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Abstract: This article presents the Godunov method applied to solve the Riemann problem for the isentropic Cargo
LeRoux model. The pressure-density relation for this model yields Riemann invariants that are complicated and
computationally challenging to process. Only the exact solution has been developed for this model, and no numerical
method has been applied thus far. Incorporating many computational checks is necessary for the numerical simulations
of this model. Hence, it is ensured that variables and related quantities in the pressure equation remain positive, and
the integrals converge within given accuracy conditions without casting complex values. Two nonlinear equations are
obtained for possible wave configurations in the exact solutions. This system of two nonlinear algebraic equations is
solved with the Newton-Raphson method. This root-finding process is sensitive to the initial guess values. A special
algorithm is used to guess the initial values for the Newton-Raphson procedure. It is based on evaluating the residual
functions and finding appropriate initial guesses by sorting the answers. These steps effectively simulate complex terms.
The system is hyperbolic, with three distinct eigenvalues of the Jacobian matrix, and the solution consists of three waves.
The tests showed that the Godunov scheme is applicable and achieves good accuracy for this model. However, the central
scheme fails to solve this problem. This study bridges the gap between model analysis and developing numerical methods
for solving isentropic Euler equation models.
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1. Introduction

The Riemann problem involves discontinuous initial data coupled with a hyperbolic system of partial differential
equations. It has been developed as one of the key tools for studying the nature of complex phenomena in various
fields, including multi-phase flows, magnetogasdynamics, astrophysics, and geophysical flows [1-6]. Researchers are
still developing exact and numerical solutions for the Riemann problem using various approaches. Several recent studies
have examined the Riemann problem in the context of the Cargo-LeRoux model, including works on wave interactions,
symmetry methods, and pressure perturbations (see [7—10]). Similar work includes the Riemann problem for an ideal
polytropic dusty gas [11], the study of weak shock waves for the drift-flux model of compressible two-phase flow by Kuila
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and Raja Sekhar [12], the Riemann problem solution for compressible duct flow [13], the exact solution for relativistic
magnetohydrodynamics in [ 14] and solution for one-dimensional inviscid and isentropic flow of a mixture of a non-ideal
gas with small solid particles developed in [15].

Numerous numerical techniques have been developed to simulate hyperbolic systems encountered in various fields.
These areas include fluid mechanics, astrophysics, black holes, the oil industry, aerodynamics, cancer modelling,
magnetohydrodynamics, and filtration theory. However, the isentropic Euler equations and related models have been
primarily investigated using exact solvers in recent years. For example, Li in [16] presented the Riemann solution to
the isentropic Euler equation in a scenario where the temperature drops to zero. This work was extended to vanishing
pressure limits by Chen and Liu [17]. The polytropic gas flow has been studied by Yin et al. [18], and the isentropic
magnetogasdynamics model has been studied by Shen [19]. The Riemann solutions for the isothermal van der Waals
dusty gas model have been investigated recently [20]. Many of these models are related to phenomena involving volcanic
and cosmic explosions, supersonic flight in polluted air, and engineering science problems.

The purpose of this paper is twofold. The first task is revisiting the solution derived in [10]. Additional details
about the solution profile within the rarefaction waves that were previously omitted have been included. A review of the
exact solution is necessary before discussing the Godunov method for this model. This review offers a comprehensive
and accurate solution, encompassing all aspects of the solution. Moreover, this review is essential because it shows the
complexity of numerical calculations involved in applying numerical methods. The second task is to provide a detailed
numerical scheme and accompanying numerical results. This work represents the first step toward numerical simulations
of the isentropic Cargo-LeRoux model. It is a continuation of the applications of the Godunov method, which have
already been applied to many models [21-29]. This numerical study can help evaluate various numerical methods since
its construction relies on a locally exact solver.

This paper is composed of four sections. Section 1 summarizes the work on Riemann problems related to the context.
Section 2 reviews exact solutions for the model under consideration. Section 3 briefly outlines the working steps of the
numerical scheme, and section 4 presents numerical results, followed by a conclusion.

2. Cargo LeRoux model and associated Riemann problem

The recent work in [10] has motivated us to undertake this research. Sumita and Sahadeb introduced the Cargo
LeRoux model as a system of partial differential equations given below:

pr+(pu)x =0

(Pg):+ (pqu)x =0
(1)
(pu): + (pu? +p+q), =0

(pe—q)i+ ((pu+ p)u)x = 0.

The independent variables are x and ¢, representing one-dimensional space and time, respectively. The dependent
variables are p, g, u, p, and e, which denote density, potential, velocity, pressure, and total energy, respectively. Partial
derivatives are denoted by conventional x and ¢ subscripts. This model has been modified for the case of the van der Waals
gas flux perturbation pressure equation of state. As a result, the pressure density relationship becomes p = Ap/(1 —ap)”.
Here 7 is an adiabatic constant that controls the sensitivity response of density variations to pressure. The constant A
appears as the scaling parameter, while the constant a is a van der Waals-type coefficient that accounts for the extended
volume effect. In this work, its value is taken to be 1.4.
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The model (1) in quasi-linear form is written as below:

oU IF (U)

= —o0 oo, t>0. 2
BP + P 0, <x<oo, t >0 2)

With the vectors of conserved variables and corresponding flux given by

p pu
U =| pq | andF (%)= pqu . 3)
pu pu*+p+q

The characteristic field analysis in [10] is given by using the vector ¥ of state variables p, ¢, and u. A new system
of equations is obtained by converting the model in equation (1) writen below:

oY oY
o A("’/)g—oa 4
with
u 0 p
0 u O
(1—ap)rt p "

Solving the characteristic equation det (A — AI) = 0 for 3 x 3 Identity matrix I gives the following set of eigenvalues:

M=u—0c,r,=uand A3 =u+o0, (6)

Ayp¥~!
where o = (I—YZW > 0 since 1 > ap > 0. The corresponding right eigenvectors are given as:
—p 1 p
R(]) = 0 y R(2> = —02 y R(3) = 0 (7)
c 0 o

Under the conditions of density positivity and the real-valued term o, it is concluded that the eigenvalues are real
and distinct, resulting in a strictly hyperbolic system of conservation laws.
Consider the quantity VA; - R(;y computed for each i = 1, 2, 3. Fori = 1 and 3, this quantity is non-zero. Hence,
1- and 3-characteristic fields are genuinely nonlinear. The middle one is linearly degenerate because VA, ‘R =0.
. . . . . . d d d .
Next, the Riemann invariants are derived by solving the equations, P _ 4 _ —Z for the i"" component of the

I‘il rl-z

i
corresponding right eigenvector of the associated characteristic field. The Table 1 below gives these relations.
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Table 1. Characteristic fields and Riemann invariants

Characteristics field No. Riemann invariants
1-Characteristic field Yl =4 Y =u+/ o(®) dé
2-Charteristic field Yi=u Yi=g+p
3-Characteristic field =g u—Jf %deg

The initial discontinuous data is given for the vector of primitive variables as ¥ = (p;, qi, ul)" and ¥, =
(Pr, qr, M,)"" where the subscripts / and r denote the left and right states for some fixed x (usually the middle value
of the spatial domain). The model coupled with this type of initial data admits a weak solution with four different regions.
These four regions are denoted as

tr

Y= (p1 au, ul)trv Vo=(p-r g u)", Vi=(ps, g+, u+)tr7 V= (Prs 4rs I_lr)tr- (3)

It is well known that the linearly degenerate middle field represents a contact discontinuity wave, and the first and
third represent either shock or rarefaction waves. Section 3 is devoted to these waves’ fundamental properties and essential
relationships.

3. Exact Riemann solution

The 1-characteristic field is genuinely linear and gives rise to either a shock or a rarefaction wave. First, consider
the case of a shock wave. In this case, the left and right regions inside the solution are separated by the middle region in
such a way that the potential remains constant bus density increases and velocity decreases from left to right-hand side,
ie,q=q—, py<p—andu >u_.

The calculations presented in [10] are not repeated in detail here. Only the formula for shock speed S| velocity u_
are presented here. Referring to Figure 1, a shock wave is a discontinuous wave separating two states, depicted in red.

(0] X

Figure 1. A layout for a shock wave

The speed of this shock wave is written as:
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Sl_ul_\/Pl(;‘—p:Pz) {(1_’);’3_)7_(1_’);@)1, ©

The potential remains constant across the shock, and the following relation gives the velocity:

M_:%—f—Sl (p*_pl) (10)
p- p-

Similarly, for the 3-characteristic curve, either a rarefaction wave or a shock wave separates the left and right states.
In the case of a 3-shock wave, the corresponding shock speed S3 and velocity u are as follows:

_ Apy P+ Y_( pr )q
SS_ur+\/pr(p+—pr) Kl—am) l—ap.) |’ (D

prir  S3(p+—pr)
uy =L 2 P 12
T opy P+ (12)

The other two state variables satisfy the conditions, g = ¢, and p_ > p,. In the case of the one-rarefaction
wave, which connects smoothly the left and right states, the state variables satisfy the following conditions:

=g +/ ) ge — +/ ) s, and py>p-. (13)

The formula details for state variables inside the rarefaction wave are missing [10]. A rarefaction wave is the self-
similar continuous weak solution of the Cauchy problem associated with the system of equations in equation (3). It is
shown in Figure 2 as a general case:

x =2U)t x = LUt

(0] X

Figure 2. A layout for the rarefaction wave

The slope inside this wave region is given by:
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dx_x

= =k =u-c (14

Hence, the solution inside the rarefaction fan is found by solving the nonlinear system given below:
X o
u:;JrGandF(p):ufuLJr Edp:O. (15)

The one-rarefaction fan has a head and tail, which are shown in red and blue colors. Similarly, the results for the
three-rarefaction wave corresponding to the 3-characteristic can be written as follows:

| Gg;)dé —u- [ "f)dé and p. < py. (16)

The velocity and density in the three-rarefaction fan are determined by solving this nonlinear system:
X PR O
u:;—i—candF(p):u—uR—&—/ de:O. (17)
P

It is evident that to get the solution inside the rarefaction fan or shock speeds, we require p_ and p,.. The details are
presented in [10]. Here, it is only addressed that these values are the solutions of a nonlinear system, given below:

F (P, pss Vi, ¥7) =0, (18)
g(p*a P+, 7/[7 7/1‘) :07 (19)

where F (p—, p+, 7, ¥7) = uy —w + F» + F, with

p Y p’y—l m
= +my——=———+—+my, Whenp; <p ,
\/ml (l—ap_) mz(l—apﬁ)y [ ™ Pr=p_

Fi(p-, 1) = (20)

/pﬁ @af, whenp <p;.
] é B

And
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.\ Pt m
\/ml<lap_> +m2(1—ap7)y+P_+m4’ whenpr<p.,

<?\l(p*a 7/1‘):

/pﬁ @dé, whenp <p;.
P 3 -

The second nonlinear equation comes from & (p—, p+, ¥, %) =9, — 4, where

P Y
G (p—, ) =A <1—ap_> +4q.

And

Y
%r (p+a 7/1’) =A <p+> +qr.

1)

(22)

(23)

The 2-characteristic field is linearly degenerate and gives rise to a contact wave. The characteristic condition for the

contact wave is:

Mo (V) =S5 = Mo (V).

24

Thisresults u_ =uy =S,. Finally, it is necessary to state that the situation in which eigenvalues coincide is impossible

unless 0 = 0. The possible wave configuration can be any one of the following:
1. One-shock, two-contact discontinuity, and three-rarefaction;
2. One-shock, two-contact discontinuity, and three-shock;
3. One-rarefaction, two-contact discontinuity, and three-rarefaction;
4. One-rarefaction, two-contact discontinuity, and three-shock.
The wave structure for the first case is demonstrated in Figure 3.

Shock wave &

U,

u; S 2 u
.

(0] X

Figure 3. The Riemann solution structure
The following steps formulate the process of getting an exact solution:
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1. Compute the eigenvalues.

2. Select the wave type and its corresponding wave speed (for shock waves) or head speed (for rarefaction waves).

3. Solve for unknown quantities by equations (18) and (19).

Sample the solution for general values of x and 7.

It completes the required details to get the exact solution to the Riemann problem associated with the Cargo Leroux
model.

4. Godunov method

Godunov’s method is the primary approach for solving hyperbolic systems of partial differential equations. It is also
an essential method for numerically investigating complex phenomena, including compressible flows, thermonuclear
processes, and detonation processes, as referenced in [21-29].

Although it is based on standard finite volume discretization, the principle of flux calculation with the exact solution
of the corresponding Riemann problem is the distinctive feature of this method. The errors are significantly less than
numerical methods like finite difference, central schemes, and Roe solvers. This section presents the Godunov scheme
for the considered model.

The space and time steps are denoted by Ax and Ar, respectively. After discretization of the spatial domain into cells,
the interface of the j* and the j + 1 cells are denoted by Xjip1p=(J+1/2)Ax, j€Z.

The discrete initial values are obtained as cell averages given by

1 Xjt1/2
Uy = ~ /x - Up(x)dx. (25)

j—1/2

Knowing the Riemann solution U (x, ) gives the piecewise constant solution U 7 over the grid cells at each time step,
which can be used to get the updated solution U ;H-l in time. This update is performed using the exact solution of the
Riemann problem at each cell face. The method takes the following steps:

At
Upt = U= S (F (U (0= U, )~ F (U (04 UL, U7)). 20

With the condition on the maximum time step given as:

At 0
Emax{|xk(Uj)|,k:1,2, 3} <= 27

N —

The time-step is bounded to ensure that waves from adjacent cells do not cross each other. At each time step of the
finite volume method, a local Riemann problem is solved for the exact solution based on the density values obtained by
solving a nonlinear system of equations (18) and (19) at each time level. The exact solution differs from the numerical
solution in the context of a time-stepping algorithm. The numerical solution is obtained using a time-step finite volume
method; however, the exact solution gives the values after some time 7'. In this view, although the Newton-Raphson
method is used to obtain the exact solution, it is usual to mention it as an exact solution. The reader is referred to the
references stated above for more details. The Newton-Raphson method for a system of nonlinear equations is extremely
sensitive to the initial guess values. Hence, finding an appropriate initial guess for the solution of a nonlinear system
is crucial. As a result, the residual function is computed at each step and minimized to get the appropriate initial guess.
Moreover, it is stated that all the calculations are possible to carry out to get the correct solution by imposing checks for
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positivity of the density p and the quantity 1 —ap. Lastly, the initial data is provided for the state variables vector V, and
the scheme updates the conserved variables vector U. Therefore, at each iteration, a conversion from the primitive to the

conserved variables and vice versa is also required. The flow chart below (Figure 4) is presented as a visual representation

of the process.

Initializing imortant
modules

Initializing constants and
varibales data values

Exact
Solver

Godunov
method
solver

F functions

G functions

¥

| S—

! Computing speeds

for waves

method

Solving nonlinear
system for values
inside the
rarfaction fan

PSP Imposing
Initializing Courant- Assigning cell
mesh for Friedrichs- average values to
Godunoy Lewy (CFL) conserved

method

condition variables in cells

relations of shock/

Residual Function P
P sy - g Initial Guess for
minimization for nonlinear 2
density values
system -

J
etting Density by
. Newton-Raphson

pdating values
according to

arefaction wavi

}

Updating primitive
varibales and
imposing
boundary
conditions
Y

increment in time

o

Figure 4. Flow chart of computations

5. Numerical results

This section presents the numerical test cases from the reference article [10]. The numerical results are compared

with the exact solution for cases I and II. These two test cases have been simulated because of different wave structures.

The first test case represents a combination of shock and rarefaction waves, and the second test case demonstrates the
solution composed of two shocks. The parameters A, a, ¥ are the same for both test cases. The final time is different
for each test case and is fixed according to the results of the reference article. The zero-gradient boundary conditions

are chosen for the numerical setup. This ensures that solutions near the boundary continue smoothly without reflecting

anything artificially.
Test 1: The initial data values used for this problem are given below:

¥ = (5.99924, 2.7996, 0.5975)", x<0
V(x, 0) =

¥y = (7.99242, 1.37452, —6.19633)"", x> 0.
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The values for p_ and p; are 18.8009 and 18.450, respectively. Hence, according to the discussion in section 3,
the solution comprises four regions, separated by a one-shock wave, a two-contact discontinuity, and a three-shock wave.
Numerical solutions yield similar solution profiles, with only minor differences in the locations of waves, as shown in
Figure 5. These results are simulated for a time # = 0.03 s, and the value of the constant a is chosen to be 0.035. The
one-shock is at x = —0.18 while the two is at x = —0.2.

(@)

20 1 ~—Numerical solution
~—Exact solution
18 1
_ 164
p=y
Z2 14
D
@) 12 1
10
8 4
6 4
-0.4 -0.2 0.0 0.2 0.4
¥
() 2.8 1 —Numerical solution
—Exact solution
2.6 1
2.4
z
g 2.2 4
S 20
1.8 1
1.6 1
1.4 1
-0.4 -0.2 0.0 0.2 0.4
¥
(©) —Numerical solution
0 1 —Exact solution
-1
5]
S -3
Ay
4
-5
-6 1

-0.4 -0.2 0.0 0.2 0.4
X

Figure 5. Results for test 1 at time r = 0.03 and step size Ax = 0.001

Test 2: The initial data values used for this problem are given below:
¥ = (0.96, 0.1379, 1.0833)", x<0

¥ (x, 0) = (29)
¥, =(1.7741, 1.5, 1.1187)", x>0
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The values for p_ and p; are 2.13 and 0.6330, respectively. Hence, according to the discussion in section 3, the
solution comprises four regions, separated by a one-shock wave, a two-contact discontinuity, and a three-rarefaction wave
and a three-rarefaction wave as shown in Figure 6. The rarefaction wave’s head and tail locations are at x = 0.45 and
x = 0.22, respectively, with the head’s speed of 2.1320. The one-shock is located at x = —0.94.

(@)

225 —— Numerical §01uti0n
2.00 [_—\ ~— Exact solution
2 1.75
2 1.50
1.25

1ty

Dens

1.00

0.75

04 202 0.0 02 0.4

(b)

1.4
1.2
1.0
0.8

Potential

0.6
0.4

0.2 —— Exact solution

/ —— Numerical solution

-0.4 -0.2 0.0 0.2 0.4

1.0

0.8

0.6

Velocity

0,4
—— Numerical solution
02 —— Exact solution

-0.4 -0.2 0.0 0.2 0.4
X

Figure 6. Results for test 2 at time # = 0.2 and step size Ax = 0.001

6. Conclusions

The Godunov method has been used to simulate the Riemann problem for the Cargo LeRoux model numerically.
This work revisits the exact solution of the model and fills essential gaps in describing the whole solution. Numerical
difficulties have been identified that must be addressed to obtain stable numerical solutions. Two test cases have been
presented to compare the exact Riemann and numerical solutions. The initial data consists of constant data, comprising
two sets of values related to the spatial position x = 0. The spatial domain ranges from x = —0.5 to x = 0.5, whereas the
final time varies for the cases considered in the reference article [12].
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Further improvements will focus on achieving higher accuracy and reducing oscillations in numerical solutions. It is
worth noting that the same model has been simulated using the central scheme; however, the results are highly oscillatory
and therefore not presentable. Another extension of the work is to apply physics-informed neural network methods, as
these methods also utilize the exact solution to the Riemann problem.
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