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Abstract: There is a plethora of schemes of the same convergence order for generating a sequence approximating a 
solution of an equation involving Banach space operators. But the set of convergence criteria is not the same in general. 
This makes the comparison between them challenging and only numerically. Moreover, the convergence is established 
using Taylor series and by assuming the existence of high order derivatives that do not even appear on these schemes. 
Furthermore, no computable error estimates, uniqueness for the solution results or a ball of convergence is given. We 
address all these problems by using only the first derivative that actually appears on these schemes and under the same 
set of convergence conditions. Our technique is so general that it can be used to extend the applicability of other schemes 
along the same lines.
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1. Introduction
There is a plethora of high convergence order iterative schemes (IS) producing a sequence approaching a solution x* 

of equation

F(x) = 0.                                                                                                                               (1)

Here F : D ⊂ X → Y with X, Y denoting Banach space; D a nonempty, open convex set and operator F continuously 
differentiable according to Fréchet. One needs to use IS, since the preferred closed form of x* is obtainable in special 
situations. In particular, when X = Y = R i (i a natural number) Chun and Neta [1] presented a unified way of dealing with the 
local convergence of the three step IS given for x0 ∈ D by

yn = xn − αF'(xn)
−1F(xn)

yn = xn − φ1(xn, yn)F' (xn)
−1F(xn)                                                                                           (2)

xn+1 = zn − φ2 (xn, yn)F' (xn)
−1F(xn),

where α ∈ R or α ∈ C, and φ1 : D × D → L (X, Y ), φ2  : D × D → L (X, Y ) with L (X, Y ) being the space of continuous linear 
operators mapping X into Y.

The weights α, φ1 and φ2 were chosen as

2 =  
3

α ，,                                                                                                                                 (3)
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−1 
F(xn) and vn = F'( xn)

−1F'( yn) and α j, β j, j = 1, 2, ... , 6 are scalars. The sixth order of convergence was established in [1] 
provided that the derivatives exist up to the seventh order

1 4 5 6
1 3 =     3 8 ,
2

α α α α- + + +

2 4 5 6
9 3   6 ,
8

α α α α= - - - -

                                                                                                                                             (4)

3 4 5 6
3 3 6 ,
8

   α α α α= - - - -

1 3 4 5
1 2   3
2

β β β β= - - + -

and β2 = 31
2 2-  ， + β3 − 2β4 + 2β5, where α4, α5, α6, β3, β4, β5 are free scalars. But these derivatives do not appear on (2) and also 

limit applicability.
For example: Let X = Y = R and D = [- 31

2 2-  ，, 31
2 2-  ，]. Define f on D by

3 2 5 4log 0
( )

0 0.
t t t t if t

f t
if t

 + - ≠
= 

=

Then, we have x* = 1,

2 2 4 3 2( ) 3 log 5 4 2 ,f t t t t t t′ = + - +

2 3 2( ) 6 log 20 12 10 ,f t t t t t t′′ = + - +

and

2 2( ) 6 log 60 24 22.f t t t t′′′ = + - +

Obviously f '''(t) is not bounded on D. So, the convergence of schemes (2) and (3) are not guaranteed to converge by 
the analysis in [1].

Other concerns include the facts that no computable estimates on || xn − x* || or uniqueness of x*  results are given 
either.

Table 1. Weight functions

α φ1(xn, yn) φ2(xn, yn)

1 2[F'(xn) + F'( yn)]
-1F(xn) un

γ (1 + 1
2γ )l − 1

2γ vn (1 + 1
γ )l − 1

γ vn

2 =  
3

α ， 9 31
2 8 8n nl u v- + + 29 1511

8 4 8n nl u u- +

2 =  
3

α ，
25 3

8 8 nl u+ 29 1511
8 4 8n nl u u- +

2 =  
3

α ， 223 9
8 83 n nl v v- + 5 3

2 2 nl v-

2 =  
3

α ，
2 39 1521

8 2 8n n nl v v v+ - + 25 1
2 23 n nl v v- +
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Hence, there is a need to address these matters using conditions on F' which only appears on (2), and on the more 
general setting of Banach space valued operators. Moreover, we do not specialize α, φ1, φ2 to satisfy (3) or (4). This way 
we include all other specializations of (2) listed in the Table 1.

The idea presented is general enough, so it can be utilized for the extension of other schemes [1-41].

2. Convergence
The local convergence of scheme (2) requires some scalar functions and parameters. Set M = [0, ∞).
Suppose that there exist function ω0 : M → M continuous and nondecreasing such that equation

ω0(t) − 1 = 0                                                                                                                        (5)

has a minimal positive solution ρ0. Set M0 = [0, ρ0).
Suppose there exit functions ω : M0 → M, ω1 : M0 → M continuous and nondecreasing such that for

1 1
0 0 1

1
0

((1 ) ) |1 | ( )
( )

1 ( )
t d t dt

f t
t

∫ ω θ θ α ∫ ω θ
ω

- + -
=

-

and equation

1 1( ) ( ) 1f t f t= -                                                                                                                     (6)

has a minimal solution ρ1 ∈ (0, ρ0). Consider a continuous and nondecreasing function ψ1 : M0 → M.
Suppose that for functions

1 1
0 1 0 1

2
0

((1 ) ) ( ) ( )
( )

1 ( )
t d t t d

f t
t

∫ ω θ θ ψ ∫ ω θ θ
ω

- +
=

-

2 2( ) ( ) 1,f t f t= -

equation

2 ( ) 0f t =                                                                                                                               (7)

has a minimal solution ρ2 ∈ (0, ρ0).
Suppose that equation

ω2( f2(t) t) − 1 = 0                                                                                                                (8)

has a minimal solution ρ̄2 ∈ (0, ρ0). Set M1 = [0, ρ̄2).
Suppose that for all t ∈ M1

1 1
0 2 0 0 2 0 1

3
2

0 2 0 0 2

((1 ) ( ) ) ( ( ) ( ( ) )) ( ( ) )
1 ( ( ) ) (1 ( ))(1 (

(
) ))

)
(

f
f t t d t f t t f t t d

f t t f
t

t t t
∫ ω θ θ ω ω ∫ ω θ θ

ω ω ω
 - +

+ - -
=

-

1
2 0 1

2
0

( ) ( )
( ),

1 ( )
t t d

f t
t

ψ ∫ ω θ θ
ω


+ - 

3 3 ( ) ( ) 1,f t f t= -
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equation

3 ( ) 0f t =                                                                                                                               (9)

has a minimal solution ρ3 ∈ (0, ρ̄2), where ψ2 : M1 → M is a continuous and nondecreasing function. We shall show that

ρ = min{ρ j}, j = 1, 2, 3                                                                                                        (10)

is a radius of convergence for scheme (2). Notice that by these definitions for all t ∈ [0, ρ)

0 ≤ ω0(t ) < 1                                                                                                                        (11)

0 ≤ ω0( f1(t )t ) < 1                                                                                                                (12)

and

0 ≤ f j (t ) < 1.                                                                                                                         (13)

The notations U(u, λ), Ū(u, λ) are used for the open and closed balls in X with center u ∈ X and of radius λ > 0.
Next, the local convergence of scheme (2) is provided based on conditions (Γ):
(Γ1) There exists a simple solution x* ∈ D of equation F(x) = 0.
(Γ2) There exists a continuous and nondecreasing function ω0 : M → M such that for all x ∈ D

1
* * 0 *( ) ( ( ) ( )) ( ).F x F x F x x xω-′ ′ ′- ≤ -‖ ‖ ‖ ‖

Set U0 = D ∩ U (x*, ρ0).
(Γ3) There exist continuous and nondecreasing functions ω : M0 → M, ω1 : M0 → M, ψ1 : M0 → M, ψ2 : M0 → M such 

that for each x, y ∈ U0

1
*( ) ( ( ) ( )) ( ),F x F y F x y xω-′ ′ ′- ≤ -‖ ‖ ‖ ‖

1
* 1 *( ) ( ) ( ),F x F x x xω-′ ′ ≤ -‖ ‖ ‖ ‖

1 1 *( , ) ( )I x y x xϕ ψ- ≤ -‖ ‖ ‖ ‖

and

2 2 *( , ) ( )I x y x xϕ ψ- ≤ -‖ ‖ ‖ ‖

for y = x − αF' (x)−1F(x).
(Γ4) Ū(x*, ρ) ⊆ D and
(Γ5) There exists ρ* ≥ ρ such that

1
0 0 *( ) 1.d∫ ω θρ θ <

Set U1 = D ∩ Ū(x*, ρ**).
Theorem 2.1 Suppose the conditions (Γ) are satisfied. Then, starting from x0 ∈ U(x*, ρ) − {x*}, sequence {xn} 

generated by scheme (2) is well defined in U(x*, ρ), remains in U(x*, ρ) for each n = 0, 1, 2,... and lim n→ ∞ xn = x*.
Moreover, the following items hold for en = || xn − x* ||

* 1( ) ,n n n ny x f e e e ρ≤ ≤- <‖ ‖                                                                                               (14)
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* 2 ( ) ,n n n nz x f e e e- ≤ ≤‖ ‖                                                                                                     (15)

and

1 3 ( ) ,n n n ne f e e e+ ≤ ≤                                                                                                              (16)

where functions f j are given previously and ρ is defined in (10). Furthermore, the limit point x* is the only solution of 
equation F(x) = 0 in the set U1 given in (Γ5).

Proof. We shall show using mathematical induction on k that first iterates exist for all k; remain in U(x*, ρ); converge 
to x* and secondly the solution is unique on the set U1 given in (Γ5).

Let u ∈ U(x*, ρ). It then follows by (Γ1), (Γ2), (10), and (11) that

1
* * 0 * 0( ) ( ( ) ( )) ( ) ( ) 1,F x F u F x u xω ω ρ-′ ′ ′- ≤ - ≤ <‖ ‖ ‖ ‖                                                       (17)

so F'(u)−1 exists and

1
*

0 *

1( ) ( )
1 ( )

F u F x
u xω

-′ ′ ≤
- -

‖ ‖
‖ ‖

                                                                                     (18)

holds by the lemma on invertible operators due to Banach [25]. If one sets set u = x0, then y0, z0, x1 exist by scheme (2), if n = 0. 
We can write by the first substep of scheme (2), (10), (13) (for m = 1), (Γ1), (Γ3) and (17) for u = x0

1 1
0 * 0 * 0 0 0 0( ) ( ) (1 ) ( ) ) ( y x x x F x F x F x F xα- -′ ′ ′- ≤ - - + -‖ ‖ ‖ ‖

                 1 1 1
0 * 0 * * 0 * 0 0 *( ) ( )  ( ) ( ( ( )) ( ) )  )(F x F x F x F x x x F x x x d∫ θ θ- -′ ′ ′ ′ ′≤ × + - - -‖ ‖ ‖ ‖

                                                  +  |1 - α| 1 1
0 * * 0 |1 | ( ) ( ) ( ) ( )  F x F x F x F xα - -′ ′ ′ ′+ - ‖ ‖‖ ‖

                 ≤   f1(e0)e0 ≤ e0 < ρ,                                                                                               (19)

showing y0 ∈ U(x*, ρ) and (14) for n = 0. Moreover, by (10), (13) (for m = 2, 3), we obtain in turn

||z0 − x*||  ≤ ||(x0 − x* − F'(x0)
−1F(x0))

                   + (I − φ1(x0, y0)F'(x0)
−1F( x0)) || ]e0 

                ≤ f2(e0)e0 ≤ e0,                                                                                                      (20)

and

e1 ≤ ||(z0 − x* − F'(z0)
−1F(z0))

        + (F'(z0)
−1 − F'(x0)

−1)F(z0) + (I − φ2 (x0, y0))F'(x0)
−1F(z0))||

        1 1
0 0 * 0 0 * 0 0 0 1 0 *

0 0 * 0 0 * 0 0

((1 ) ) ( ( ) ( )) ( )
1 ( ) (1 ( ))(1 ( ))

z x d z x e z x d
z x z x e

∫ ω θ θ ω ω ∫ ω θ θ
ω ω ω

 - - - + -
+ - - - - -

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

       1
1 0 0 1 0

0 *
0 0

( ) ( )
1 ( )

e e d
z x

e
ψ ∫ ω θ θ

ω


+ -- 
‖ ‖

    ≤  f3(e0)e0 ≤ e0,                                                                                                                  (21)
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so z0, x1 ∈ U(x*, ρ) and (15), (16) hold for n = 0. Hence, the induction for (14)-(16) is shown for n = 0. Suppose these 
estimations hold for all k = 0, 1, 2, ..., n. Then, by simply switching x0, y0, x1 by xk, yk, xk +1 in the preceding calculations, we 
conclude (14)-(16) hold for all n. Then, from

e k +1 ≤ cek < ρ,                                                                                                                       (22)

where c = f3(e0) ∈ [0, 1), we have limk → ∞ xk = x*, and xk + 1 ∈ U(x*, ρ). Let q ∈ D1 be such that F(q) = 0. Set T = ʃ 1
0 F'(x* + 

θ(q − x*))dθ. Then, by (Γ2) and (Γ5),

1 1 1
* * 0 * * * *( ) ( ( )) ( ) ( ( (  )) ( ))F x T F x F x F x q x F x d∫ θ θ- -′ ′ ′ ′ ′- ≤ + - -‖ ‖ ‖ ‖

                                     1
0 0 *( ) 1,x q d∫ ω θ θ≤ - <‖ ‖                                                               (23)

so T −1 exists, by the Banach lemma on invertible operators [25], and x* = q follows from 0 = F(x*) − F(q) = T (x* − q).
Remark 2.2 1. By (a2), and the estimate

||F'(x*)−1F'(x)||  = ||F'(x*)−1(F'(x) − F'(x*)) + I ||

                        ≤ 1 + ||F'(x*)−1(F'(x) − F'(x*))||  ≤ 1 + w0(||x − x*||)

second condition in (a3) can be dropped, and w1 be defined as

w1(t) = 1 + w0(t ) or w1(t ) = 2.                                                                                              (24)

Notice that, if w1(t) < 1 + w0(t ), then ρ can be larger (see Example 3.1).
2. The results obtained here can be used for operators G satisfying autonomous differential equations [3-10] of the form

F'(x) = T(F(x))

where T is a continuous operator. Then, since F'(x*) = T(F(x*)) = T(0), we can apply the results without actually knowing 
x*. For example, let F(x) = ex − 1. Then, we can choose: T(x) = x + 1.

3. The local results obtained here can be used for projection schemes such as the Arnoldi’s algorithm, the generalized 
minimum residual algorithm (GMRES), the generalized conjugate algorithm (GCA) for combined Newton/finite projection 
schemes and in connection to the mesh independence principle can be used to develop the cheapest and most efficient 
mesh refinement strategies [3-10, 17].

4. Let w0(t ) = L0 t, and w(t) = Lt. The parameter rA = 
0

2
2L L+  was shown by us to be the convergence radius of Newton’s 

algorithm [3]

xn + 1 = xn − F'(xn )
−1F(xn ) for each n = 0, 1, 2, ···                                                                 (25)

under the conditions (a1)-(a3) (w1 is not used). It follows that the convergence radius R of algorithm (2) cannot be larger 
than the convergence radius rA of the second order Newton’s algorithm (25). As already noted in [4] rA is at least as large as 
the convergence ball given by Rheinboldt [20]

1

2  ,
3TRr

L
=

where L1 is the Lipschitz constant on Ω, L0 ≤ L1 and L ≤ L1. In particular, for L0 < L1 or L < L1, we have that

rTR < rA

and



Contemporary Mathematics 458 | Ioannis K. Argyros, et al.

0

1

1  0. 
3

TR

A

Lr as
r L

→ →

That is our convergence ball rA is at most three times larger than Rheinboldt’s. The same value for rTR was given by 
Traub [24].

5. It is worth noticing that solver (2) is not changing, when we use the conditions (A) of Theorem 2.1 instead of the 
stronger conditions used in [12, 14]. Moreover, we can compute the computational order of convergence (COC) defined by

1

1

ln / ln n n

n n

x x x x
x x x x

ξ
∗ ∗

+
∗ ∗

-

   - -
=    - -   

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

or the approximate computational order of convergence

1 1
1

1 1 2

ln / ln .n n n n

n n n n

x x x x
x x x x

ξ + -

- - -

   - -
=    - -   

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

This way we obtain in practice the order of convergence in a way that avoids the existence of the seventh Fréchet 
derivative for operator F.

3. Numerical examples
As in [1], we choose α4 = 63

64 , α5 = 0, α6 = 0, β3 = 15
8 , β5 = 0 and β4 = 0.

Example 3.1 Let B1 = B2 = D = R. Define F(x) = sinx. Then, we get that x* = 0, and by (Γ2) and the first condition in (Γ3)

||F'(x*)
−1(F'(x) − F'(x*))||  = |1(cosx − cosx*)|

                                         = |cosx − cosx*|

                                         = |cosv(x − x*)|

                                         = |cosv| |x − x*|

                                         ≤ |x − x*| (v ∈ R),

so w0(t) = w(t) = t. Then, obtain the roots by solving (6), (7), (9) (knowing now w0, w, w1, ψ1, ψ2) using Mathematica. 
Then, we determine the radii using (10). The same is done in the rest of the examples. One can also see examples about 
how these scalar functions are found in [3-10, 21, 25]. Further, we have the following error estimates for Example 3.1.

||y5 − x*||  = 0.0266 ≤ e5 = 0.0802 < ρ = 0.195081,

||z5 − x*||  = 0.0373 ≤ e5 = 0.0802 < ρ = 0.195081,

and

||x6 − x*||  = 0.0056 ≤ e5 = 0.0802 < ρ = 0.195081.

Table 2. Radius for Example 3.1

Radius ω1(t) = 1 ω1(t) = 1 + ω0(t)

r1 0.44444 0.4

r2 0.473532 0.437925

r3 0.195081 0.187903

 as
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Example 3.2 Let B1 = B2 = C [0, 1], be the space of continuous functions defined on [0, 1] with the max norm. Let D 
= ̄U(0, 1). Define function F on D by

1 3
0( )( ) ( ) 5 ( ) .F x x x dϕ ϕ ∫ θϕ θ θ= -                                                                                        (26)

We have that

1 2
0( ( ))( ) ( ) 15 ( ) ( ) , for ea h c .F x x x d Dϕ ξ ξ ∫ θϕ θ ξ θ θ ξ′ = - ∈

Then, we get that x* = 0, F'(x*) = I, ω0(t) = 15
2 t, ω(t ) = 15t and ω1(t) = 2. This way, we have that

Table 3. Radius for Example 3.2

Radius ω1(t) = 2 ω1(t) = 1 + ω0(t)

r1 0.0296296 0.0533

r2 0.231907 0.0903624

r3 0.0126373 0.0284867

Example 3.3 Let B1 = B2 = R3, D = U(0, 1), x* = (0, 0, 0)T, and define F on D by

1 2
1 2 3 2 2 3

1( ) ( , , ) ( 1,  , ) .
2

u TeF x F u u u e u u u-
= = - +                                                                (27)

For the points u = (u1, u2, u3)
T, the Fréchet derivative is given by

1

2

0 0
( ) 0 ( 1) 1 0 .

0 0 1

ue
F u e u

 
 ′ = - + 
 
 

Using the norm of the maximum of the rows and since G'(x*) = diag(1, 1, 1), we get by conditions (A) ω0(t ) = (e − 1)t, 
ω(t) = 1

1
ee - t, and ω1(t) = 1

1
ee - . Then we have

Example 3.4 Returning back to the motivational example at the introduction of this study, we have ω0(t ) = ω(t) = 
96.662907t, ω1(t) = 1.0631. Then, we have

Table 4. Radius for Example 3.3

Radius ω1(t) = 1
1
ee - ω1(t) = 1 + ω0(t)

r1 0.073878 0.229929

r2 0.911242 0.309664

r3 0.0600865 0.115891

Table 5. Radius for Example 3.4

Radius ω1(t) = 1
1
ee - ω1(t) = 1 + ω0(t)

r1 0.00445282 0.00413809

r2 0.0145963 0.00749138

r3 0.002212 no solution

Further, we have the following error estimates for Example 3.4.
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||y10 − x*||  = 0.0006 ≤ e10 = 0.0008 < ρ = 0.002212,

||z10 − x*||= 0.0006 ≤ e10 = 0.0008 < ρ = 0.002212,

and

||x11 − x*||= 0.0004 ≤ e10 = 0.0008 < ρ = 0.002212.
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