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1. Introduction
Professor Boling Guo is a well-known mathematician. To date, he has published more than 800 (joint) papers and

16 (joint) books [1–15]. His research is involved in the well posedness and blowup of solutions of nonlinear Partial
Differential Equation (PDE), infinitely dimensional dynamical systems, numerical analysis, soliton theory, harmonic
analysis methods of PDE, geometric PDE, numerical analysis of Nonlinear Equation (NLE), and stochastic PDE, etc.

Professor Boling Guo has studied many important nonlinear evolution equations such as Landau-Lifshitz equations,
nonlinear dispersive wave equations includingKorteweg-de Vries equation (KdV), Benjemin-Ono, Nonlinear Schrödinger
equation (NLS), Zakharov equation, Navier-Stokes equation, nonlinear parabolic equations, and their coupled equations,
etc. In 1984–1986, he jointly obtained the first result for the global existence of the generalized solutions of the Landau-
Lifshitz equation in higher spatial dimensions. In 1991, he jointly solved the long standing open problem for the global
existence for the smooth solution of the Landau-Lifshitz equation in one spatial dimension. In 1995, he study the
compactness of attractors for the Benjamin-Ono equation and discovered a new method to show that a weakly compact
attractor is strongly compact. In 2000, he pioneered the study of the approximatively integrable infinite-dimensional
dynamical system.

In this paper, we survey Professor Guo’s main results and also state some of his collaborative works in the above
subjects.

The papar is organized as follows. In Section 2, we will introduce Professor Guo’s results on local and global
wellposedness of some equations including Zakharov equations, Landau-Lifshitz equations, and Benjamin-One equations.
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In Section 3, we will summarize his studies on geometric flows and harmonic maps. In Section 4, we will collect some
of his results on (random) attractors. His studies on harmonic analysis and PDE will be surveyed in Section 5. In Section
6, we will state a few of his results on variation methods and blowup solutions. In Section 7, we will briefly introduce
his works on rogue waves and solitons. In Section 8, we point out some recent progress and open problems related to
Professor Guo’s work.

2. Local and global well-posedness results
2.1 Zakharov equations

In 1982, Guo and Shen [16] established the existence and uniqueness of global classical solutions to the periodic
initial value problem associated with the Zakharov equations as follows:



∂ 2
t n−∂ 2

x n = ∂ 2
x |ε|2

i∂tε +∂ 2
x ε = nε

n(x, 0) = n0(x), nt(x, 0) = n1(x), ε(x, 0) = ε0(x)

n(x+2π, t) = n(x, t), ε(x+2π, t) = ε(x, t)

(1)

where the initial value n0(x), n1(x), ε0(x) are periodic with a period of 2π . Guo and Shen [16] reformulated the problem by
introducing a velocity potential φ leading to an equivalent first-order system, which is more amenable to analysis. They
used the Galerkin approximation method to obtain the local weak solution in Sobolev space Hs. Combining a priori mass
and energy estimates, they obtained the global solution. According to the Sobolev embedding H3 ↪→C2, if the initial data
are sufficiently smooth (ε0 ∈H6, n0 ∈H4, φ0 ∈H4), then the solution in the Sobolev space is classical solution. Moreover,
they proved the uniqueness of the global classical solution, which seems the first result for the global well-posedness for
the smooth solutions of the Zakharov equation in 1D:

Theorem 1 ([16], Theorem 5.1) If initial data are periodic with a period of 2π and satisfy

(n(x, 0), nt(x, 0), ε(x, 0)) ∈ H6(R)×H4(R)×H8(R),

then Problem (1) has a unique global classical solution.
Zakharov Equation is an important and difficult model in PDE, which has been extensively studied in recent years,

see Section 8 for its further progress.

2.2 On Landau-Lifshitz equations

The Landau-Lifshitz equation is the most important equation in describing the evolution of the microscopic
magnetization field in ferromagnetic spin chains, which plays the same role as the Navier-Stokes equation in fluid
mechanics:

vt =−α1v× (v×∆v)+α2v×∆v, (2)
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where v is the magnetization field, α1, α2 are damping constants, and “×” denotes the cross-product of two 3-dimensional
vectors. Here

v(x, t) = (v1(x, t), v2(x, t), v3(x, t)): Ω× [0, ∞)→ S2,

is the unknown microscopic magnetization field on a bounded domain Ω in Rm. This system is also named as the
ferromagnetic chain equation. This system is derived from the conservation of energy and the magnitude of v, and it
represents a formulation that leads to a continuum spin wave theory. When α1 = 0, m = 1, this system is an integrable
system, and has N soliton solutions. When α1 > 0, it becomes a strongly coupled degenerate quasilinear parabolic system.

In 1984, Zhou and Guo [17] established the existence of weak solutions for boundary value problems associated with
the ferromagnetic chain system, a degenerate parabolic system modeling spin dynamics in condensed matter physics. A
generalized version of the ferromagnetic chain system is

Zt = Z ×Zxx + f (x, t, Z), (3)

where Z = (u, v, w) is an unknown 3-dimensional vector-valued function, f (x, t, Z) is a given 3-dimensional vector-
valued function of x, t and Z, and “×” denotes the cross-product of two 3-dimensional vectors. The equation generalizes
the Landau-Lifshitz equation for isotropic Heisenberg chains.

Zhou andGuo considered the boundary problem for Equation (3) in a rectangular domainQT = {0⩽ x⩽ l, 0⩽ t ⩽ T}.
They studied three types of boundary conditions:

1. Dirichlet: Z(0, t) = Z(l, t) = 0,
2. Neumann: Zx(0, t) = Zx(l, t) = 0,
3. Mixed: Z0, t = Zx(l, t) = 0 or Zx(0, t) = Z(l, t) = 0,

and the initial condition Z(x, 0) = Z0(x).
Equation (3) can be regarded as the strongly degenerate parabolic system, since the coefficient matrix of second-order

derivatives is singular. Therefore, Zhou and Guo introduced a system with a small diffusion term, named spin system.

Ut = εUxx +U ×Uxx + f (x, t, U). (4)

They used Leray-Schauder fixed point theorem to obtain the unique weakly global solution of Equation (4). The
viscosity term εUxx with ε > 0 can guarantee the solutions of Equation (4) are sufficiently smooth at any t > 0, so that one
can directly use the equation making the “a priori” estimates and obtaining the uniform bounds which are independent
of ε > 0. Finally, taking ε → 0, the existence of the weak solutions of Equation (3) can be obtained under the following
assumptions:

1. f (x, t, U) is continuously differentiable with respect to x and U , with

ξ · fU (x, t, U)ξ ⩽ b|ξ |2, ∀ξ ∈ R3,

holds for any (x, t, U) ∈ QT ×R3.
2. For any (x, t, U) ∈ QT ×R3, there is the inequality

| fx(x, t, U)|⩽ c(x, t)|U |3 +d(x, t),
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where c(x, t) ∈ L∞(QT ), d(x, t) ∈ L2(QT ).

3. U0(x) ∈ w1
2(0, l).

Definition 1 ([17], Definition 1) The 3-dimensional vector-valued functionU(x, t) ∈ L2((0, T ); w(1)
2 (0, l))∩C(QT )

is called the weak solution of the boundary problem for Equation (3), if for any test function φ(x, t) ∈ Φ, the integral
relation

∫∫
QT

[φtU −φx(U ×Ux)+φ f (x, t, U)]dxdt +
∫ l

0
φ(x, 0)U0(x) = 0,

holds, where φ ∈C(1)(QT ), φ(x, T ) = 0, and φ(0, t) = 0 (or φ(l, t) = 0) when the boundary condition at x = 0 (or x = l)
is U(0, t) = 0 (or U(l, t) = 0).

Theorem 2 ([17], Theorem 5) Suppose that Equation (3) and the initial vector-valued dataU0 satisfy the assumptions
above. Then the Neumann boundary problem of system (3) has at least one global weak solution:

U(x, t) ∈ L∞((0, T ); W (1)
2 (0, l))∩C(1/2, 1/4)(QT ), (5)

where U(x, t) ∈C(α, β )(QT ) means that U(x, t) is α-, β -order Hölder continuous on x, t respectively.
Theorem 3 ([17], Theorem 6) Suppose that the homogeneous Equation (3) (i.e. f (x, t, 0)≡ 0) and the initial vector-

valued data U0 satisfy the assumptions above. Then the Dicichlet and mixed problem of Equation (3) has at least one
global weak solution:

U(x, t) ∈ L∞((0, T ); W (1)
2 (0, l))∩C(1/2, 1/4)(QT ).

Remark 1 Zhou and Guo [17] also established the existence of weak solutions for boundary value problems
associated with the ferromagnetic chain system in a semi-infinite domain Q∗

T = {x ∈ R+, 0 ⩽ t ⩽ T}. Then they
generalized the existence of weak solutions into higher spatial dimensions and obtain similar results to 1D cases.

Later in 1991, Zhou, Guo, and Tan [18] investigated the Cauchy problem for a system of ferromagnetic chains
incorporating the Gilbert damping term:

Zt =−εZ × (Z ×Zxx)+Z ×Zxx, (6)

where Z = (u, v, w) is a unit vector field (|Z|= 1), and ε ⩾ 0 is the damping coefficient. This system combines nonlinear
dispersion (Z ×Zxx) and degenerate dissipation (−εZ × (Z ×Zxx)). Zhou, Guo, and Tan estibalished the existence and
uniqueness of smooth solution for Cauchy problems of Equation (6) by employing the technique of spatial differences and
essential a priori estimates of higher-order derivatives in Sobolev spaces, which is the first result for the global smooth
solution with large data for the Landau-Lifshitz equations:

Theorem 4 ([18], Theorem 5) Suppose that Z0(x)∈Ha(R) for some a⩾ 4. Then the Cauchy problem for the system
of ferromagnetic chains described in equation (6) possesses a unique global smooth solution such that

Z(x, t) ∈
[a/2]⋂
s=0

W s
∞(0, T ; Ha−2s(R)),
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with a−2s ⩾ 0.
In 2011, Pu and Guo [19] considered the following generalized periodic fractional Landau-Lifshitz-Gilbert equation.


vt = av×Λ2α v+bv(v×Λ2α v),

v(0) = v0 ∈ Hα ,

(7)

where v(x, t) is a three-dimensional vector that represents the magnetization, and a, b ⩾ 0 are real numbers. The square
root of the Laplacian, Λ = (∆)1/2, is the Zygmund operator, and × denotes the cross product for R3-valued vectors. The
last term v× (v×Λ2α v) is usually refered to as the Gilbert damping term and hence b > 0 is called the Gilbert damping
parameter. Specially, when b = 1, Equation (7) becomes the standard Landau-Lifshitz equation. When b = 0, Equation
(7) corresponds to the fractional Heisenberg equation. When a = 1, Equation (7) can be transformed into the harmonic
map heat flow on the unit sphere.

Pu and Guo [19] demonstrated the existence of a global weak solution to the Equation (7) using the Ginzburg-Landau
and the Galerkin approximation. Given that the nonlinear term is nonlocal and of full order, specific structural properties of
the equation, commutator estimates, and various fractional calculus inequalities were utilized to establish the convergence
of the approximating solutions. Furthermore, this equation can be viewed as a generalization of the heat flow of harmonic
maps to fractional order.

Definition 2 ([19], Definition 1) Denote Ω = [0, 2π]d . Let α ∈ (0, 1), v0 ∈ Hα , |u0|= 1 a.e. We say that v is a weak
solution of Equation (7) if

·for all T > 0, u ∈ L∞(0, T ; Hα(Ω));
·for all φ ∈C∞(QT ), there holds when b = 0,

∫
QT

vtφ =−a
∫

QT

Λα v ·Λα(v×φ)dxdt,

where QT = (0, T )×Ω; or when b > 0,

∫
QT

vtφ = a
∫

QT

(
v×Λ2α v

)
·φdxdt −

∫
QT

b
(
v×Λ2α v

)
· (v×φ)dxdt.

Theorem 5 ([19], Theorem 1) Let α ∈ (0, 1). Then for all v0 ∈ Hα(Ω), |v0| = 1 a.e., there exists at least a weak
solution for the fractional Landau-Lifshitz-Gilbert equation (7) such that

1. when b = 0,

v(x, t) ∈ L∞(0, T ; Hα(Ω))
⋂

C0, α
α+m (0, T ; L2(Ω)),

where m > α +d/2;
2. when b > 0,

v(x, t) ∈ L∞(0, T ; Hα(Ω))
⋂

C0, r−1
r (0, T ; Lr(Ω)),
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where r < 2, 1 ⩽ r ⩽ d
d−α or r = 2, d = 1, α > 1/2.

Later in 2013, Pu and Guo [20] considered the following fractional Landau-Lifshitz equation without Gilbert
damping.


Ut =U ×Λ2αU,

U(x, 0) =U0(x).

(8)

Here U(x, t): T d ×R+ → S2 is a three-dimentional vector representing the magnectization, where T d is the d-
dimensional torus with d ⩽ 3.

In [20], Pu and Guo demonstrated the local existence of classical solutions by integrating Kato’s method with the
vanishing viscosity approach and by meticulously selecting the appropriate function space. Considering that Equation
(8) is both strongly degenerate and nonlocal, and that no regularizing effect is present, extending this smooth solution
to a global one presents a significant challenge. In this paper, they established several regularity criteria demonstrating
that the solution is global under the assumption of additional regularity, which appears minimal from the perspective
of dimensional analysis. Due to the unique structure of the equation, the conventional integer-order Sobolev space Hm

is inadequate, as it lacks a divergence-free condition, which is typically present in equations from incompressible fluid
mechanics. Instead, the authors employed the fractional space Hmα as the working space to establish the local existence
of a solution. However, extending the local classical solution to a global one is challenging due to its nonlocal nature,
strong degeneracy, and the absence of a regularizing effect. Unlike standard equations, to ensure the convergence of
approximate solutions, the authors introduced a commutator structure to address the nonlocal properties of the fractional
Laplacian, thereby facilitating the attainment of a global solution.

Theorem 6 ([20], Theorem 3) Let d ⩽ 3, α ∈ (0, 1/2], and U0 ∈ Hs+α with s ⩾ 4. Then there exists a T ∗ > 0
depending only on U0 such that Equation (8) possesses a unique classical solution U ∈C([0, T ∗]; Hs+α ∩C2).

Theorem 7 ([20], Theorem 4) Let d ⩽ 3, α ∈ (0, 1/2] and U0 ∈ Hs+α with s ⩾ 4, such that there exists a classical
solution U ∈C([0, T ∗]; Hs+α ∩C2) to Equation (8). Then for any 0 < T < ∞, if when α = 1/2 that

∫ T

0
∥∇U∥L∞dt < ∞,

∫ T

0
∥ΛU∥L∞dt < ∞,

or when 0 < α < 1/2 that

∫ T

0
∥∇U∥Lpdt < ∞,

∫ T

0

∥∥Λ2αU
∥∥

L∞dt < ∞,

for some p > 1 satisfying 2α +d/p ⩽ 1, then the solution U exists globally in time, i.e. U ∈C([0, ∞); H1+α).
Let U(x, t) be a solution of Equation (8), then the scaling Uλ (x, t) =U(λx, λ 2α t) is also a solution. Notice that

∥∥∥ΛβUλ

∥∥∥
Lr(0, T ; Ls)

=
∥∥∥ΛβU

∥∥∥
Lr(0, T ; Ls)

,

holds if and only if
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β =
2α
r

+
d
s
. (9)

Therefore, the regularity criteria may involve the finiteness of
∥∥ΛβU

∥∥
Lr, s for β , r, s satisfying (9). Therefore, Pu and

Guo also obtained a regularity criteria concerned with
∥∥ΛβU

∥∥
Lr, s :

Theorem 8 Let d ⩽ 3, α ∈ (0, 1/2] and U0 ∈ Hs+α with s ⩾ 4, so that there exists a classical solution U ∈
C([0, T ∗]; Hs+α ∩C2) to Equation (8). Then for any 0 < T < ∞, if

∫ T

0

∥∥Λ2αU(t)
∥∥

L∞ < ∞, (10)

∫ T

0

∥∥∥ΛβU(·, t)
∥∥∥

Ls
dt < ∞, (11)

for some β ⩾ 2α +d/s and 1 < s < ∞, then the local solution can be extended into a global classical solution and remains
in L∞(0, T ; Hm+α).

Definition 3 ([20], Definition 1) Let d ⩽ 3, α ∈ (0, 1/2] andU0 ∈ Hα . We say thatU is a weak solution of Equation
(8) if

1. for all T > 0, U ∈ L∞(0, T ; Hα(T d));
2. for all three-dimensional vectors ϕ ∈C∞(T d

T ), there holds

∫
T d

U ·ϕt −
∫

T d
T

ΛαU ·Λα(U ×φ)−
∫

T d
ϕ(x, 0) ·U0 = 0,

where T d
T = (0, T )×T d .

Theorem 9 ([20], Theorem 6) Let d ⩽ 3, α ∈ (0, 1/2] andU0 ∈ Hα(T d). Then there exists at least one global weak
solution for Equation (8) in the sense of Definition 3, such that for any T > 0,

U ∈ L∞
(

0, T ; Hα
(
T d

))
∩C0, α

α+s

(
0, T ; L2

(
T d

))
, ∀s > max{2, α +d/2},

and satisfy

sup
0⩽t⩽T

∥U∥Hα ⩽ ∥U0∥Hα .

In 2004, Ding and Guo [21] rewrote Equation (2) as

1
2

vt −
1
2
(v× vt) = ∆v+ v|∇v|2 +H(v)−H(v)v, in B3 ×R+, (12)

where B3 is the unit ball inR3, centered at 0; H(v) is the nonlocal term satisfying the quasi-steady state Maxwell equations
as follows:

Volume 7 Issue 1|2026| 919 Contemporary Mathematics



curl H(v) = 0, in D ′(R3), (13)

div(H(v)+ v) = 0, in D ′(R3). (14)

They improsed on Eqs. (12)–(14) the initial coondition

v(x, 0) = v0(x), (15)

and the boundary condition

∂v
∂n

|∂B3 = 0. (16)

in Equation (15), |v0(x)| ≡ 1; in Equation (16), n is the unit outer normal to the boundary of B3, v is the zero extension of
v from B3 to R3.

Ding and Guo studied the partial regularity property of stationary solutions to this Landau-Lifshitz equations,
incorporating a nonlocal term in three dimensions (Equation (12)), and analyzed the Hausdorff measure of their singular
sets. The Landau-Lifshitz equations describe the dynamics of ferromagnetic spin chains, making their regularity a
crucial topic in mathematical physics. By introducing the concept of “stationary solutions” and utilizing energy estimates
and monotonicity inequalities, they demonstrated that the singular set possesses zero Hausdorff measure under specific
conditions. In contrast to the conventional approach to harmonic map heat flow, this method does not require the theories
of Hodge decompositions, Hardy space, BMO space and Hardy maximal functions. Only the Hélein technique is used.

Definition 4 ([21], Definition 3.1) A weak solution v of Equation (12) is called a stationary solution if for any
η(x, t) ∈ C1

0(B
3 ×R+, R3), γ(x, t) ∈ C1

0(B
3 ×R+, R3) with η(x, t), γ(x, t), ∇(x, t)η , ∇(x, t)γ bounded on B3 ×R+ and

η , γ ≡ 0 for t = 0 and t ⩾ t∗ > 0 such that x+ τη |∂B3 = Id, t + τγ |∂B3 = Id, there holds

∫ ∞

0

∫
B3
(

1
2

vt −
1
2

v× vt)(
∂vτ

∂τ
)τ=0 +∂+

τ

∫ ∞

0

∫
B3

e(vτ)+ |H(vτ)|2dxdt ⩽ 0,

where vτ(x, t) = v(x+ τη(x, t), t + ττ(x, t)), e(v) = 1
2 |∇v(x, t)|2.

Denote Bρ = Bρ(0), Qρ(z) = Bρ(x)× (t −ρ2, t +ρ2) for z = (x, t).
Theorem 10 ([21], Theorem 5.1) There exist constants c0 > 0 and Ck, l > 0 such that any stationary solution v ∈

H1(Qr(z0)) of Eqs. (12)–(15) satisfying the small energy condition:

r−3
∫

Qr(z0)
|∇v|2dz ⩽ c2 ⩽ c2

0,

is smooth in Qr/2(z0) and

∥∥∥∂ l
t ∇kv

∥∥∥
L∞(Qr/2(z0))

⩽Ck, lr−k−2lc, k, l = 0, 1, 2 · · · .
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Theorem 11 ([21], Theorem 5.2) Let v ∈ H1(B3 × (0, T ); S2) be a stationary solution of Eqs. (12)–(15). There is
an open set Ω ⊆ B3 × (0, T ) such that v is smooth in Ω and

H 3(B3 × (0, T )\Ω) = 0,

where

B3 × (0, T )\Ω =

{
z = (x, t)

∣∣∣∣liminf
r→0

r−3
∫

Pr(z)

∣∣∣∣∇v
∣∣∣∣2 dz ⩾ c0

}
.

2.3 On (generalized) Benjamin-Ono equations

In 1988, Zhou and Guo [22] studied the initial value problem for a nonlinear singular integral-differential equation
of deep water:

vt +2vvx +Hvxx +b(x, t)vx + c(x, t)v = f (x, t), v(0, x) = ϕ(x), (17)

For b = c = 0, Equation (17) reduces to the Benjamin-Ono equation:

vt +2vvx +Hvxx = 0, v(0, x) = ϕ(x). (18)

The study of these equations is of significant interest from both physical and mathematical perspectives. Zhou
and Guo [22] introduced a diffusion term εvxx to convert the Equation (17) into a parabolic form. They combined the
energy methods, fixed-point theory, and compactness to handle singular integrals and nonlinearity. The unique solution
of Equation (17) was built up by the limiting process of the vanishing of the diffusion coefficient ε → 0. Moreover, they
obtained the estimates of the convergence speed in relation to the diffusion coefficient ε .

Theorem 12 ([22], Theorem 8) Denote QT = {x ∈ R, 0 ⩽ t ⩽ T}. Suppose that b(t, x) ∈ W 2, 1
∞ (QT ), c(x, t) ∈

W 2, 0
∞ (QT ) and f (x, t) ∈W 2, 0

2 (QT ) hold for any T > 0, and suppose also that ϕ ∈ H2(R). Then the initial value problem
for Equation (17) has a unique generalized global solution

v ∈ L∞
loc(R

+; H2(R))
⋂

W 1, ∞
loc (R+; L2(R)).

Theorem 13 ([22], Theorem 9) Suppose that ϕ ∈ HK(R) for K ⩾ 2. The initial value problem for Equation (18) has
a unique global solution

v ∈
[K/2]⋂
s=0

W k, ∞
loc (R+; HK−2s(R)).

In 1996, Zhou andGuo [23] established the global well-posedness and considered the large time behavior of the global
solution for the generalized Benjamin-Ono equations (deep water-type equations), including the existence of attractors
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and their dimension estimates. These equations characterize the propagation of internal waves in deep stratified fluids
and incorporate nonlinearity alongside singular integral operators. The general form is:

vt +2vvx +αHvxx −βHvx + γ(x, t)Hv+b(x, t)vx + c(x, t)v = f (x, t), (19)

where H is the Hilbert transform, α > 0, β ⩾ 0 are constants, and

(x, t) ∈ QT = {x ∈ R, 0 ⩽ t ⩽ T}.

Zhou and Guo [23] introduced a diffusion term εvxx to convert the equation into a parabolic form. The existence of
these nonlinear parabolic equations were proved using energy estimates and fixed-point theorems. Then a priori estimates
independent of ε ensure the feasibility of the limit ε → 0. Weak convergence and compactness lemmas were employed
to pass from nonlinear parabolic solutions to the original equation (19). Moreover, they introduced the weighted Sobolev
spaces. Combining with energy estimates and compactness argument, they obtained that with appropriate damping and
nonlinearity conditions, the Cauchy problem possesses a compact global attractor and theHausdorff and fractal dimensions
of the attractor are finite.

Theorem 14 ([23], Theorem 4) Suppose thatα > 0, β ⩾ 0, b(t, x)∈W (2, 1)
∞ (QT ), c(x, t), γ(x, t)∈W (2, 0)

∞ (QT ), f (t, x)
∈ W (2, 0)

2 (QT ), and assume that the initial data v(x, 0) ∈ H2(R). Then Equation (19) has at least one generalized global
solution

v(x, t) ∈ Z: = L∞(0, T ; H2(R))∩W (1)
∞ (0, T ; L2(R)),

which satisfies the Equation (19) in generalized sense and satisfies the initial condition in classical sense.
Theorem 15 ([23], Theorem 5) Suppose that b(x, t) ∈ W (1, 0)

∞ (QT ) and c(x, t), γ(x, t) ∈ L∞(QT ). The generalized
global solution v(x, t) ∈ Z for the Cauchy problem of the nonlinear singular integral-differential equation (19) is unique.

3. Geometric flows and harmonic maps
Generally, the Landau-Lifshitz equation (2) can be generalized to a Riemannian manifold. In this Section we use

the following notations. Let (M, g) be an m-dimensional Riemannian manifold with metric g, “∧” denotes the exterior
operator in Rn, “∗” denotes the Hodge star operator of Rn. ∆M denotes the Laplace-Beltrami operator with respect to the
metric g of M. The Laplace-Beltrami operator and the norm ∥∇u∥ are expressed by

∆Mu =
1
√

g
∂

∂xi

(
gi j√g

∂u
∂x j

)
= gi j

(
∂ 2u

∂xi∂x j − Γ|ki j
∂u
∂xk

)

∥∇u(x)∥2 = ∑
i, j

∑
k

gi j ∂uk

∂xi
∂uk

∂x j .

In 1993, Guo and Hong [24] studied the following Landau-Lifshitz type equation from Riemannian manifolds M
into the unit sphere S2.
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vt =−α1v× (v×∆Mv)+α2v×∆Mv, (20)

where α1 > 0 and α2 are constants. The Equation (20) plays a fundamental role in understanding nonequilibrium
magnetism. Much research has contributed to the study of solitons in the Landau-Lifshitz equation for one-dimensional
spin chains. However, little is known about higher-dimensional motion in the context of the Heisenberg spin chain in
physics.

Guo and Hong [24] proved the global existence and regularity of Equation (20) and established some profound
connections between this equation and harmonic map theory by the methods of extended Sobolev inequalities, local
energy monotonicity and Galerkin approximation method.

Theorem 16 ([24], Theorem 2.6) Let Ω be the flat torus T 2 = R2/Z2. Suppose that ∇v0(x) is a given initial value
in Hs(Ω, S2) satisfting Equation (20) where s is large enough. Then there exists a constant C > 0 such that the periodic
value problem

v|t=0 = v(x, 0) = v0(x),

with the initial value v0, has a smooth global solution v(x, t) provided ∥∇v0∥⩽C.
Remark 2 Theorem 16 is also true for the Cauchy problem on R2.
Theorem 17 ([24], Theorem 3.13) Let M be a closed Riemannian surface. For any initial value v0 ∈ H1, 2(M; S2)

there exists a unique solution v of Equation (20) on M× [0, ∞) which is regular on M× (0, ∞) with exception of at most
finitely many points (xm, T m), 1 ⩽ m ⩽ L, characterized by the condition that

limsup
T→T m−

ER(v(·, T ), xm)> ε1, ∀R ∈ (0, R0].

In higher dimensions, suppose that M be a compact d-dimensional Riemannian manifold without boundry, and d ⩾ 3.
Guo and Hong proved that Equation (20) is equivalent to the following equation

α1

α2
1 +α2

2
vt −

α2

α2
1 +α2

2
v× vt = ∆v+ |∇v|2v. (21)

Definition 5 ([24], Weak solution) A vector function v(x, t) is said to be a global weak solution of Equation (21), if
v is defined a.e. M×R+ such that

1. v ∈ L∞(0, ∞; H1, 2(M)) and vt ∈ L2((0, ∞); L2(M));
2. |v(x, t)|2 = 1 a.e. on M×R+;
3. Equation (21) holds in the sense of distribution;
4. v(x, 0) = v0(x) in the trace sense.
Theorem 18 ([24], Theorem 4.2) Let α1 > 0 in (20). For any v0 in H1, 2(M, S2), there exists a global weak solution

of Equation (21).
Later in 1996, Guo and Wang [25] considered the generalized Landau-Lifshitz:

vt = α1(∆Mv+ |∇v|2v)+α2 ∗ [v∧a2(v)∧·· ·∧an−2(v)∧∆Mv], (22)
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where ai(v), (i = 2, · · · , n−2) are smooth vector function from Sn−1 to Rn. They constructed local solutions of Cauchy
problem for Equation (22) via local energy control and compactness methods. They established connections between
harmonic maps and solutions of the generalized Landau-Lifshitz equation by employing methods analogous to those used
to demonstrate the existence of heat flow for harmonic mappings.

Theorem 19 ([25], Theorem 1.2) Assume that M is a smooth closed Riemannian manifold, initial data v0 = v(x, 0)∈
C2(M, Sn−1), and that ai(v)(i = 2, · · · , n−2) are smooth vector functions. Then the Cauchy problem for Equation (22)
admits a unique smooth maximal solution defined on the subinterval [0, ω]⊆ [0, T ].

Combining the energy inequality and higher-order regularity estimates, they extended local solutions globally if the
initial energy is small enough on T 2.

Theorem 20 ([25], Theorem 2.1) SupposeM =T 2, v0 ∈Hk(T 2, Sn−1)(k ⩾ 4) andE(v0):= 1
2 |∇v|2 is small enough.

Then Equation (22) admits a global classical solution.
Moreover, Guo and Wang analyzed singularities in harmonic map heat flow using energy concentration and Struwe’

s methods, demonstrating that the solution is regular except at a finite number of points. Assuming that the initial energy
is small, the solution remains globally regular.

Theorem 21 ([25], Theorem 3.1) Let v0 ∈H1(M, Sn−1), there exists a unique solution to Equation (22) onM× [0,∞),
which is regular onM× [0, ∞)with exception of at most finitely points (xm, T m), 1⩽m⩽ L, characterized by the condition
that

limsup
T→T m−

Ea(v(·, T ), xm)> ε for all a ∈ (0, R0].

At a singularity point (x, t), a smooth harmonic map v: S2 → Sn−1 separates in the sense that for sequence xm →
x, tm ↗ t, Rm ↘ 0 as m → ∞, the family

vm(x)≡ v(exp(Rmx), tm)→ ṽ in H2
loc(R2, Sn−1),

where ṽ has finite energy and extends to a smooth harmonic map v: S2 → Sn−1. Finally, for suitable sequence tm → ∞ the
sequence of maps v(·, tm) converges weakly in H1(M, Sn−1) to a smooth v∞: M → Sn−1.

Theorem 22 ([25], Theorem 3.2) Let

b = inf
{

E(v): v: S2 → Sn−1 be a nonconstant smooth harmonic map
}
.

If E(v0)< b, then the solution is globally regular on M× [0, ∞).

4. (Random) attractors
Global or pullback attractors are crucial for comprehending the long-term dynamics of Partial Differential Equations

(PDEs). Once the existence of random attractors in random dynamical systems or stochastic PDEs is established, it
becomes imperative to analyze their finite fractal or Hausdorff dimension to explore the infinite-dimensional dynamics
of stochastic PDEs.

In 2009, Guo and Huang [26] investigated the global well-posedness and the existence of random attractors for the
three-dimensional viscous stochastic primitive equations that model large-scale oceanic motion under random forcing.
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They examined the initial boundary value problem for these equations as follows. Given the stochastic nature of the
nonlinear evolution equations, it is natural to study their random attractors.



∂w
∂ t +(w ·∇)w+Φ(w) ∂w

∂ z + f k×w+∇pb −
∫ z
−1 ∇T dz′−∆w− ∂ 2w

∂ z2 = Ψ,

∂T
∂ t +(w ·∇)T +Φ(w) ∂T

∂ z −∆T − ∂ 2T
∂ z2 = Q,

∫ 0
−1 ∇ ·wdz = 0,

∂w
∂ z = 0, ∂T

∂ z =−αuT, on Γu,

∂w
∂ z = 0, ∂T

∂ z = 0, on Γb,

w ·~n = 0, ∂w
∂~n ×~n = 0, ∂T

∂~n = 0, on Γl ,

U |t=t0 =
(

w|t=t0 , T |t=t0

)
=Ut0 =

(
wt0 , Tt0

)
,

(23)

where the unknown functions are w, T, p. w = (w(1), w(2)) is the horizontal velocity, p is the pressure, k is the vertical
unit vector T is the temperature, f = f0(β + y) is the Corilis parameter, Q(x, y, z) is a given heat source, αu is a positive
constant, −→n is the norm vector of Γl , pb is a certain unknown function at Γb, and

Φ(w)(t, x, y, z) =−
∫ z

−1
∇ ·w(t, x, y, z′)dz′.

The domain of (23) is

Ω = {(x, y, z): (x, y) ∈ M, z ∈ (−1, 0)},

where M is a smooth bounded domain in R2. Γu = M ×{0}, Γb = M ×{−1}, Γl = ∂M × [−1, 0]. Ψ(t, x, y, z) is an
additive white noise with the form

Ψ(t, x, y, z) = G
∂V
∂ t

,

where the derivative is in the Itô integral sense, the random process V is a two-sided in time cylindrical Wiener process
in H1 with the form

V (t) =
+∞

∑
i=1

vi(t, ω)ei,

and G is a Hilbert-Schimidt operator from H1 to H1+2c0(Ω)×H1+2c0(Ω) for some c0 > 0, i.e.
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+∞

∑
i=1

∥Gei∥2
1+2c0

<+∞.

Here v1, v2, · · · is a sequence of independent standard one-dimensional Brownian motions on a complete probability
space (Ω, F , P) with expectation denoted by E, and H1+2c0(Ω) is the usual Sobolev space with non-integer order.

The work spaces used in [26] are as follows.

V1 = {w ∈C∞(Ω)2;
∂w
∂ z

|Γw, Γb}=0, w·−→n |Γl =0, ∂w
∂−→n ×−→n |Γl =0,

∫ 0
−1 ∇·wdz=0,

V2 = {T ∈C∞(Ω);
∂T
∂ z

|Γw}=−αwT, ∂T
∂ z |Γb=0, ∂T

∂−→n |Γl =0,

V1 = closure of V1 with respect to the norm ∥·∥1,

V2 = closure of V2 with respect to the norm ∥·∥1,

W =V1 ×V2.

Guo and Huang’s results [26] are as follows.
Theorem 23 ([26], Theorem 1.1) If Q ∈ H1(Ω) andWt0 ∈W , then for any given T > t0, there exists a unique strong

solution W of the system (23) on the interval [t0, T ]; moreover, the strong solution W is dependent continuously on the
initial data.

Let (Ω, F , P) be a complete probability space, {θt : Ω → Ω, t ∈ R} a family of measure preserving transformation
such that θ0 = idΩ and θt+s = θt ◦θs for all t, s ∈R. {θt} is called a metric dynamical system on Ω, which represents the
noise driving a random dynamical system. Assume that θt is ergodic under P.

Definition 6 ([26], Random dynamical system; Definition 6.1) A measurable map φ: R+×Ω×X → X , (t, ω,U)→
φ(t, ω)U is called a random dynamical system if φ satisfies the cocycle property: φ(0, ω) = idX , φ(t + s, ω) =

φ(t, θsω)φ(s, ω) for all t, s ∈ R+ and P− a.s. ω ∈ Ω. If φ(t, ω): X → X is continuous, then φ is called a continuous
random dynamical system.

Definition 7 ([26], Random compact set; Definition 6.2) Let L: Ω → 2X , 2X be the set of all subsets of X . L is called
a random compact set if L(ω) is compact P−a.s. and the map ω → d(V, L(ω)) is measurable for any U ∈ X , where

d(V, L(ω)) = inf
V1∈L(ω)

d(V, V1).

Definition 8 Let A(ω), B(ω) be two random sets.
1. A(ω) attracts B(ω) if limt→+∞ d(φ(t, θ−tω)B(θ−tω), A(ω)) = 0, P−a.s.
2. A(ω) absorbs B(ω) if there exists tB(ω) such that for all t ⩾ tB(ω),

φ(t, θ−tω)B(θ−tω)⊆ A(ω), P−a.s.
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Definition 9 ([26], Random attractor; Definition 6.4) A random set A (ω) is said to be a random attractor for the
random dynamical system φ if P−a.s.

1. A (ω) is a random compact set.
2. A (ω) is invariant, that is, φ(t, ω)A (ω) = A (θtω), for ∀t ⩾ 0.
3. A (ω) attracts all deterministic bound sets B ⊆ X , i.e.

lim
t→+∞

d(φ(t, θ−tω)B, A(ω)) = 0, P−a.s.

Remark 3 ([26], Remark 6.5) φ(t, θ−tω)U can be interpreted as follows. When t is in motion, the trajectory
φ(t, θ−tω)U consistently corresponds to the position at t = 0. Consequently, the random attractor is also referred to as
the random pull-back attractor.

Theorem 24 ([26], Theorem 1.2) The system (23) has a unique random pull-back attractor A (ω) which captures
all trajectories initiated at time−∞ and evolved, under the action of the shift θt from t =−∞ to t = 0. The attractor A (ω)

enjoys the following:
1. A (ω) is bounded and weakly closed in W ;
2. A (ω) is invariant in the following sense: φ(t, ω)A (ω) = A (θtω), ∀t ⩾ 0;
3. A (ω) is attracting which means that, for any deterministic bounded set D inW , the set φ(t, θ−tω)D converge to

A (θtω) with respect to W -weak topology as t →+∞, i.e.,

lim
r→+∞

dω
W (φ(t, θ−tω)D, A (ω)) = 0, P−a.s.,

where the distance dω
W is induced by the W -weak topology.

Later in 2011, Guo and Huang [27] considered the global well-posedness and the existence of random attractors for
the three-dimensional viscous primitive equations of the large-scale moist atmosphere. They studied the initial boundary
value problem of 3D viscous stochastic primitive equations



∂u
∂ t +∇uu+W (u) ∂u

∂ξ + f
R1

k×u+grad ϕs +
∫ 1

ξ
bP
p gard [(1+aQ)T ]dξ ′−∆u− ∂ 2u

∂ξ 2 = 0,

∂T
∂ t +∇uT +W (u) ∂T

∂ξ − bP
p (1+aQ)W (u)−∆T − ∂ 2T

∂ξ 2 = Q1,

∂Q
∂ t +∇uQ+W (u) ∂Q

∂ξ −∆Q− ∂ 2Q
∂ξ 2 = Q2,

∫ 1
0 div u dξ = 0,

ξ = 1: ∂u
∂ξ = 0, ∂T

∂ξ =−αsT, ∂Q
∂ξ =−βsQ,

ξ = 0: ∂u
∂ξ = 0, ∂T

∂ξ = 0, ∂Q
∂ξ = 0,

U |t=0 = (u|t=0, T |t=0, Q|t=0) =U0 = (u0, T0, Q0),

(24)
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where u = (uθ , uφ) denotes the horizontal velocity, ω stands for the vertical velocity in p-coordinate system, ϕ is the
geopotential, Q is the mixing ratio of water vapor in the air, T is temperature, f = 2cosθ is the Coriolis parameter, R1

is the Rossby number, k is vertical unit vector, P is an approximate value of pressure at the surface of the earth, p0 is
the pressure of the upper atmosphere and p0 > 0, the variable ξ satisfies p = (P− p0)ξ + p0(0 < p0 ⩽ p ⩽ P), Q1, Q2

are known functions on S2 × (0, 1), a is a positive constant a ≈ 0.618, b is a positive constant. The space domain of the
system (24) is Ω = S2 × (0, 1), and

ω(t; θ , φ, ξ ) =W (u)(t; θ , φ, ξ ) =
∫ 1

ξ
div u(t; θ , φ, ξ ′)dξ ′,

ϕ(t; θ , φ, ξ ) = ϕs(t; θ , φ)+
∫ 1

ξ

bP
p
(1+aQ)T dξ ′.

The work spaces used in [27] are as follows.

Ṽ1 = {u: u ∈C∞(T Ω|T S2),
∂u
∂ξ

|ξ=0 = 0,
∂u
∂ξ

|ξ=1 = 0,
∫ 1

0
div u dξ = 0},

Ṽ2 = {T : T ∈C∞(Ω),
∂T
∂ξ

|ξ=0 = 0,
∂T
∂ξ

|ξ=1 =−αsT},

Ṽ3 = {Q: Q ∈C∞(Ω),
∂Q
∂ξ

|ξ=0 = 0,
∂Q
∂ξ

|ξ=1 =−βsQ},

Ṽ1 = the closure of Ṽ1 with respect to the norm ∥·∥1,

Ṽ2 = the closure of Ṽ2 with respect to the norm ∥·∥1,

Ṽ3 = the closure of Ṽ3 with respect to the norm ∥·∥1,

Ṽ0 = Ṽ1 ×Ṽ2 ×Ṽ3.

Guo and Huang’s results in [27] are as follows.
Proposition 1 ([27], Existence; Proposition 3.1) Let Q1, Q2 ∈ H1(Ω) and U0 = (u0, T0, Q0) ∈ Ṽ0. Then for any

T > 0 given, there exists a strong solution u of the system (24) on the interval [0, T ].
Proposition 2 ([27], Uniqueness; Proposition 3.2) Let Q1, Q2 ∈ H1(Ω),U0 = (u0, T0, Q0)∈ Ṽ0. Then for any T > 0

given, the strong solution u of the system (24) on the interval [0, T ] is unique. Moreover, the strong solution u is dependent
continuously on the initial data.

Theorem 25 ([27], Theorem 3.4) The system (24) possesses a weak universal attractor A =
⋂

s⩾0
⋃

t⩾s S(t)Bρ that
encompasses all trajectories, with closures defined in the context of Ṽ0-weak topology. The Ṽ0-weak universal attractor
A exhibits the following properties:

1. (Weak compact) A is bounded and weakly closed in Ṽ0;
2. (invariant) S(t)A = A , ∀t ⩾ 0;
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3. (attracting) for every bounded set D in Ṽ0, the set S(t)D converge to A with respect to Ṽ0-weak topology as
t →+∞, i.e.,

lim
t→+∞

dω
Ṽ0
(S(t)D, A ) = 0,

where the distance dω
Ṽ0

is induced by the Ṽ0-weak topology.
In 2024, Wang et al. [28] presented comprehensive and unified results concerning the existence, regularity, and finite

fractal dimension estimates of pullback random attractors for a wide range of non-autonomous stochastic hydrodynamical
systems derived from fluid dynamics. They considered the Cauchy problem of the following abstract stochastic
hydrodynamical system in H for t > s with s ∈ R

du(t)+Au(t)dt +B(u(t), u(t))dt +R(t, u(t))dt = g(t)dt +hdW (t), (25)

u(s) = us ∈ H. (26)

Here, H is a separable Hlibert space with the inner product and norm (·, ·) and |·|, respectively. A is an unbounded
self-adjoint positive linear operator on H such that U ⊆ H ⊆ U ′ is a Gelfand triple, where U = Dom(A1/2) with norm
∥ · ∥ =

∣∣A1/2·
∣∣. Let ⟨·, ·⟩ be the duality between U ′ and U . Assume that R(s, ·): H → H is a bounded linear operator

uniformly for s ∈ R, i.e., there exists a constant `1 > 0 independent of s such that

|R(s, u)|⩽ `1|u|, ∀u ∈ H.

Assume that B: U ×U →U ′ is a bilinear continuous mapping with

⟨B(u, w), v⟩=−⟨B(u, v), w⟩, ∀u, v, w ∈U

|⟨B(u, v), w⟩|⩽ `2|u|1/2∥u∥1/2∥v∥1/2|w|1/2∥w∥1/2, ∀u, v, w ∈U

where `2 > 0 is a constant. Assume that h ∈U, g ∈ L2
loc(R,U ′) and the two-sided real-valued Wiener process T is defined

on the probability space (Ω, F , P). Let {θt}t∈R be a family of shift operators on Ω defined by θtω(·) = T (·+ t)−ω(t)
for (ω, t) ∈ Ω×R. Then

(
Ω, F , P, (θt)t∈R

)
is a ergodic metric dynamical system.

By introducing the weakly tempered condition to replace traditional tempered conditions, combining with spectral
decomposition and Lipschitz projection techniques, Wang et al. [28] obtained an improved upper bound estimate for
the fractal dimension of random invariant sets in both Banach space and its subspaces. They also proved asymptotic
compactness of solutions via energy equation method and trajectory estimates, leading to the existence of random
attractors.

Theorem 26 ([28], Theorem 3.8) Assume that g ∈ L2
loc(R, U ′) satisfies

∫ s

−∞
e

1
16 σ1r∥g(r)∥2

U ′dr < ∞, ∀s ∈ R.
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The continuous cocycle Φ for (25)–(26) admits a unique D-pullback random attractor A = {A (s, ω): s ∈ R, ω ∈
Ω} ∈D in H satisfying

A (s, ω)⊆ K (s, ω), ∀(s, ω) ∈ R×Ω,

|A (s, ω)|2 ⩽ |K (s, ω)|⩽ R(s, ω), ∀(s, ω) ∈ R×Ω.

Assume that there are constants `3, `4 such that the bilinear continuous mapping B satisfies

|⟨B(u, v), w⟩|⩽ `3|u|1/2|Au|1/2∥v∥|w|, ∀u ∈ Dom(A), v ∈U, w ∈ H; (27)

|⟨B(u, v), w⟩|⩽ `4|u|1/2∥u∥1/2∥v∥1/2|Av|1/2|w|, ∀u ∈U, v ∈ Dom(A), w ∈ H. (28)

Wang et al. [28] obtained the finite fractal dimension of the random attractors in U and H.
Theorem 27 ([28], Theorem 5.5) Let g ∈ L∞(R, H), Equation (27) and Equation (28) hold. For each s ∈ R and

ω ∈ Ω, we have:
1. The fractal dimension of A (s, ω) has a finite upper bound in H:

dimH A (s, ω)⩽ 3m0

ln2
ln(8

√
m0 +1)< ∞,

where m0 ∈ N is independent of s and ω .
2. The fractal dimension of A (s, ω) has a finite upper bound in U :

dimV A (s, ω)⩽ 3m
ln2

ln
(
8
√

m+1
)
< ∞,

where m ∈ N is independent of s and ω , which is large than m0.
The upper bound here is smaller than that of Zhou et al. [29, Theorem 2.1], which is

16m
5ln2

ln
(√

m/δ +1
)
,

where 0 < δ < 1/16.

5. Harmonic analysis and PDE
5.1 Finite depth fluid equation

In 1994, Guo and Tan [30] studied Cauchy problem for the generalized equation governing finite-depth fluids
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∂tv−G(∂ 2
x v)−∂x

(
vp

p

)
= 0, v(0, x) = v0(x), (29)

where

G( f ) =−iF−1
(

coth(2πδξ )− 1
2πδξ

)
f̂ ,

is a singular integral, and p is an integer larger than 1. Guo and Tan [30] obtained that the solutions to the nonlinear
problem with small initial data for p > 5/2+

√
21/2 decay over time and asymptotically approach the solutions of the

linear problem.
Theorem 28 Let δ ∈ (0, ∞), q = 2p, and p > 5/2 +

√
21/2. Assume that the initial data v0 ∈ H3(R) ∩

W 2, 2p/(2p−1)(R) is sufficiently small. Then the solution v of nonlinear problem (29) satisfying

∥v(t)∥W 2, q ⩽C(1+ |t|)−(1−2/q)/3, (30)

for all t > 0, where the constant C is independent of v and t.
Noticing that Equation (30) has implied that the solution is scattering in H2(R).

5.2 Fractional NLS
In 2011, Guo and Huo [31] consider the Cauchy problem for the fractional NLS

ivt +(−∆)α v+ |v|2v = 0, v(0, x) = v0, (31)

and they obtain the following
Theorem 29 Let 1/2 < α < 1, u0 ∈ L2(R). Then (31) is globally well-posed in L2(R).

5.3 Frequency uniform decomposition methods

In [32], Feichtinger introduced the notion of modulation spaces Ms
p, q via short time Fourier transform Vg, whose

norm is defined by

∥ f∥Ms
p, q = ∥⟨ξ ⟩sVg f∥Lp, q(R2d), Vg f (x, ξ ): =

∫
Rd

f (t)g(x− t)e−itξ dt

for a smooth cut-off function g. Frequency uniform decompositions can be regarded as the frequency-discrete version of
Vg which are defined as follows. Let ρ be a smooth cut-off function adapted to the unit cube [−1/2, 1/2]d and ρ = 0
outside the cube [−3/4, 3/4]d .

We writet ρk = ρ(·− k) and assume that
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∑
k∈Zd

ρk(ξ )≡ 1, ∀ ξ ∈ Rd .

The frequency uniform decomposition operators are defined as follows:

2k: = F−1ρkF , k ∈ Zd .

Let 1 ⩽ p, q ⩽ ∞, s ⩾ 0, we can define the modulation spaces which have the exponential regularity,

∥ f∥Es
p, q : =

∥∥∥{2s|k|2k f}k∈Zd

∥∥∥
`q(Lp)

and Ms
p, q has an equivalent norm ∥ f∥Ms

p, q : =
∥∥{⟨k⟩s2k f}k∈Zd

∥∥
`q(Lp)

(cf. [33]).
In 2006, Wang, Zhao and Guo [34] first applied the frequency uniform decomposition techniques to study nonlinear

PDE, which have been developed to a systematic method in the past two decades. Roughly speaking, using modulation
spaces to study nonlinear evolution equation, an advantage is that the regularity of modualtion spaces are much lower than
that of Sobolev spaces, for instance, Hd/2+ ⊂ M0

2, 1 = E0
2, 1 ⊂ L∞ ∩L2 are optimal embeddings, where ∥ f∥Hs = ∥⟨ξ ⟩s f̂∥L2 .

The initial value problem for the Complex Ginzburg-Landau (CGL) equation was studied by using Es
p, q:

vt − (a+ iα)∆v+(b+ iβ )|v|2κ v+νv = 0, v(0, x) = v0(x), (32)

where v(t, x) is a complex valued function of (t, x) ∈ R+×Rd , R+ = [0, ∞). a > 0, b ⩾ 0, κ ∈ N, α, β , ν ∈ R. v0 is a
complex valued function of x ∈ Rd . Denote

G1(Rd) =

{
f ∈C∞(Rd): ∃ρ, M > 0 s.t. ∥ f∥Ḣm ≤ M

m!
ρm , ∀m ∈ Z+,

}

and G1(Rd) is said to be the Gevrey 1-class.
One can show that G1(Rd) is the collection of all Eλ

2, 1, λ > 0, that is G1(Rd) = ∪λ>0Eλ
2, 1. Wang et al. [34] obtained

the following result:
Theorem 30 Let a > 0, κ ∈ N; b, α, β , ν ∈ R; u0 ∈ E0

2, 1(Rd), n ≥ 1. Then there exists T ∗: = T ∗(∥u0∥E0
2, 1

)> 0
such that Equation (32) has a unique solution

u ∈Cloc([0, T ∗); E0
2, 1(Rd)). (33)

Moreover, this solution has the Gevrey 1-class regularity effect: there exists t0 > 0 such that
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
u(t) ∈ Ect

2, 1 ⊂ G1(Rd)⊂C∞(Rd), ∀ t ∈ [0, t0],

u(t) ∈ Ect0
2, 1 ⊂ G1(Rd)⊂C∞(Rd), ∀ t0 < t < T ∗,

(34)

and for any T < T ∗,

sup
0≤t≤T

∥u(t)∥
E

c(t0∧t)
2, 1

≤C(T, ∥u0∥E0
2, 1

). (35)

Further, if b > 0 and |α|(dκ −2)/a < 2
√

dκ −1, then the above solution is a global one, i.e. T ∗ = ∞ in (33)–(35).
The proof of the above Theorem is based on the frequency uniform decomposition and contraction mapping, the

solutions map u0 → u(t) is continuous from E0
2, 1 to Ec(t0∧t)

2, 1 , ∀ 0 < t ⩽ T , so the regularity of the solution in Ec(t0∧t)
2, 1 is

preserved if the initial data have a small perturbation E0
2, 1.

5.4 On Davey-Stewartson system

In 1999, Guo and Wang [35] considered the Cauchy problem for the generalized Davey-Stewartson system, and
studied the Cauchy problem of the following generalized Davey–Stewartson systems:



iut +△u = a|u|α u+b1uvx1 ,

△v = b2(|u|2)x1 ,

u(0, x) = u0(x),

(36)

where u(t, x) and v(t, x) (x = (x1, ..., xd)) are complex valued functions of (t, x) ∈ R+×Rd , △ is the Laplace operator
on Rn, a, b1, b2 ∈ R. Guo and Wang [35] obtained the following global well-posedness results

Theorem 31 Let d = 2. 1 ⩽ s ⩽ 2 and u0 ∈ Hs. Suppose that one of the following conditions holds:
(i) a > 0, 2 < α < ∞;
(ii) α = 2, a ⩾ max(0, b1b2);
(iii) α = 2, b1b1 ⩾ 0 and (b1b2 −a)∥u0∥2

L2 < 4;
(iv) α = 2, b1b1 < 0 and −a∥u0∥2

L2 < 4;
(v) 1 ⩽ α < 2, b1b2∥u0∥2

L2 < 4.

Then, Equation (36) has a unique solution u ∈ Cloc(0, ∞; Hs)∩Lγ(r)
loc (0, ∞; Hs, r) ∩ C(0, ∞; H1) for any r ∈ [2, ∞)

and 2/γ(r) = d(1/2−1/r).
Theorem 32 Let d = 3. 1 ⩽ s ⩽ 2 and u0 ∈ Hs. Suppose that one of the following conditions holds:
(i) a > 0, 2 < α < 4;
(ii) α = 2, a > 0 and a ⩽ b1b2.
Then, (1.4) has a unique solution u ∈ Cloc(0, ∞; Hs)∩ Lγ(r)

loc (0, ∞; Hs, r) ∩ C(0, ∞; H1) for any r ∈ [2, 6) and
2/γ(r) = d(1/2−1/r).
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6. Variation methods and blowup solutions
In 2013, Gan et al. [36] constructed a kind of blow-up solutions of the generalized Zakharov system with magnetic

fields



i∂tE+∆E−nE+ i(E∧B) = 0,

ntt − c2
0∆n = c2

0∆|E|2,

∆B− iη∇× (∇× (E∧E))+βB = 0,

E(0, x) = E0(x), n(0, x) = n0(x), nt(0, x) = n1(x),

(37)

where η > 0, β ⩾ 0, E: R+ × R2 → C3, n: R+ × R2 → R, B: R+ × R2 → R3. Take E = (E1, E2, 0) and B =

−iηF−1 |ξ |2
|ξ |2−β F (E∧E). For n1 ∈ H−1, one can find w0 ∈ L2 and v0 ∈ L2 such that n1 = −divv0 +w0. Then the

system (37) can be re-written as



i∂tE+∆E−nE+ i(E∧B(E)) = 0

nt =−divv+w0

vt =−c2
0∇

(
n+ |E|2

)
E(0, x) = E0(x), n(0, x) = n0(x), v(0, x) = v0(x),

(38)

The above generalized Zakharov System describes the spontaneous generation of a magnetic field in a cold plasma
by investigating two time-scales which refer to the fast electron motions on a time-scale corresponding to the plasma
frequency cope and to the ion motion, respectively, cf. [37].

Let λ = 1/ωc0, ω > 0. We consider the solution of the following equations


∆P−P+ ηP

1+η F−1 |ξ |2
|ξ |2−βc2

0(T−t)2λ 2 FP2 = PN
1+η ,

λ 2(r2Nrr +6rNr +6Nr)−∆N = ∆|P|2,
(39)

By resorting to the solutions (P, N) of the system (39), Gan et al. [36] constructed a kind of blow-up solutions of the
system (37) and they obtained the following:

Theorem 33 Let 0 < T < ∞. There exists λT > 0 such that for any λ ∈ (0, λT ), the system (39) has a solution
(Pλ , T−t , Nλ , T−t) which leds to a blowup solution (E, n, B) of the system (37) satisfying

E = (E1, −iE1, 0) , n(t, x) =
ω2

(T − t)2 Ñ
(

xω
T − t

)
,

with
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E1 =
1√
2

ω
T − t

e
i
(

θ− |x|2

4(T−t)2
+ ω2

T−t

)
P̃
(

xω
T − t

)
,

B =

(
0, 0,

ω2

(T − t)2 B̃
(

xω
T − t

))
,

where (P̃, Ñ) = (Pλ , T−t/(1+η)1/2, Nλ , T−t/(1+η)). Moreover, we have

lim
t→T

∥E(t)∥H1 +∥n(t)∥L2 +∥nt(t)∥Ĥ−1 = ∞, (40)

where

Ĥ−1 = {u: ∃w ∈ L2 such that u =−∇ ·w, ∥u∥Ĥ−1 = ∥w∥L2}.

Equation (33) indicates that the solutions of the system (37) blows up at finite time in energy spaces, which is the
self-similar blowup solutions of type-I.

Using a sophisticated variational argument, Gan et al. [38] investigated the Klein-Gordon-Zakharov system with
nonlinearities of varying degrees in two and three spatial dimensions, proving the existence of standing waves with ground
states. Subsequently, by introducing an auxiliary functional and an equivalent minimization problem, they identified two
invariant manifolds associated with the solution flow generated by the Cauchy problem for the Klein-Gordon-Zakharov
system. Furthermore, by constructing a constrained variational problem and utilizing the two invariant manifolds, along
with applying the potential well argument and the concavity method, they established a sharp threshold for global existence
and blowup; see [38] for details.

7. Rogue waves and solitons
Ling et al. [39] investigated the generation mechanism of fundamental rogue wave structures in N-component

coupled systems by utilizing analytical solutions of the nonlinear Schrödinger equation and conducting a modulational
instability analysis. Their findings indicate that the pattern of a fundamental rogue wave is determined by the evolution
energy and the growth rate of the resonant perturbation responsible for its formation. This finding enables the prediction
of rogue wave patterns without the necessity of solving the N-component coupled nonlinear Schrödinger equation.
Furthermore, they demonstrated that N-component coupled nonlinear Schrödinger systems may possess at most N
different fundamental rogue wave patterns.

Ling et al. [40] developed a uniform Darboux transformation for multi-component coupled Nonlinear Schrödinger
(NLS) equations, which encompasses all previously presented Darboux transformations. Utilizing this uniform Darboux
transformation, they derived solutions for single dark solitons and multi-dark solitons in both the defocusing case and
the mixed focusing-defocusing case. Additionally, they illustrated several exact single and two-dark solitons of the three-
component NLS equation through graphical representations.

Volume 7 Issue 1|2026| 935 Contemporary Mathematics



8. Recent progress and open questions
As the end of this paper, we point out some recent progress and present some open questions related to the topics of

this paper. Roughly speaking, if the energy and the “a priori” estimates for the equations cannot provide the upper bounds
of local solutions in Hs, so far we have no systematic method to get the global well-posedness for the equations.

8.1 On (generalized) Zakharov system

The Zakharov system


∂ 2

t v−∆v = ∆
(
|u|2

)
,

i∂tu+∆u = uv,

(41)

in higher spatial dimensions d ⩾ 4 seems to be very difficult problem, up to now the global well-posedness for large data
seems to be open. The Zakharov system is Lagrangian, and formally the L2-norm of u and the energy

E(u, v, vt) =
∫
Rd

(
1
2
|∇u(t)|2 + 1

4
||∇|−1vt(t)|2 +

1
4
|v(t)|2 + 1

2
v(t)|u(t)|2

)
dx

are constant in time, where the existence of local solutions needs more regularity than that of the energy provided in higher
dimensions d ⩾ 4 [41].

For the Generalized Zakharov System (ZSM) considered in Section 6, in 2024, Gan et al. obtained an optimal lower
bound for the blowup rate [42].

8.2 Landau-Lifshitz equation and Schrödinger map

Considering a difficult case of Landau-Lifshitz equation by taking α1 = 0, α2 = 1 in Equation (2), then the Landau-
Lifshitz equation reduces to

Zt = Z ×∆Z, (42)

which has the energy E(Z) =
∫
Rd |∇Z(t, x)|dx, however, in higher dimensional case d ⩾ 3, the energy cannot control

the nonlinear interactions in Z ×∆Z. On the other hand, using the stereographic projection, we see that Equation (42) is
equivalent to the following derivative NLS

i∂tu+∆u =
2ū(∇u)2

1+ |u|2
. (43)

The above derivative NLS has a scaling-critical space Ḣd/2. The global well-posedness of Equation (43) with large
data is open in 3D and higher, and the “a priori” upper bounds in Hd/2 for the smooth solutions of Equation (43) seem to
be a challenge work.

The Schrödinger map which is closely related to Equation (42) and Equation (43) has the same questions and we do
not know if the Schrödinger map is globally well-posed for the smooth large data in higher dimensional cases [43].
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8.3 On BO equation

For the BO equation ut −Huxx +2uux = 0, Killip, Laurens and Visan recently obtained the global wellposedness of
BO equation in the Sobolev spaces Hs(R) for s > −1/2, both on the line and on the circle. Noticing that H−1/2 is the
scaling-critical space of BO equation, so their result is optimal [44].

8.4 On harmonic analysis and PDE

Using harmonic analysis method to study wave equations, it goes back to the work of R. Strichartz in 1976 and has
been a very powerful tool in the study of nonlinear evolution equations. Using modulation spaces to consider nonlinear
evolution equations, one can refer to Wang et al. [33], and Bényi and Okoudjou [45].
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