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1. Introduction
Let Ω ⊂ RN be a bounded smooth domain, and let g(x) and f (x) be bounded non-negative functions. In the present 

paper, we are interested in optimal control problems that are related to the boundary value problem

1
0( ) ( ) ( ) ( ) ( ),( )

i jij x xa x u g x u dx f x x dx Hφ φ φ φ
Ω Ω

+ = ∀ ∈ Ω∫ ∫ (1)

where A(x) is a N × N symmetric matrix satisfying, for some 0 < λ ≤ Λ,

2 2| | ( ) | | , .N
ij i ja x xλ ξ ξ ξ ξ ξ≤ ≤ Λ ∀ ∈ ∀ ∈ Ω

(2)

Here and in what follows, the summation convention from 1 to N over repeated index is in effect.
Let g0 ∈ L∞

+ (Ω), and let G be the class of rearrangements of g0. For g ∈ G, let ug be the solution to problem (1) (with 
f (x) fixed). We investigate the maximization problem

sup ( ) ( ) .g
g

f x u x dx
Ω∈
∫

G

In case the operator is the Laplacian, similar problems are discussed in [1].
Next, we shall discuss the following problem. Let f0 ∈ L∞

+ (Ω) and let F be the class of rearrangements of f0. For f 
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∈ F the energy integral associated with the solution u = uf  to problem (1) is defined as fΩ f (x)uf dx. The maximization 
problem

max ( ) ( )f
f

f x u x dx
Ω∈ ∫F

(3)

has been widely investigated since the pioneering works [2-3]. It is well known that a maximizer  f̂ exists and that  f̂ = φ(u  f̂ ) 
for some non-decreasing function φ. This result is proved, usually, exploiting the continuity and the strict convexity of 
the functional “ fΩ f (x)uf (x)dx over  

_
F, the weak* closure of F. In this paper, we introduce a new function h0 ∈ L∞

+ (Ω) 
and consider H, the class of rearrangements of h0. We investigate the maximization problem

, 
sup ( ) ( ) .f

f h
h x u x dx

Ω∈ ∈
∫

F H
(4)

The investigation of this problem is easier than that in (3). However, we shall prove that when H = F then a 
solution to problem (4) yields a solution to the well studied problem (3).

Optimization problems in classes of rearrangements started more than three decades ago with a paper by 
Alvino et al., see [1]. The differential equations considered in [1] were posed in bounded domains. In mid 1980’s, 
Burton developed a comprehensive theory of rearrangements of functions, see [2-3], and applied his theory to prove 
existence of two or three dimensional non-compressible ideal flows having localized vortices while occupying an 
unbounded domain. Since then, several researchers have investigated maximization or minimization problems for the 
energy integral and for the first eigenvalue corresponding to suitable differential equations, see [4-5] and references 
therein. Recently, seems to be a new interest for this subject. A few years ago, Qiu et al. in [6] investigated a class 
of rearrangement optimization problems involving the p-Laplacian, and in [7] investigated optimization problems 
involving the fractional Laplacian. In 2018, the first and the second author of the present paper, together with A. 
Farjudian, investigated optimal harvesting strategy based on rearrangements [8]. In 2019, Kebede completed his 
doctoral dissertation “Optimization problems in classes of rearrangements” [9], and published the related papers [10-
11]. In 2020, Amiri et al. discussed optimization problems related to a p-Laplacian equation on a multiply connected 
domain [12]. Again in 2020, Emamizadeh et al. investigated bang-bang and multiple valued optimal solutions of 
control problems related to quasi-linear elliptic equations [13]. In the same year, Anedda et al. investigated the Steiner 
symmetry of the minimizer (in classes of rearrangements) of a fractional eigenvalue problem [14].

These problems have physical interpretations. For example, they describe the vibration of a non-homogeneous 
membrane subject to a vertical force f. The solution uf  represents the displacement from the rest position. One may be 
interested to investigate the resilience of the membrane by maximizing the corresponding energy integral.

To investigate our problems, we shall use results from [2-3, 15].

2. Main results
We fix f ∈ L∞

+ (Ω) such that the measure of the set {x ∈ Ω : f (x) > 0} is positive. For g ∈  

_
G, define u = ug ∈ H1

0(Ω)
such that

1
0( ) ( ) ( ) ( ) ( ).( )

i jij x xa x u g x u dx f x x dx Hφ φ φ φ
Ω Ω

+ = ∀ ∈ Ω∫ ∫ (5)

By the strong maximum principle (see [16]), we have ug(x) > 0 in Ω. Putting ϕ = u in (5) and recalling that g(x) ≥ 0, 
using (2) and Poincaré inequality, we find

2 2 ,u C fλ ∇ ≤‖ ‖ ‖‖ (6)
with C independent of g.
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We define

( ) ( ) ( ) ,gJ g f x u x dx
Ω

= ∫ (7)

and investigate the optimization problem supg ∈ G J(g).
The weak* continuity of J(g) can be proved easily by using (6) and Rellich’s Theorem. To get the convexity of 

J(g), let us prove first the following result (which may have an own interest). Recall that f is non-negative and positive 
in a subset of positive measure.

Lemma 2.1 With g ∈ L∞
+ (Ω), let u ∈ H1

0(Ω) satisfy

1
0 ( ).( )

i jij x xa u gu dx f dx Hϕ ϕ ϕ ϕ
Ω Ω

+ = ∀ ∈ Ω∫ ∫ (8)

With h ∈ L∞
+ (Ω), let v ∈ H1

0(Ω) satisfy

(9)1
0 ( ).( )

i jij x xa v hv dx f dx Hϕ ϕ ϕ ϕ
Ω Ω

+ = ∀ ∈ Ω∫ ∫

With 0 < t < 1, let w ∈ H1
0(Ω) satisfy

(10)1
0( (1 ) ) ( ).( )

i jij x xa w tg t h w dx f dx Hφ φ φ φ
Ω Ω

+ + - = ∀ ∈ Ω∫ ∫

Then,

(11)( ) ( ) (1 ) ( )w x tu x t v x≤ + -

with equality if and only if g = h almost everywhere in Ω.
Proof. Note that u, v and w are positive in Ω. If ϕ ∈ C1

0(Ω), we choose as test function 1( ) tvt
u

ϕ φ-=  in (8) to find

(12)1 1 1
2(1 ) .[ ( ) ( ) ( ) ( ) ] ( )j j

i j i

x xt t t t
ij x x ij x

v vuv v v vt a u t t a u gut dx f t dx
u u u u uu

φ φ φ φ- - - -
Ω Ω

+ - - + =∫ ∫

Similarly, we choose as test function (1 )( )tut
v

ϕ φ= -  in (8) to find

(13)1
2(1 ) (1 ) (1 ) (1 ) .[ ( ) ( ) ( ) ( ) ] ( )j j

i j i

x xt t t t
ij x x ij x

u uvu u u ut a v t t a v hv t dx f t dx
v v v v vv

φ φ φ φ-
Ω Ω

- + - - + - = -∫ ∫

Since aij = aji, we claim that

(14)1 1
2 2 2 0.( ) ( ) ( ) ( ) [ ]j j j j

i i i j i j i j

x x x xt t t t
ij x ij x ij x x ij x x ij x x

v vu u uvv u v ua u a v u v a u v a u u a v v
u u v v u vu v

- - - -- + - = - - ≤

Indeed, we have
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(15)2 0.( )( )
i j i j i j i i j jij x x ij x x ij x x ij x x x x

v u v u v ua u v a u u a v v a u v u v
u v u v u v

- - = - - - ≤

We note that equality holds in (15) (and in (14)) if and only if

.v u u v∇ = ∇

If we add (12) and (13) with ϕ ≥ 0 and we take into account (14), we find

(16)1 1 1(1 ) (1 ) (1 ) .[ ( ) ( ) ( ) ( ) ] [ ( ) ( ) ]
i j i j

t t t t t t
ij x x ij x x

v v u u v ut a u gut t a v hv t dx t t fdx
u u v v u v

φ φ φ φ φ- - -
Ω Ω

+ + - + - ≥ + -∫ ∫

For s > 0, by Young inequality, we have

(1 ) (1 ) 11 (1 ) .t t t t t ts s ts t s- - - - -= ≤ + -

Therefore,

(17)1 (1 ) 1,( ) ( )t tv ut t
u v

- + - ≥

with equality sign if and only if  1.u
v

=  By (16) and (17), we find

(18)1 1(1 ) (1 ) .[( ( ) ( ) ) ( ) ]
i i j

t t t t
ij x ij x x

v ut a u t a v tg t h u v dx f dx
u v

φ φ φ- -
Ω Ω

+ - + + - ≥∫ ∫

Now, if we put z = utv1−t, we have

1 1(1 ) , 1 ( ) .( ) ( ) ( ) ( )
i i i i i i

t t t t
x x x ij x ij x ij x

v u v uz t u t v a z t a u t a v
u v u v

- -= + - = + -

Therefore, (18) yields

(1 ) .[ ( ) ]
i jij x xa z tg t h z dx f dxφ φ φ

Ω Ω
+ + - ≥∫ ∫

Since z = 0 = w on ∂Ω, by (10) and the latter inequality, we get w(x) ≤ z(x) in Ω. Finally, since z = utv1−t ≤ tu + (1 - t)v, 
inequality (11) follows.

We have proved that the map g → ug is convex. Let us show that it is strictly convex. Indeed, if w(x0) = z(x0) at 
some point x0 ∈ Ω then, by the strong maximum principle (see [16]), w(x) = z(x) in Ω. As a consequence, equality must 
hold in (15). Hence, v∇u = u∇v, which implies u = cv in Ω for some c > 0.

If w(x) = z(x), we must have equality also in (16) and (18). In particular, we must have

1 (1 ) .[ ( ) ( ) ]t tv ut t fdx fdx
u v

φ φ-
Ω Ω

+ - =∫ ∫
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Since ϕ ∈ C1
0(Ω) is arbitrary, the latter equation implies

1 (1 ) 1( ) ( )t tv ut t
u v

- + - =

for x ∈ {supp f }. Hence ( ) 1
( )

u x
v x

=  for x ∈ {supp f }. Thus, c = 1 and u(x) = v(x) in Ω. Finally, from the equations (16) and 

(17), we find g = h almost everywhere in Ω, which yields the strict convexity of the map g → ug. The lemma is proved.
We are now in a position to prove the following result.
Theorem 2.2 Let J(g) be defined as in (7), where ug is the solution to (5).
There exists  ĝ ∈ G such that J(g) ≤ J( ĝ) for all g ∈  

_
G. Furthermore, if   ĝ ∈ G is any maximizer of J(g) on  

_
G, there is 

a non-increasing function ψ such that  ĝ = ψ(u ĝ).
Proof. By Lemma 2.1, the functional J(g) is strictly convex. Let us prove that J(g) is weakly continuous and 

Gateaux differentiable.
By the variational characterization of the solution ug to problem (5), we have

1
0

2

( )
( ) sup 2 .( )

i jg ij x x
v H

J g f u dx fv a v v gv dx
Ω Ω

∈ Ω
= = - -∫ ∫

For h ∈  

_
G, we have

2 2( ) ( ) 2 ( ) ( )( )
i jg g ij g x g x gJ g g h u dx fu a u u hu dx

Ω Ω
+ - = - -∫ ∫

22 ( ) ( ) ( )( )
i jh ij h x h x hfu a u u hu dx J h

Ω
≤ - - =∫

2 2( ) 2 ( ) ( )( )
i jh h ij h x h x hg h u dx fu a u u gu dx

Ω Ω
= - + - -∫ ∫

2( ) ( ).hg h u dx J g
Ω

≤ - +∫

Therefore,

(19)2 2( ) ( ) ( ) ( ) .g hg h u dx J h J g g h u dx
Ω Ω

- ≤ - ≤ -∫ ∫

The continuity of J(h) follows from (19).
Let us prove that J(h) is Gateaux differentiable. Let 0 < t < 1. If we replace h by ht = g + t(h - g) in (19), we find

2 2( ( )) ( )( ) ( ) .
tg h

J g t h g J gg h u dx g h u dx
tΩ Ω

+ - -
- ≤ ≤ -∫ ∫

As t → 0, we have ht → g in the norm of L∞(Ω). Hence, uht
 → ug in the norm of L2(Ω) and

2
0

( ( )) ( )lim ( ) .g
t

J g t h g J g g h u dx
t Ω→

+ - -
= -∫

Therefore,
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2( , ) ( )( ) ,gJ g h g h g u dx
Ω

′ - = - -∫

and J’(g) = -u2
g . By Theorem 7 and Corollary 1 of [2], J(g) attains a maximum value  ĝ ∈  

_
G. Moreover, if  ĝ is any 

maximizer then  ĝ = φ(-u 
2
 ̂g) almost everywhere for some non-decreasing function φ. Equivalently, we have  ĝ = ψ(u ĝ) for 

some non-increasing function ψ. The theorem is proved.
To investigate the second problem mentioned in the introduction, we recall the following result.
Lemma 2.3 Let L : Lp(Ω) → R be linear and weakly continuous. Then, there exists   f̂ ∈ F such that

ˆ( ) sup ( ).L f L f=
F

(20)

Proof. Although this result is known, we give here a short proof. Let { fi},  fi ∈  
_
F be a sequence such that

lim ( ) sup ( ).i
i

L f L f
→∞

=
F

Since  
_
F is weakly compact, there is a subsequence (again denoted { fi}) and an element  f̂ ∈  

_
F such that

ˆ (weakly).if f

Since L is weakly continuous, we have

ˆlim ( ) ( ).i
i

L f L f
→∞

=

We must show that   f̂ ∈ F. Denote

ˆ{ : ( ) ( )}.H f L f L f= ∈ =F

Let us prove that H ∩ F ≠ Ø. Clearly, H is convex. Let us show that H is an extreme set in  
_
F. This means that if f ∈ 

H and 1 2 ,
2

f ff +
=  with f1, f2 ∈  

_
F, then necessarily f1,  f2 ∈ H. To show this, we write

1 2
ˆ ˆ( ) ( ) ( ) ( )ˆ ˆ( ) ( ) ( ).

2 2
L f L f L f L fL f L f L f

+ +
= = ≤ =

Since equality must hold, we find

1 2 1 2
ˆ ˆ( ) ( ) and ( ) ( ),  so ,  .L f L f L f L f f f H= = ∈

On the other hand, since H is weakly compact and convex, we can apply the Krein-Milman theorem [17] to deduce 
that ext(H) ≠ Ø. Next, we show that

ext( ) ext( ).H ⊂ =F F

To this end, let us assume the inclusion is false. Then, there exists f ∈ ext(H) which is not in F. Therefore, we have 
f = t f1 + (1 - t) f2 for some  f1, f2 ∈  

_
F and some t ∈ (0, 1). Since ext(H) ⊂ H and H is an extreme set, we deduce that  f1, 

f2 ∈ H. But this contradicts f ∈ ext(H). We conclude that ext(H) ⊂ F. Furthermore, we have H ∩ F ≠ Ø as desired. The 
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lemma is proved.
Theorem 2.4 Suppose f0 and h0 are bounded non-negative functions. Let F and H be the classes of rearrangements 

of f0 and h0 respectively. For f ∈  
_
F, we denote with uf the solution to (1). Similarly, for h ∈ 

_
H, we denote with uh the 

solution to (1) with f replaced by h.
i) There exist   f̂ ∈ F and  ĥ ∈ H such that

ˆ ˆ
, 

ˆ ˆsup ( ) ( ) ( ) ( ) ( ) ( ) .f f h
f h

g x u x dx h x u x dx f x u x dx
Ω Ω Ω∈ ∈

= =∫ ∫ ∫
F H

ii) If F = H then   f̂ =  ĥ almost everywhere in Ω.
Proof. Recall that  

_
F and  

_
H are convex and weak* sequentially compact (see [2-3]). For k ∈ L∞

+ (Ω) define u = uk ∈ 
H1

0(Ω) such that

1
0( ) ( ) ( ).( )

i jij x xa u gu dx k x x dx Hφ φ φ φ
Ω Ω

+ = ∀ ∈ Ω∫ ∫ (21)

Putting ϕ = u in (21), recalling that g(x) ≥ 0, using assumption (2) and Poincaré inequality, we find

2 2( ) ( )
,

L L
u C kλ

Ω Ω
∇ ≤‖ ‖ ‖‖ (22)

with C independent of k.
If uf  is the solution of problem (1), let

, 
ˆ sup ( ) ( ) .f

f h
I h x u x dx

Ω∈ ∈
= ∫

F H

Assume { fi, hi} is a maximizing sequence for  Î . Since the sequence { fi} is bounded in L∞(Ω) a subsequence (again 
denoted { fi}) converges in the weak* topology to some f ∈  

_
F. Similarly, a subsequence of {hi} (again denoted {hi}) 

converges in the weak* topology to some h ∈  

_
G. By (22) and Rellich’s Theorem, the sequence {ufi

} converges strongly 
in L2(Ω) to some z ∈ H1

0(Ω). By using the equations for ufi 
, and uf , one shows that z = uf . Hence,

ˆ lim ( ) ( ) ( ) ( ) .
ii f f

i
I h x u x dx h x u x dx

Ω Ω→∞
= =∫ ∫

By Lemma 2.3, there is  ĥ ∈ H such that

ˆ( ) ( ) ( ) ( ) .f fh x u x dx h x u x dx
Ω Ω

≤∫ ∫

By using equation (1) and the corresponding equation with f = ĥ , it is easy to show that

ˆˆ( ) ( ) ( ) ( ) .f hh x u x dx f x u x dx
Ω Ω

=∫ ∫

Hence, we have

ˆ( ) ( ) ( ) ( ) .f hh x u x dx f x u x dx
Ω Ω

≤∫ ∫
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Using Lemma 2.3 again, we find   f̂ ∈ F such that

ˆ ˆˆ( ) ( ) ( ) ( ) .h hf x u x dx f x u x dx
Ω Ω

≤∫ ∫

Hence,

ˆˆˆ ˆ( ) ( ) .hI f x u x dx I
Ω

≤ ≤∫

It follows that

ˆ ˆˆ ˆˆ ( ) ( ) ( ) ( ) .h fI f x u x dx h x u x dx
Ω Ω

= =∫ ∫

Part (i) is proved.
To discuss part (ii), we make some preparation. uf  and uh satisfy

(23)1
0( ) ( ) ( ) ( ),( )

i jij f x x fa u gu dx f x x dx Hφ φ φ φ
Ω Ω

+ = ∀ ∈ Ω∫ ∫

(24)1
0( ) ( ) ( ) ( ).( )

i jij h x x ha u gu dx h x x dx Hφ φ φ φ
Ω Ω

+ = ∀ ∈ Ω∫ ∫

From (23) and (24) with ϕ = uf  − uh, we find

(25)20 ( ) ( ) ( ) ( )( ) .( )
i jij f h x f h x f h f ha u u u u g u u dx f h u u dx

Ω Ω
≤ - - + - = - -∫ ∫

Since

( ) ( ) ( ) ( ) ,h ff x u x dx h x u x dx
Ω Ω

=∫ ∫

from (25) we find

2 ( ) ( ) ( ) ( ) ( ) ( ) .[ ]h f hf x u x dx f x u x h x u x dx
Ω Ω

≤ +∫ ∫

It follows that

(26)( ) ( )( ) ( )( ) ( ) .
2 2

f h
h

u x u xf x h xf x u x dx dx
Ω Ω

++
≤∫ ∫

Consider now the case F = H. Then, if  f , h ∈ F, we have 
2

f h+  ∈  
_
F. If ( f, h) is a maximizing pair, we find
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(27)

ˆ ( ) ( ) (by (26))
2 2

f h
h

u uf hI f x u x dx dx
Ω Ω

++
= ≤∫ ∫

2

 (by the linearity of the equation)
2 f h

f hu dx+Ω

+
= ∫

ˆ ˆ(by definition of ).I I≤

Since equality holds in (27), equality must hold in (26) and in (25), which implies ||∇(uf  − uh)||L2(Ω) = 0. Recalling 
that uf (x) = uh(x) = 0 on ∂Ω, we get uf (x) = uh(x) in Ω. Finally, using the equations for uf  and uh, we find f (x) = h(x) 
almost everywhere in Ω. The theorem is proved.
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