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1. Introduction
Recall that the Jensen functional Jn(p, x; f ) is defined on an interval I ⊆ R by

1 1

( , ;  ) : ( ) ( ),
n n

n i i i iJ f p f x f p x= −∑ ∑p x

where f : I → R, x = (x1, x2, ..., xn) ∈ I n and p = {pi}
n
1 is a positive weight sequence.

Let us now state the celebrated Jensen’s inequality [1, 2], key to solve lots of variational problems, see e.g. [3, 4].
Jensen’s inequality ([5]) If f is twice continuously differentiable function and f '' ≥ 0 on an interval I, then f is 

convex on I and the inequality

0 ≤ Jn(p, x; f )

holds for each x := (x1, ..., xn) ∈ I n and any positive weight sequence p := {pi}
n
1 with ∑n

1  pi = 1.
If  f '' ≤ 0 on I, then f is a concave function on I and

Jn (p, x; f ) ≤ 0.

Its counterpart is given by the following
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Jensen-Mercer inequality ([6]) Let φ  : [a, b] ⊆ R → R be a convex function and xi ∈ [a, b], i = 1, 2, ..., n. Then

1 1

( ) ( ) ( ) ( ).
n n

i i i ia b p x a b p xφ φ φ φ+ − ≤ + −∑ ∑

Our first task in this paper is to find some global upper bounds for these inequalities. We prove the following.
Let f  be a convex function on an interval I and xi ∈ [a, b] ⊂ I. Then

1 1

0 ( ) ( ) ( ) ( ) 2 ( );
2

n n

i i i i
a bp f x f p x f a f b f +

≤ − ≤ + −∑ ∑

1 1

0 ( ) ( ) ( ) ( ) 2( ( ) ( ) 2 ( )).
2

n n

i i i i
a bf a f b p f x f a b p x f a f b f +

≤ + − − + − ≤ + −∑ ∑

Those bounds can be improved by the characteristic number c( f ) of the convex function f  (cf. [7]), to the next

1 1

0 ( ) ( ) ( )[ ( ) ( ) 2 ( )];
2

n n

i i i i
a bp f x f p x c f f a f b f +

≤ − ≤ + −∑ ∑

1 1

0 ( ) ( ) ( ) ( ) (1 ( ))[ ( ) ( ) 2 ( )].
2

n n

i i i i
a bf a f b p f x f a b p x c f f a f b f +

≤ + − − + − ≤ + + −∑ ∑

As an example, we shall calculate characteristic number for the power function:

/(1 ) 1

/(1 ) 1

1,                                            0;

( ) (1 ) / (2 1),    0 1;

( 1) / (1 2 ),          1.

s s s s

s s s

s

c x s s s

s s s

− −

− −

<


− − < <
 − − >

Our second main task is to investigate the possibility of a form of Jensen’s and Jensen-Mercer inequalities for 
functions which are not necessarily convex/concave on I.

The sole condition will be that the second derivative of the target function exists locally i.e., on a closed interval    
E := [a, b] ⊂ I. Since it is continuous on a closed interval, there exist numbers mf (E) = m(a, b; f ) := mint∈E f ''(t) and 
Mf (E) = M(a, b; f ) := maxt∈E f ''(t). Those numbers will play an important role in the sequel.

For instance, let f ∈ C (2)(E) and xi ∈ E, i = 1, 2, ..., n. Then

2 21 1( ) ( , ;  ) ( , ;  ) ( ) ( , ;  ).
2 2f n n f nm E J x J f M E J x≤ ≤p x p x p x

Note that this inequality represents an improvement of Jensen’s inequality for convex functions since in this case 
we have 0 ≤ mf (E) ≤ Mf (E).

2. Results and proofs
We firstly prove some global upper bounds for Jensen’s and Jensen-Mercer inequalities. This will be done by an 

application of the following assertion from [8].

(1)∑ ∑

∑ ∑

∑ ∑

∑

∑ ∑

∑
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Lemma 2.1 Let h be a convex function on E = [a, b] and, for some x, y ∈ E, x + y = a + b. Then

2 ( ) ( ) ( ) ( ) ( ).
2

a bh h x h y h a h b+
≤ + ≤ +

Theorem 2.2 Let f be a convex function on I and x ∈ [a, b]n ⊂ I n. Then

1 1

0 ( , ;  ) ( ) ( ) ( ) ( ) 2 ( );
2

n n

n i i i i
a bJ f p f x f p x f a f b f +

≤ = − ≤ + −∑ ∑p x

1 1

0 ( ) ( ) ( ) ( ) 2[ ( ) ( ) 2 ( )],
2

n n

i i i i
a bf a f b p f x f a b p x f a f b f +

≤ + − − + − ≤ + −∑ ∑

independently of p.
Proof. We obtain a simple proof of (2) directly from Jensen-Mercer inequality.
Namely, writing this inequality in the form

1 1 1 1

( ) ( ) ( ) ( ) ( ( ) ( )),
n n n n

i i i i i i i ip f x f p x f a b f p x f a b p x− ≤ + − + + −∑ ∑ ∑ ∑

the proof follows by Lemma 2.1.
For the proof of the assertion (3), note that if xi ∈ [a, b] then also yi := a + b − xi ∈ [a, b]. Hence, by (2) and Lemma 

2.1, we get

1 1

( ) ( ) 2 ( ) ( ) ( )
2

n n

i i i i
a bf a f b f p f y f p y+

+ − ≥ −∑ ∑

1 1 1 1

( ) ( ( )) [2 ( ) ( )] ( ) )
2

n n n n

i i i i i i i i
a bp f a b x f p a b x p f f x f a b p x+

= + − − + − ≥ − − + −∑ ∑ ∑ ∑

1 1

( ) ( ) ( ) ( ) [ ( ) ( ) 2 ( )],
2

n n

i i i i
a bf a f b p f x f a b p x f a f b f +

= + − − + − − + −∑ ∑

and the proof is done.
Those bounds can be improved by the following
Theorem 2.3 Let h be a convex function on E = [a, b] and p, q > 0; p + q = 1.
Then

min{ , }[ ( ) ( ) 2 ( )] ( ) ( ) ( ) max{ , }[ ( ) ( ) 2 ( )].
2 2

a b a bp q h a h b h ph a qh b h pa qb p q h a h b h+ +
+ − ≤ + − + ≤ + −

Proof. If p = q(= 1/2) there is an identity in the above relations. Hence, assuming that p > q, we have

max{ , }[ ( ) ( ) 2 ( )] [ ( ) ( ) ( )]
2

a bp q h a h b h ph a qh b h pa qb+
+ − − + − +

(2)

(3)

∑

∑

∑ ∑ ∑ ∑

∑

∑ ∑

∑ ∑

∑ ∑

∑

∑

∑
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1( ) ( ) ( ) 2 ( ) 2 [ ( ) ( ) ( )]
2 2 2 2

a b p q a bp q h b h pa qb ph p h b h pa qb h
p p

+ − +
= − + + − = + + −

2 [ ( ) ( )] 0.
2 2 2

p q pa qb a bp h b h
p p
− + +

≥ + − =

Proof of the left-hand side inequality goes along the same lines.
Now it is not difficult to prove by induction the following
Theorem 2.4 We have

1 1 1 1

1 1min{ }[ ( ) ( )] ( , ;  ) max{ }[ ( ) ( )].
n n n n

i i i n i i ip h x nh x J h p h x nh x
n n

− ≤ ≤ −∑ ∑ ∑ ∑p x

This theorem represents an improved variant of Corollary 2.4 from [9].
Another way to sharpen the global bounds in Theorem 2.2 is to use notion of the characteristic number c( f ) of 

a given convex function f . Namely, it is proved in ([7]) that there exists a number c( f ) ∈ [1/2, 1] depending only on f, 
such that

1 1

0 ( ) ( ) ( )[ ( ) ( ) 2 ( )];
2

n n

i i i i
a bp f x f p x c f f a f b f +

≤ − ≤ + −∑ ∑

and, consequently,

1 1

0 ( ) ( ) ( ) ( ) (1 ( ))[ ( ) ( ) 2 ( )].
2

n n

i i i i
a bf a f b p f x f a b p x c f f a f b f +

≤ + − − + − ≤ + + −∑ ∑

The characteristic number c( f ) is defined as

, ; ,

( ) ( ) ( )( ) : sup .
( )+ ( ) 2 ( )

2
p q a b

pf a qf b f pa qbc f
a bf a f b f

+ − +
=

+
−

By direct calculation we obtain

2 2 2
2

2 2 2, ; , ,

( )( ) sup sup 2 1/ 2.
2( )

2

 
p q a b p q

pa qb pa qbc x pq
a ba b

+ − +
= = =

+
+ −

We shall determine now the value of this constant for some classes of functions.
For this cause, recall the definitions of slowly varying and rapidly varying functions (cf. [10]).
Definition Let the function f be defined on I := [a, +∞).
It is said that f is slowly varying if limx→∞

( )
( )

f tx
f x  = 1 for any t > 0.

If lim x→∞
( )
( )

f tx
f x  = ∞ for any t > 1, then f is a rapidly varying function.

Theorem 2.5 Let f (a + x) := ga(x) be a slowly or rapidly varying function. Then c( f ) = 1.
Proof. Denote

(4)

(5)

∑ ∑∑ ∑

∑ ∑

∑ ∑
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( ) ( ) ( )( ) ( ) ( ): ,
( ) ( ) 2 ( ) ( ) ( ) 2 ( )

2 2

a a

a a

pf a qg x g qxpf a qf b f pa qbH
a b xf a f b f f a g x g

+ −+ − +
= =

+
+ − + −

with x = b − a.
Since f is a convex function, so is ga(x). Hence limx→∞ ga(x) can be 0, c or ±∞.
In the first two cases, we obtain at once that limx→∞ H = p. Since ga(x) is also slowly varying, in the third case we 

get

( ) / ( ) ( ) / ( ) 1lim .
1( ) / ( ) 1 2 ( ) / ( )

2

a a a
x

a a a

pf a g x q g qx g x qH p
xf a g x g g x→∞

+ − −
= = =

−+ −

As concerns the class of rapidly varying functions, note that lim x→∞
( )
( )

f tx
f x  = 0 for 0 < t < 1, which can be easily 

proven by the change of variable tx → x, 1/t → t.
Therefore, in this case we have

( ) / ( ) ( ) / ( )
lim .

( ) / ( ) 1 2 ( ) / ( )
2

a a a
x

a a a

pf a g x q g qx g x
H q

xf a g x g g x→∞

+ −
= =

+ −

Since p and q are arbitrary weights, we conclude that c( f ) = 1 in both cases. For instance,

c(−log x) = c(e−x) = c(e x) = c(x x ) = 1.

Our next contribution is an evaluation of the characteristic number for the power function.
Theorem 2.6 We have

/(1 ) 1

/(1 ) 1

1,                                            0;

( ) (1 ) / (2 1),    0 1;

( 1) / (1 2 ),          1.

s s s s

s s s

s

c x s s s

s s s

− −

− −

<


− − < <
 − − >

Proof. Main tool for the proof of this and similar theorems will be the following useful assertion from [11].
Lemma 2.7 For −∞ < a < b < ∞, let f , g : [a, b] → R be continuous on [a, b], and be differentiable on (a, b), and 

let g'(x) ≠ 0 on (a, b). If f '(x)/g'(x) is increasing (deceasing) on (a, b), then so are

( ) ( ) ( ) ( )and .
( ) ( ) ( ) ( )

f x f a f b f x
g x g a g b g x

− −
− −

If f '(x)/g'(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
Let a, p, q ∈ R+, p + q = 1, p ≠ q; x ∈ (a, +∞) and s ∈ (0, 1) ∪ (1, 2) ∪ (2, +∞).
Denote f1(x) = (q + pa /x)s−1;  g1(x) = ((1 + a/x) /2) s−1.
Since

22
1

2
1

( ) ( / )2 2 ,
( ) ( ) / 2((1 / ) / 2)

ss

s
f x q pa x pa qxp p
g x a xa x

−−

−

′  + +
= =  ′ ++  

by Lemma (2.7) we conclude that the expression
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1 1 1
1 1

1 1 1
1 1

( ) ( ) ( / ) 1 ( ) ,
( ) ( ) ((1 / ) / 2) 1 (( ) / 2)

s s s

s s s
f x f a q pa x x pa qx
g x g a a x x a x

− − −

− − −

− + − − +
= =

− + − − +

is monotone increasing for q > p, s ∈ (2, +∞) or p > q, s ∈ (0, 1) ∪ (1, 2) and monotone decreasing otherwise.
Denote now f 2(x) = qxs − ( pa + qx)s; g2(x) = xs − 2((a + x)/2)s.
Since

1 1
2

1 1
2

( ) ( ) ,
( ) (( ) / 2)

s s

s s
f x x pa qxq
g x x a x

− −

− −

′ − +
=

′ − +

we conclude the same for

2 2

2 2

( ) ( ) ( ) : ( ).
( ) ( ) 2(( ) / 2)

s s s

s s s
f x f a pa qx pa qx H x
g x g a a x a x

− + − +
= =

− + − +

Hence, the maximum of H(x) is attained at the endpoints of (a, +∞).
We have

1lim ( ) 2 ; lim ( ) .
1 2

 
s

sx a x

q qH x pq H x
−→ →+∞

−
= =

−

Because maxq(2pq) = 1/2 is the least possible value of c( f ), we see that

1( ) max( ) / (1 2 ),s s s

q
c x q q −= − −

and the proof follows.
For x ∈ (0, b), putting

f 1(x) = ( p + qb/x)s−1, g1(x) = ((1 + b/x) /2)s−1;

f 2(x) = pxs − ( px + qb)s; g2(x) = xs − 2((b + x) /2)s,

and repeating the above procedure, we obtain the same result.
If s < 0, we have lim x→∞ x s = 0. Hence c(x s) = 1 according to the previous theorem.
Remark 2.8 The described method can be applied for evaluation of the characteristic number of other convex 

functions.
For example, it can be proved that c(x logx) = (e log2)−1.
Our next achievement is the form of Jensen’s and Jensen-Mercer inequalities for nonconvex functions.
Theorem 2.9 Let g ∈ C (2)(E) and x ∈ E := [a, b] ⊂ R.
Then

2 21 1( ) ( , ; ) ( , ; ) ( ) ( , ; ).
2 2f n n f nm E J x J g M E J x≤ ≤p x p x p x

where mf (E) := mint∈E g''(t) and Mf (E) := maxt∈E g''( t).
Proof. For a given g ∈ C (2)(E), define an auxiliary function f by f (x) := g(x) − mg(E)x2/2. Since f ''(x) = g''(x) − 

mg(E) ≥ 0, we see that f  is a convex functionon E. Therefore, applying Jensen’s inequality, we obtain
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210 ( , ; ) ( , ; ) ( ) ( , ; ).
2n n g nJ f J g m E J x≤ = −p x p x p x

On the other hand, taking the auxiliary function f  as  f (x) = Mg(E)x2/2 − g(x), we see that it is also convex on E.
Applying Jensen’s inequality again, we get

210 ( , ; ) ( ) ( , ; ) ( , ; ),
2n g n nJ f M E J x J g≤ = −p x p x p x

and the proof is done.
Another form is possible.
Theorem 2.10 Let g ∈ C (2)(E) and x ∈ E := [a, b] ⊂ R.
Then

2 21( ) ( ) 2 ( ) ( )[2 ( , ; ) ( ) ]
2 4 g n

a bg a g b g M E J x b a+
+ − + − −p x

( , ; )nJ g≤ ≤p x

2 21( ) ( ) 2 ( ) ( )[2 ( , ; ) ( ) ].
2 4 g n

a bg a g b g m E J x b a+
+ − + − −p x

Proof. Applying the same auxiliary functions to the converse of Jensen’s inequality (2), we obtain the desired 
result.

Two-sided improvement of Jensen’s inequality is given by the next
Theorem 2.11 Let f ∈ C (2)(E) be a convex function and x ∈ E := [a, b] ⊂ R.
Then

2 2( ) ( ) ( ) 1[ ( ) ( ) 2 ( )] ( ( , ; ) ( ) )
( ) ( ) 2 ( ) ( ) 4

f f f
n

f f f f

m E m E M Ea bf a f b f J x b a
m E M E m E M E

+
+ − + − −

+ +
p x

( , ; )nJ f≤ ≤p x

2 2( ) ( ) ( ) 1[ ( ) ( ) 2 ( )] ( ( , ; ) ( ) ).
( ) ( ) 2 ( ) ( ) 4

f f f
n

f f f f

M E m E M Ea bf a f b f J x b a
m E M E m E M E

+
+ − + − −

+ +
p x

Proof. Adjusting the right-hand parts of Theorem 2.9 and Theorem 2.10, we obtain

2 2( ) 1( , ; ) [ ( ) ( ) 2 ( ) ( )[2 ( , ; ) ( ) ]]
( ) ( ) 2 4

f
n f n

f f

M E a bJ f f a f b f m E J x b a
m E M E

+
≤ + − + − −

+
p x p x

2( ) 1[ ( ) ( , ; )]
( ) ( ) 2

f
f n

f f

m E
M E J x

m E M E
+

+
p x

2 2( ) ( ) ( ) 1[ ( ) ( ) 2 ( )] ( ( , ; ) ( ) ).
( ) ( ) 2 ( ) ( ) 4

f f f
n

f f f f

M E m E M Ea bf a f b f J x b a
m E M E m E M E

+
= + − + − −

+ +
p x

Similarly, adjusting left-hand sides we get
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2 2( ) 1( , ; ) [ ( ) ( ) 2 ( ) ( )[2 ( , ; ) ( ) ]]
( ) ( ) 2 4

f
n f n

f f

m E a bJ f f a f b f M E J x b a
m E M E

+
≥ + − + − −

+
p x p x

2( ) 1[ ( ) ( , ; )]
( ) ( ) 2

f
f n

f f

M E
m E J x

m E M E
+

+
p x

2 2( ) ( ) ( ) 1[ ( ) ( ) 2 ( )] ( ( , ; ) ( ) ),
( ) ( ) 2 ( ) ( ) 4

f f f
n

f f f f

m E m E M Ea bf a f b f J x b a
m E M E m E M E

+
= + − + − −

+ +
p x

and the proof follows.
A simple consequence of the previous theorem is another converse of Jensen’s inequality.
Corollary 2.12 Because Jn(p, x; x2) ≤ 1

4  (b − a)2, we obtain

( )
( , ; ) [ ( ) ( ) 2 ( )],

( ) ( ) 2
f

n
f f

M E a bJ f f a f b f
m E M E

+
≤ + −

+
p x

Remark 2.13 Since 
( ) 1

( ) ( ) 2[ ,  1]f

f f

M E
m E M E+ ∈[ 1

2 , 1], it is interesting to compare this result with (4).

A non-convex variant of the Jensen-Mercer inequality follows.
Theorem 2.14 Let g ∈ C (2)(E) and x ∈ E := [a, b] ⊂ R.
Then

2

1 1

1 ( )[2( )( ) ( , ; )]
2

n n

g i i i i nm E p x a b p x J x− − −∑ ∑ p x

1 1

( ) ( ) ( ) ( )
n n

i i i ig a g b p g x g a b p x≤ + − − + − ≤∑ ∑

2

1 1

1 ( )[2( )( ) ( , ; )].
2

n n

g i i i i nM E p x a b p x J x− − −∑ ∑ p x

Proof. Applying Jensen-Mercer inequality

1 1

0 ( ) ( ) ( ) ( ) : ( , ; )
n n

i i i i nf a f b p f x f a b p x K f≤ + − − + − =∑ ∑ p x

to the convex function f (x) = g(x) − 1
2 mg(E)x2, we get

210 ( , ; ) ( ) ( , ; )
2n g nK g m E K x≤ −p x p x

2 2 2 2

1 1

1( , ; ) ( )[ ( ) ]
2

n n

n g i i i iK g m E a b a b p x p x= − + − + − −∑ ∑p x

(6)

∑ ∑

∑ ∑

∑

∑ ∑

∑

∑ ∑
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2 2 2

1 1 1 1

1( , ; ) ( )[ 2 2( ) ) 2( ) ( ( ) )]
2

n n n n

n g i i i i i i i iK g m E ab a b p x p x p x p x= − − + + − − −∑ ∑ ∑ ∑p x

2

1 1

1( , ; ) ( )[2( )( ) ( , ; )].
2

n n

n g i i i i nK g m E p x a b p x J x= − − − −∑ ∑p x p x

Consequently, for the function f (x) = 1
2 Mg(E)x2 − g(x) we obtain

2

1 1

10 ( )[2( )( ) ( , ; )] ( , ; ),
2

n n

g i i i i n nM E p x a b p x J x K g≤ − − − −∑ ∑ p x p x

and the proof is done.

3. Applications
General means Most known general means are

( , ) : ;i iw x=∑w x

( , ) : ;iw
ix=∏w x

1( , ) : ( / ) ,i iw x −= ∑w x

i.e., arithmetic, geometric and harmonic mean, respectively.
Here x = {xi}

n
1 denotes an arbitrary sequence of positive numbers and w = {wi}

n
1 is a corresponding weight 

sequence.
The famous A − G − H inequality says that

0 ≤ H(w, x) ≤ G(w, x) ≤ A(w, x).

It is proved in [2] that 1 ≤ A /H ≤ (a + b)2/4ab, whenever x ∈ [a, b] ⊂ R+.
The same bounds hold for other A − G − H quotients.
Theorem 3.1 Let x ∈ [a, b] ⊂ R+. Then

2( , ) ( )1 ;
( , ) 4

a b
ab
+

≤ ≤
w x
w x




2( , ) ( )1 ;
( , ) 4

a b
ab
+

≤ ≤
w x
w x




2( , ) ( )1 ;
( , ) 4

a b
ab
+

≤ ≤
w x
w x




Proof. Since f (x) = −logx is a convex function on R+, using Theorem 2.2 we get

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑

∑

∏
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log( ) log 2log log log ,
2i i i i

a bw x w x a b+
− ≤ − −∑ ∑

that is,

2( , ) ( )log[ ] log[ ],
( , ) 4

a b
ab
+

≤
w x
w x




and the proof follows.
Finally,

2( , ) ( , ) ( , ) ( )1 / .
( , ) ( , ) ( , ) 4

a b
ab
+

≤ = ≤
w x w x w x
w x w x w x

  
  

Similar converses are valid for the A − G − H differences.
Theorem 3.2 Let x ∈ [a, b] ⊂ R+. Then

20 ( , ) ( , ) ( ) ;b a≤ − ≤ −w x w x 

20 ( , ) ( , ) ( ) ;b a≤ − ≤ −w x w x 

20 ( , ) ( , ) ( ) .b a≤ − ≤ −w x w x 

For example, taking f (x) = ex and applying Theorem 2.2, we obtain

/2 /2 222 ( ) .i ii

a b
w xx a b b a

iw e e e e e e e
+

− ≤ + − = −∑∑
Now, change of variable x → log x; a → log a, b → logb gives

2( , ) ( , ) ( ) .b a− ≤ −w x w x 

Rest of the proof is left to the reader.
Notion of A − G − H means is generalized by the power mean Pα of order α ∈ R, defined as

1/( , ) : ( ) .i iw xα α
α = ∑x w

Hence,

P−1(x, w) = H(x, w), P1(x, w) = A(x, w),

and

0 0
( , ) lim ( , ) ( , ).αα→

= =x w x w x w  

It is well known ([5]) that power means are monotone increasing in α.
We give now an estimation of a difference of power means.
Theorem 3.3 For 0 < α < 1 and x ∈ [a, b], we have

∑ ∑

∑

∑



Contemporary MathematicsVolume 2 Issue 1|2021| 11

1/1
10 ( , ) ( , ) 2(1 ) / (1 2 )[ ].

2 2
a b a b

αα α α α
α α

α α α
−

−
 + +

≤ − ≤ − − −   
 

x w x w 

For α > 1, we have

1/1
10 ( , ) ( , ) 2( 1) / (2 1)[ ].

2 2
a b a b

αα α α α
α α

α α α
−

−
 + +

≤ − ≤ − − −  
 

x w x w 

Proof. By Theorem 2.2 and (4), applied to the convex function f (x) = x β, β > 1 with c ≤ yi ≤ d, we have

1 1

0 ( ) ( )[ 2( ) ].
2

n n

i i i i
c dp y p y c x c dβ β β β β β+

≤ − ≤ + −∑ ∑

The change of variable yi = xi
1/β gives a := c β ≤ xi ≤ d β := b and

1/ 1/
1/

1 1

0 ( ) ( )[ 2( ) ].
2

n n

i i i i
a bp x p x c x a b

β β
β β β β+

≤ − ≤ + −∑ ∑

Finally, the change of variable β = 1/α, 0 < α < 1, gives the result.
The second part proof goes analogously, treating the convex function f (x) = −x β,  0 < β < 1.
A converse of Ky Fan inequality The most celebrated counterpart of A − G inequality is the inequality of Ky Fan 

which says that

1 1

1 1(1 ) (1 )

i

i

wn n
i i i

n wn
i i i

w x x
w x x
∑ ∏

≥
∑ − ∏ −

whenever xi ∈ (0, 1/2].
A converse of Ky Fan inequality is given in [12].
Theorem 3.4 If 0 < a ≤ xi ≤ b ≤ 1/2, then

1 1

1 1

( , ) ,
(1 ) (1 )

i

i

wn n
i i i

n wn
i i i

w x x
S a b

w x x
∑ ∏

≤
∑ − ∏ −

where

2

2
(1 )(1 )( )( , ) .

(2 )
a b a bS a b

ab a b
− − +

=
− −

A two-sided improvement of this inequality is obtained by an application of Theorem 2.13.
Theorem 3.5 For 0 < a ≤ xi ≤ b ≤ 1/2, we have

2 2 1
2

1

1/ 2exp [ ( ) ]
( (1 )) (1 )

i

i

wn
i

i i i i wn
i

xb w x w x
b b x

  ∏−
−  − ∏ − 

∑ ∑

1

1 (1 )

n
i i

n
i i

w x
w x
∑

≤ ≤
∑ −

(7)

(8)

(9)

(10)

∑ ∑

∑ ∑

∑ ∑
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2 2 1
2

1

1/ 2exp [ ( ) ] .
( (1 )) (1 )

i

i

wn
i

i i i i wn
i

xa w x w x
a a x

  ∏−
−  − ∏ − 

∑ ∑

Proof. Let f(x) = log (1 x
x
− ). Since f ''(x) = 2

1 2
( (1 ))

x
x x
−
−

 and this function is decreasing on E = (0, 1/2], we found that 

mf (E) = 2
1 2

( (1 ))
b

b b
−
−

, Mf (E) = 2
1 2

( (1 ))
a

a a
−
−

.

Therefore, applying Theorem 2.9 we get

2 1 11 ( ) ( , ; ) log log
2

i i i
f n i

i i i

x w x
m E J x w

x w x
   − −∑

≤ −   ∑   
∑p x

21

1

1log log ( ) ( , ; ),
(1 ) 2(1 )

i

i

wn
i i i

f nwn
i i i

w x x
M E J x

w x x

  ∑ ∏
= − ≤    ∑ − ∏ −   

p x

and the proof follows.
It is of interest to find a form of Ky Fan inequality for x ∈ (0, 1). We shall give now two results of this kind in the 

special case x ∈ E := [a, 1 − a], 0 < a < 1/2.
Theorem 3.6 If x ∈ E := [a, 1 − a], 0 < a < 1/2, then

1 1 1

11 1

1 ( ; , ) ,
( ; , ) (1 )(1 ) (1 )

i i

i i

w wn n n
i i i i

nw n wn n
n i ii i

x w x x
T a

T a w xx x
∏ ∑ ∏

≤ ≤
∑ −∏ − ∏ −

w x
w x

where

2
2

1 2( ; , ) exp ( , ; ) .
2( (1 ))

[ ]n n
aT a J x

a a
−

=
−

w x w x

Proof. Analogously to the previous reason, for f (x) = log (1 x
x
− ) we have Mf (E) = 2

1 2
( (1 ))

a
a a
−
−

 = −mf (E) and the 
proof is obtained by Theorem 2.9. Note that the function f is neither convex nor concave in this case.

Corollary 3.7 A weaker but more explicit variant of the above assertion is given in the next
Theorem 3.8 If x ∈ E := [a, 1 − a], 0 < a < 1/2, then

3 3
1 1 1

2 2
11 1

(1 2 ) (1 2 )exp exp .
8( (1 )) (1 ) 8( (1 ))(1 ) (1 )

[ ] [ ]i i

i i

w wn n n
i i i i

w n wn n
i ii i

x w x xa a
a a w x a ax x

∏ ∑ ∏− − −
≤ ≤

− ∑ − −∏ − ∏ −

Proof. Since c(x2) = 1/2, we obtain

2 2 2 2 2 21 1 1( , ; ) [ 2( ) ] ( ) (1 2 ) ,
2 2 4 4n

a bJ x a b b a a+
≤ + − = − = −w x

and the result follows from Theorem 3.6.
Applications in Probability Theory The Jensen’s inequality has a great influence in Probability and Statistics. 

Here are some basic definitions.
If the generator of random variable X is discrete with probability mass function x1 → p1, x2 → p2, ..., xn → pn , then 

the expected value EX is defined as

(11)

∑ ∑

∑
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1

: ,
n

i iEX p x=∑

and the variance Var(X ) is

2 2 2 2 2

1 1

( ) : ( ) ( ) ( ) ( ) .
n n

i i i iVar X p x p x E X EX E X EX= − = − = −∑ ∑

Also, the moment of s-th order is defined by

1

: , 0 .
n

s s
i iEX p x s= >∑

Jensen’s moment inequality says that

EX s ≥ (EX )s, s > 1;

and

EX s ≤ (EX )s, 0 < s < 1.

These inequalities follow from the Jensen’s inequality applied to the convex functions f(x) = −xs, 0 < s < 1 and  
f(x) = xs, s > 1. For example Var(X ) ≥ 0.

Our task in the sequel is to improve Jensen’s moment inequality by an application of the results from this paper.
Theorem 3.9 For a ≤ X ≤ b, we have

2 21 1( 1) ( ) ( ) ( ) ( 1) ( ),  2;
2 2

s s s ss s a Var X E X EX s s b Var X s− −− ≤ − ≤ − >

2 21 1( 1) ( ) ( ) ( ) ( 1) ( ),  1 2;
2 2

s s s ss s b Var X E X EX s s a Var X s− −− ≤ − ≤ − < <

2 21 1(1 ) ( ) ( ) ( ) (1 ) ( ),  0 1.
2 2

s s s ss s b Var X EX E X s s a Var X s− −− ≤ − ≤ − < <

Proof. The proof follows by an application of Theorem 2.9.
Theorem 3.10 For a ≤ X ≤ b, we have

/(1 ) 10 ( ) ( ) ( 1) / (1 2 )[ 2( ) ],  1;
2

s s s s s s s sa bEX E X s s a b s− − +
≤ − ≤ − − + − >

/(1 ) 10 ( ) ( ) (1 ) / (2 1)[2( ) ( )],  0 1.
2

s s s s s s s sa bE X EX s s a b s− − +
≤ − ≤ − − − + < <

Proof. Applying (4) and the result from Theorem 2.6 we obtain the proof.
Remark 3.11 Comparison of Theorem 3.9 and Theorem 3.10 is interesting. Although the left-hand side of Theorem 

3.9 is evidently better than the left-hand side of Theorem 3.10, what can be said about their right-hand sides?

(12)

(13)

(14)

(15)

(16)

∑

∑ ∑

∑
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4. Conclusion
The celebrated Jensen’s inequality for convex functions is applicable in many parts of Analysis, Probability 

and Statistics, Information Theory etc. Some important inequalities such as Cauchy’s inequality, Hölder’s inequality, 
Minkowski’s inequality, Ky Fan inequality and Jensen-Mercer inequality are just special cases of Jensen’s inequality.

In this article, we give several improvements and reverses of Jensen’s and Jensen-Mercer inequalities. We also 
consider the form of these inequalities for twice differentiable functions which are not necessarily convex/concave on a 
given closed interval.

Finally, we demonstrate some applications of our results in Theory of Means and Probability Theory.
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