

(iii). ( ) ( ) ( ).D D Dβ β βφψ φ ψ ψ φ= +

(iv). 2
( ) ( )( ) ,  where 0.D DD

β β
β φ ψ φ φ ψ ψ

ψ ψ
-

= ≠

(v). ( ) 0,D cβ =  where c is a constant.

Here 11( ( )) ( ) .
( )

dD x x
dx

β β ψψ
β

-= +
Γ

Definition 2 Let ϕ : [0, ∞) → R such that ϕ is differentiable. Let ψ(x) be another function defined the same range 
of ϕ(x) and also differentiable. Then, the two functions satisfied the following rule [19]:

11( ) ( ) ( ) ( ( )).
( )

' 'D x x xβ βφοψ ψ φ ψ
β

-= +
Γ

3. The Jacobi elliptic function expansion method
Consider a given nonlinear wave equation

2 21 12 2( , , , , ....) 0.t x t xD D D Dγ γγ γϕ ϕ ϕ ϕ ϕΝ = (1)



Contemporary MathematicsVolume 2 Issue 3|2021| 175

The function φ = φ(x, t) is unknown wave surface and N is a function of φ = φ(x, t) and its highest order fractional 
derivatives. 

We seek its wave transformation

1 2

1 2
( ), .

( ) ( )
k cx tγ γϕ ϕ ξ ξ
γ γ

= = -
Γ Γ

(2)

The symbols k the wave number and c wave speed. 
By using the above transformation Eq. (2), the fractional nonlinear Eq. (1) is converted to the following ordinary 

differential equation;

( ,  ,  ,  .........).' '' '''P ϕ ϕ ϕ ϕ (3)

In [17], φ(ξ) is a trail solution in the form of Jacobi elliptic sine function sn(ξ),

0
1 1

( ) ( ) ( ).
n n

i i
i i

i i
a a sn b snϕ ξ ξ ξ-

= =
= + +∑ ∑ (4)

sn(ξ) is Jacobi elliptic sine function, and its highest degree is

( ( )) .nϕ ξΡ = (5)

2 3

2 3( ) 1,  ( ) 2 1,  ( ) 2,  and ( ) 3.d d d dn n n n
d d d d
ϕ ϕ ϕ ϕϕ
ξ ξ ξ ξ

Ρ = + Ρ = + Ρ = + Ρ = + (6)

Thus, we can consider n in Eq. (4) to homogenous balance from the terms of the highest order of derivative term 
and nonlinear.

Here, cn(ξ) and dn(ξ) are the Jacobi elliptic cosine function and the Jacobi elliptic functions respectively. 
And

(7)2 2 2 2 2( ) 1 ( ),  ( ) 1 ( ), where (0 1).cn sn dn m sn m mξ ξ ξ ξ= - = - < <

(8)( ( )) ( ) ( ),  ( ( )) ( ) ( ).d dsn cn dn cn sn dn
d d

ξ ξ ξ ξ ξ ξ
ξ ξ

= = -

(9)2( ( )) ( ) ( ).d dn m sn cn
d

ξ ξ ξ
ξ

= -
 

We know that, when m → 1, and m → 0, then sn(ξ) → tanh(ξ) and sn(ξ) → sin(ξ) respectively. Thus, using Eq. (4) 
and its derivatives along with Eq. (7) and Eq. (8) into Eq. (3), we achieve a set of equations with unknown parameters. 
Solve the system for the unknown parameters. Using the parameters, the series solution of Eq. (4) is determined in terms 
of Jacobi elliptic functions.

We can convert the Jacobi elliptic sine function to solitonic and periodic function by selecting the conditions m → 1, 
and m → 0 respectively.
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4. Application of the method
In this section, we apply Jacobi Elliptic Expansion function method to the s-tfEW and the s-tfWBBM models.

4.1 Solutions of s-tfEW equation

The space-time fractional EW(s-tfEW) equation [18] read as:

(10)32( , ) ( , ) ( , ) 0,  0,  0 1.t x xxtD x t D x t D x t tβ ββϕ ε ϕ δ ϕ β+ - = > < ≤

Introducing a travelling wave transformation for s-tfEW model Eq. (10)

(11)( , ) ( ),  .
( ) ( )
k cx t f x tβ βϕ ξ ξ
β β

= = -
Γ Γ

Eq. (11) converts nonlinear partial differential Eq. (10) to the following nonlinear ordinary differential equation 
(ODE),

(12)2 2( ) 0.' ' '''cf k f ck fε δ- + + =

Integrating Eq. (12) with respect to ξ, then the equation converted to the nonlinear ODE Eq. (13),

(13)2 2 0.''cf kf ck fε δ- + + =

Using the balancing role ( f 
2 with  f 

'') in Eq. (13) gives n = 2. Now, choose an auxiliary solution for the balance 
number.

(14)2 1 2
0 1 2 1 2( ) ( ) ( ) ( ) ( ).f a a sn a sn b sn b snξ ξ ξ ξ ξ- -= + + + +

Inserting  f (ξ) from Eq. (14) to the Eq. (13), then equating adjacent terms of sni(ξ) to zero and solve these terms for 
a0, a1, a2, b1 and b2, we get

Case-1:

2 4 2

04 44 2 4 2

( 1 2 ( 14 1))1 ,  ,
2 14 1 14 1

c d m m m
k a

d m m m mε

+ - + +
= =

+ + + +

2

2 2 1 14 44 2 4 2

3 3,  ,  0,  0.
14 1 14 1

c dm c da b a b
m m m mε

= - = - = =
+ + + +

Case-2:

2 4 2

04 44 2 4 2

( 1 2 ( 14 1))1 ,  ,
2 14 1 14 1

c d m m m
k a

d m m m mε

+ - + +
= - = -

+ + + +
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2

2 2 1 14 44 2 4 2

3 3,  , 0,  0.
14 1 1

c dm c da b a b
m m m mε

= = = =
+ + - +

Case-3:

2 4 2

04 44 2 4 2

( 1 2 ( 1))1 ,  ,
2 1 1

c d m m m
k a

d m m m mε

+ - - +
= =

- + - +

2 1 2 14 4 2

3 ,  0,  0,  0.
1

c db a a b
m mε

= - = = =
- +

Case-4:

2 4 2

04 44 2 4 2

( 1 2 ( 1))1 ,  ,
2 1 1

c d m m m
k a

d m m m mε

+ - - +
= - = -

- + - +

2 1 2 14 4 2

3 ,  0,  0,  0.
1

c db a a b
m mε

= = = =
- +

Case:-5: 

2 4 2

04 44 2 4 2

( 1 2 ( 1))1 ,  ,
2 1 1

c d m m m
k a

d m m m mε

+ - - +
= =

- + - +

2

2 1 1 24 4 2

3 ,  0,  0,  0.
1

c dma a b b
m mε

= - = = =
- +

Case-6:

2 4 2

04 44 2 4 2

( 1 2 ( 1))1 ,  ,
2 1 1

c d m m m
k a

d m m m mε

+ - - +
= - = -

- + - +

2

2 1 1 24 4 2

3 ,  0,  0,  0.
1

c dma a b b
m mε

= = = =
- +

Eq. (10) are reduced the following exact solutions by using (case-1-6)
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2 4 2 2
2

4 4 44 2 4 2 4 2

( 1 2 14 1) 3 1 1( , ) ( )
( ) ( )14 1 14 1 2 14 1

c d m m m c d m cx t sn x t
m m m m d m m

β βϕ
β βε

+ - + +
= - -

Γ Γ+ + + + + +

2
4 44 2 4 2

3 1 1( ).
( ) ( )14 1 2 14 1

c d csn x t
m m d m m

β β
β βε

-- -
Γ Γ+ + + +

(15)

(16)

2 4 2 2
2

4 4 44 2 4 2 4 2

( 1 2 14 1) 3 1 1( , ) ( )
( ) ( )14 1 14 1 2 14 1

c d m m m c d m cx t sn x t
m m m m d m m

β βϕ
β βε

+ - + +
= - + - -

Γ Γ+ + + + + +

2
4 44 2 4 2

3 1 1( ).
( ) ( )14 1 2 14 1

c d csn x t
m m d m m

β β
β βε

-+ - -
Γ Γ+ + + +

(17)
2 4 2

2
4 4 44 2 4 2 4 2

( 1 2 1) 3 1 1( , ) ( ).
( ) ( )1 1 2 1

c d m m m c d cx t sn x t
m m m m d m m

β βϕ
β βε ε

-+ - - +
= - -

Γ Γ- + - + - +

(18)
2 4 2

2
4 4 44 2 4 2 4 2

( 1 2 1) 3 1 1( , ) ( ).
( ) ( )1 1 2 1

c d m m m c d cx t sn x t
m m m m d m m

β βϕ
β βε ε

-+ - - +
= - + - -

Γ Γ- + - + - +

(19)
2 4 2 2

2
4 4 44 2 4 2 4 2

( 1 1) 3 1 1( , ) ( ).
( ) ( )1 1 2 1

c d m m m c d m cx t sn x t
m m m m d m m

β βϕ
β βε ε

+ + - +
= - -

Γ Γ- + - + - +

(20)
2 4 2 2

2
4 4 44 2 4 2 4 2

( 1 1) 3 1 1( , ) ( ).
( ) ( )1 1 2 1

c d m m m c dm cx t sn x t
m m m m d m m

β βϕ
β βε ε

+ + - +
= - + - -

Γ Γ- + - + - +

Eq. (15-20) represent the solutions in term of Jacobi elliptic function.
When m → 1, the solutions Eq. (15-20) convert in the form,

(21)2 23 3 1 1 3 1 1( , ) tanh ( ) tanh ( ).
2 ( ) ( ) 2 ( ) ( )4 4

c d c d c c d cx t x t x t
d d

β β β βϕ
ε β β ε β β

-= - - - - -
Γ Γ Γ Γ

(22)2 23 3 1 1 3 1 1( , ) tanh ( ) tanh ( ).
2 4 ( ) ( ) 2 ( ) ( )4

c d c d c c d cx t x t x t
d

β β β βϕ
ε β β ε β β

-= + - - + - -
Γ Γ Γ Γ
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(23)23 1 1( , ) tanh ( ).
( ) ( )2

c d cx t x t
d

β βϕ
ε β β

-= - -
Γ Γ

(24)23 1 1( , ) tanh ( ).
( ) ( )2

c d cx t x t
d

β βϕ
ε β β

-= - -
Γ Γ

(25)23 1 1( , ) tanh ( ).
( ) ( )2

c d cx t x t
d

β βϕ
ε β β

= - -
Γ Γ

(26)23 1 1( , ) tanh ( ).
( ) ( )2

c d cx t x t
d

β βϕ
ε β β

= - -
Γ Γ

Solitary wave solutions Eq. (21-26) come in terms of hyperbolic functions form.
When m → 0, the solutions Eq. (15-20) convert in the form,

(27)23 1 1( , ) sin ( ).
( ) ( )2

c d c d cx t x t
d

β βϕ
ε ε β β

-= - - -
Γ Γ

(28)23 1 1( , ) sin ( ).
( ) ( )2

c d c d cx t x t
'd

η ηϕ
ε ε η η

-= + - -
Γ Γ

(29)23 1 1( , ) sin ( ).
( ) ( )2

c d c d cx t x t
d

β βϕ
ε ε β β

-= - - -
Γ Γ

(30)23 1 1( , ) sin ( ).
( ) ( )2

c d c d cx t x t
d

β βϕ
ε ε β β

-= + - -
Γ Γ

These are periodic wave solutions of the nonlinear-tfEW model and the other two solutions (19), (20) give 
constants only.

4.2 Solutions of the WBBM model

The space-time fractional WBBM equation [21] read as:

(31)3( , , , ) ( , , , ) ( , , , ) ( , , . ) 0,  0,  0 1.t x y xztD x y z t D x y z t D x y z t D x y z t tβ ββ βϕ ϕ ϕ ϕ β+ + - = > < ≤

Considering a travelling wave transformation for space-time fractional 3D WBBM model Eq. (31)

(32)
1( , ) ( ),  ( ).
( )

x t x y cz wtβ β β βϕ ϕ ζ ζ
β

= = +℘ + -
Γ
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Eq. (32) transform the WBBM Eq. (31) to the following nonlinear ODE,

(33)3( ) ( ) 0.' ' '''w cwφ φ φ- + +℘ + = 

Integrating Eq. (33) with respect to ζ, then Eq. (31) converted to the nonlinear ODE Eq. (34),

(34)3( ) 0.''w cwφ φ φ- + +℘ + = 

Using the balancing role (ϕ2 with ϕ'') in Eq. (34) gives n = 1. Now, choose an auxiliary solution for the balance 
number.

(35)1
0 1 1( ) ( ) ( ).a a sn b snφ ζ ζ ζ-= + +

Plugging ϕ(ζ) from Eq. (35) to the Eq. (34), then comparing the adjacent terms of sni(ζ) to zero and solving these 
algebraic equations for a0, a1, w and b1, we get four sets of solutions.

Case-1:

0 1 22 2 2
2 2,  0,  ,  .

6 1 ( 6 1) ( 6 1)
c cw a a m b

cm cm c cm cm c cm cm c
- -

= = = ± = ±
- + + ℘ - + + ℘ - + +



 

        

Case-2:

0 1 22 2 2
2 2,  0,  ,  .

6 1 ( 6 1) ( 6 1)
c cw a a m b

cm cm c cm cm c cm cm c
- -

= = = ± = ±
+ + + ℘ + + + ℘ + + +



 

        

Case-3:

0 1 22 2
2,  0,  0,  .

1 ( 1)
cw a a b

cm c cm c
-

= = = = ±
+ + ℘ + +





   

Case-4:

0 1 12 2
2,  0,  0,  .

1 ( 1)
cw a b a m

cm c cm c
-

= = = = ±
+ + ℘ + +





   

The exact solutions of Eq. (31) by using (case-1-4)

11 2 1

1( ( ))
( )2( , ) .
1( 6 1) ( ( ))
( )

msn x y cz wt
cx t

cm cm c sn x y cz wt

β β β β

β β β β

β
ϕ

β
-

 - +℘ + - Γ-  =  
℘ - + +  + +℘ + -

 Γ 





  



(36)
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(37)12 2 1

1( ( ))
( )2( , ) .

1( 6 1) ( ( ))
( )

msn x y cz wt
cx t

cm cm c sn x y cz wt

β β β β

β β β β

β
ϕ

β
-

 +℘ + - Γ-  =  
℘ - + +  - +℘ + -

 Γ 





  



In Eq. (36) and Eq. (37), 2 .
6 1

w
cm cm c

=
- + +



  

(38)13 2 1

1( ( ))
( )2( , ) .

1( 6 1) ( ( ))
( )

msn x y cz wt
cx t

cm cm c sn x y cz wt

β β β β

β β β β

β
ϕ

β
-

 +℘ + - Γ-  =  
℘ + + +  + +℘ + -

 Γ 





  



(39)14 2 1

1( ( ))
( )2( , ) .

1( 6 1) ( ( ))
( )

msn x y cz wt
cx t

cm cm c sn x y cz wt

β β β β

β β β β

β
ϕ

β
-

 +℘ + - Γ-  = -  
℘ + + +  + +℘ + -

 Γ 





  



In Eq. (38) and Eq. (39), 2 .
6 1

w
cm cm c

=
+ + +



  

(40)1
15 2

2 1( , ) ( ( )).
( )( 1)

cx t sn x y cz wt
cm c

β β β βϕ
β

--
= +℘ + -

Γ℘ + +
 

 

(41)1
16 2

2 1( , ) ( ( )).
( )( 1)

cx t sn x y cz wt
cm c

β β β βϕ
β

--
= - +℘ + -

Γ℘ + +
 

 

(42)17 2
2 1( , ) ( ( )).

( )( 1)
cx t m sn x y cz wt

cm c
β β β βϕ

β
-

= +℘ + -
Γ℘ + +

 

 

(43)18 2
2 1( , ) ( ( )).

( )( 1)
cx t m sn x y cz wt

cm c
β β β βϕ

β
-

= - +℘ + -
Γ℘ + +

 

 

In Eq. (40), Eq. (41), Eq. (42) and Eq. (43), 2 .
1

w
cm c

=
+ +



 

Eq. (36-43) represent the Jacobi elliptic function solutions of Eq. (31).
When m → 1, the solutions Eq. (36-43) convert to the following form,
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(44)19

1tanh( ( ))
( )2( , ) .
1(1 4 ) coth( ( ))
( )

x y cz wt
cx t

c x y cz wt

β β β β

β β β β

β
ϕ

β

 - +℘ + - Γ-  =  
℘ -  + +℘ + -

 Γ 









(45)19

1tanh( ( ))
( )2( , ) .

1(1 4 ) coth( ( ))
( )

x y cz wt
cx t

c x y cz wt

β β β β

β β β β

β
ϕ

β

 +℘ + - Γ-  =  
℘ -  - +℘ + -

 Γ 









In Eq. (44) and Eq. (45), .
(1 4 )

w
c

=
-




(46)20

1tanh( ( ))
( )2( , ) .

1(1 8 ) coth( ( ))
( )

x y cz wt
cx t

cm x y cz wt

β β β β

β β β β

β
ϕ

β

 +℘ + - Γ-  =  
℘ +  + +℘ + -

 Γ 









(47)21

1tanh( ( ))
( )2( , ) .

1(1 8 ) coth( ( ))
( )

x y cz wt
cx t

c x y cz wt

β β β β

β β β β

β
ϕ

β

 +℘ + - Γ-  = -  
℘ +  + +℘ + -

 Γ 









In Eq. (46) and Eq. (47) carry the value of .
(1 8 )

w
c

=
+




(48)22
2 1( , ) coth( ( )).

(1 2 ) ( )
cx t x y cz wt

c
β β β βϕ

β
-

= +℘ + -
℘ + Γ

 



(49)23
2 1( , ) coth( ( )).

(1 2 ) ( )
cx t x y cz wt

c
β β β βϕ

β
-

= - +℘ + -
℘ + Γ

 



(50)25
2 1( , ) tanh( ( )).

(1 2 ) ( )
cx t x y cz wt

c
β β β βϕ

β
-

= - +℘ + -
℘ + Γ

 



In Eq. (48), Eq. (49) and Eq. (50), .
(1 2 )

w
c

=
+




Solitary wave solutions come from the hyperbolic functions Eq. (44-50).
When m → 0, the solutions Eq. (36-43) convert to the form,
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(51)25
2 1( , ) cos ( ( )) .

(1 ) ( )
cx t ec x y cz wt

c
β β β βϕ

β
 -

= +℘ + - 
℘ + Γ 

 



(52)26
2 1( , ) cos ( ( )) .

(1 ) ( )
cx t ec x y cz wt

c
β β β βϕ

β
 -

= - +℘ + - 
℘ + Γ 

 



(53)27
2 1( , ) cos ( ( )) .

(1 ) ( )
cx t ec x y cz wt

c
β β β βϕ

β
 -

= - +℘ + - 
℘ + Γ 

 



In Eq. (51), Eq. (52) and Eq. (53), .
(1 )

w
c

=
+




Eq. (36)-Eq. (43) are Jacobi functions solution of the nonlinear WBBM model. Out of the eight Jacobi elliptic 
functions, three of them are repeated and two results give zero solution. So, these five solutions are neglected.

5. Graphical representation
In this section, we will provide some graphical representations of the exact solutions of the space-time fractional 

Equal Width(s-tfEW) equation (Eq. (10)) and the space-time fractional Wazwaz-Benjamin-Bona-Mahony (s-tfWBBM) 
model (Eq. (31)). Graphical representations are portrayed below using the selected exact solutions of EW and WBBM 
model.

5.1 Graphics of the solutions of s-tfEW equation
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Figure 1. Represent the solitary wave φ(x, t) in Eq. (21) for the physical parametric values, d = 0.5, β = 1/6, c = 1, ε = 1: (a) 3D surface, (b) 2D graphs 
at t = 0.5, 1, 1.5.
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(a) 3D View of Eq. (23) (b) 2D View of Eq. (23)
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Figure 2. Represent the solitary wave φ(x, t) in Eq. (23) for the physical parametric values, d = 0.5, β = 3/4, c = 5, ε = 2: (a) 3D surface and (b) 2D 
graphs at t = 0.5, 1, 1.5.

Three types of results are achieved for EW equation. All of the results are analysed and some of them are depicted 
in Figures (1-4). The graphs signify the change of amplitude, direction, shape of the derived wave solutions to identify 
the intrinsic nature of the model. The solution φ(x, t) in Eq. (15-20) represents the Jacobi elliptic functions Eq. (21-
26) shows the solitonic nature comes from hyperbolic function and Eq. (27-30) are trigonometric function exhibit as 
periodic waves.

(a) 3D View of Eq. (25)
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Figure 3. Represent the bell type solitary wave φ(x, t) in Eq. (25) for the physical parametric values, d = 1, β = 3/5, c = 3, ε = 0.25: (a) 3D surface and (b) 
2D graphs for and t = 0.5, 1, 1.5.
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(a) 3D View of Eq. (27)
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(b) 2D View of Eq. (27)
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Figure 4. Represent the periodic wave of φ(x, t) in Eq. (27) for the physical parametric values, d = 0.5, β = 3/4, c = -3, ε = 1: (a) 3D surface and (b) 
2D graphs at t = 0.5, 1, 1.5.

5.2 Graphics of the equation WBBM

The findings of the research on WBBM model are in the types of hyperbolic (Eq. (44-51)) and trigonometric (Eq. 
(52-55)) functions. Hyperbolic and trigonometric functions represent solitonic and periodic solutions. All the results are 
analysed and two types of function have been shown graphically in Figure 5 to Figure 6. 

φ(x, t)

0

0
0.2 0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

t

x

(a) 3D View of Eq. (48)

100

-100

200

-200

-300

0

x

t = 0 t = 0.3 t = 0.5

(b) 2DView of Eq. (48)

-200

200

-800

800

-400

400

-1000

-600

600

0φ(x)
0.01 0.02 0.03 0.04 0.05

Figure 5. Represent the solitary periodic wave φ(x, t) in Eq. (48) for the physical parametric values, β = 0.99, l = 2, c = -2, ℘ = 1, z = 0, y = 0: (a) 3D 
surface, (b) 2D graphs at t = 0, 1.03, 0.5.
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(a) 3D View of Eq. (52)
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Figure 6. Represent the periodic wave φ(x, t) in Eq. (52) for the physical parametric values, β = 0.5, l = 2, c = -2, ℘ = 1, z = 0, x = 0: (a) 3D surface, 
(b) 2D graphs at t = 0, 1.2.

Remarks More other Jacobi function solutions to the s-tfEW and WBBM equation are derivable by keeping the 
trial solution in terms of the Jacobi functions cn(ξ) and dn(ξ) as below;

0
1 1

( ) ( ) ( ).
n n

i i
i i

i i
u a a cn a cnξ ξ ξ-

-
→ →

= + +∑ ∑ (54)

And

(55)0
1 1

( ) ( ) ( ).
n n

i i
i i

i i
u a a dn a dnξ ξ ξ-

-
→ →

= + +∑ ∑

In view of Eq. (54) and Eq. (55), we can add soliton and non-solitonic solutions describe via cnoidal, dnoidal 
waves and trigonometric functions. 

6. Concluding remarks
In this portion, the space-time fractional EW and WBBM equation has successfully integrated via Jacobi elliptic 

function expansion technique with beta-derivatives. By introducing a fractional transformation, the considered nonlinear 
partial travelling wave equation was reduced to ordinary differential model. Then we successfully used Jacobi elliptic 
expansion method to integrate the model. At the end of our procedure, three types of solutions are achieved namely, 
Jacobi elliptic, hyperbolic and trigonometric function with unknown parameters, which indicates that Jacobi elliptic 
expansion technique is very fruitful as well as appropriate to find the exact solutions of nonlinear fractional models. 
Here we, successfully derived cnoidal and dnoidal waves solutions to the fractional models which were not found 
in the previous literature. In addition, the graphical illustration of some different types of solutions has been plotted 
with unknown parameters in Figures (1-4) and Figures (5-6) for s-tfEW and WBBM respectively. Researchers can 
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undoubtedly use the technique to analyse the internal mechanism of nonlinear physical systems.
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