On the P-Adic Valuations of Stirling Numbers of the Second Kind

S. S. Singh ${ }^{1 *}$, A. Lalchhuangliana ${ }^{1}$, P. K. Saikia ${ }^{2}$
${ }^{1}$ Department of Mathematics and Computer Science, Mizoram University, Aizawl, Mizoram, India
${ }^{2}$ Department of Mathematics, North Eastern Hill University, Shillong, Meghalaya, India
E-mail: sssanasam@yahoo.com

Received: 16 November 2020; Revised: 7 January 2021; Accepted: 15 January 2021

Abstract: In this paper, we introduced certain formulas for p-adic valuations of Stirling numbers of the second kind $S(n, k)$ denoted by $v_{p}(S(n, k))$ for an odd prime p and positive integers k such that $n \geq k$. We have obtained the formulas, $v_{p}(S(n, n-a))$ for $a=1,2,3$ and $v_{p}\left(S\left(c p^{n}, c p^{k}\right)\right)$ for $1 \leq c \leq p-1$ and primality test of positive integer n. We have presented the results of $v_{p}\left(S\left(p^{2}, k p\right)\right)$ for $2 \leq k \leq p-1,2<p<100$ and a table of $v_{p}(S(p, k))$. We have posed the following conjectures from our analysis:

1. Let $p \neq 7$ be an odd prime and k be an even integer such that $0<k<p-1$. Then

$$
v_{p}\left(S\left(p^{2}, k p\right)\right)-v_{p}\left(S\left(p^{2}, p(k+1)\right)=3 .\right.
$$

2. If k be an integer such that $1<k<p-1$, then the p-adic valuations satisfy

$$
v_{p}\left(S\left(p^{2}, k p\right)\right)= \begin{cases}5 \text { or } 6, & \text { if } k \text { is even } \\ 2 \text { or } 3, & \text { if } k \text { is odd }\end{cases}
$$

for any prime $p>7$.
3. For any primes p and positive integer k such that $2 \leq k \leq p-1$, then

$$
v_{p}(S(p, k)) \leq 2 .
$$

Keywords: p-adic valuations, stirling numbers of the second kind, congruence, primes, minimum period

MSC: 05A18,11A51,11B73, 11E95

1. Introduction

Stirling numbers of the first and second kinds were introduced by James Stirling [1]. These numbers have been found to be of great utility in various branches of Mathematics such as combinatorics, number theory, calculus of finite differences, theory of algorithms, etc. The p-adic valuations of Stirling numbers of the second kind appear frequently

[^0]in algebraic topology by Davis [2] to obtain new results related to James numbers, v_{1}-periodic homotopy groups and exponents of $S U(n)$. More details of Stirling numbers of the second kind may be seen on Comtet [3] and Graham et al. [4].

Stirling numbers of the second kind are more interesting than the first kind by their intrinsic nature. There are many interesting results of 2-adic valuations of Stirling numbers of the second kind in the open literature. Recently, Wannemacker's proof [5] of Lengyel's conjecture [6], results of $v_{2}(k!S(c-2 n+u, k))$ for $c>0$ by Lengyel [7], the proof of Wannemacker's conjecture by Hong [8], the works of Amdeberhan et al. [9] and Zhao et al. [10] are other notable results of 2-adic valuation. Gessel and Lengyel [11] proved that for an arbitrary prime p and $n=a(p-1) p^{q}, 1 \leq k \leq n$

$$
v_{p}(k!S(n, k))=\left\lfloor\frac{k-1}{p-1}+\tau(k)\right\rfloor,
$$

where a and q are positive integers such that $(a, p)=1, q$ is sufficiently large, $\frac{k}{p}$ is an odd integer and $\tau(p)$ is a nonnegative integer.

Strauss [12] and Pan [13] discussed the problems of 3-adic valuations and 2-adic valuations of certain sums of binomial coefficients respectively. Sun [14] also presented the results of p-adic valuations for multinomial coefficients. Friedland [15] used 2-adic valuations of certain ratios of factorials to prove a conjecture of Falikman-Friedland-Lowery on the parity of degrees of projective varieties of $n \times n$ complex symmetric matrices of rank at most k. Some more results of p-adic valuations are also given in Gouvea [16], Koblitz [17] and Adelberg [18].

This paper consists of some interesting results about p-adic valuations for a few class of Stirling numbers of the second kind $S(n, k)$. This number $v_{p}(S(n, k)$), where either n or k is related to p, has been obtained independently for some values of p, n and k. The values of $v_{p}(S(n, k))$ are computed by using GP/PARI software and they are presented in Table 1.

2. Materials and methods

Definition 2.1 Let p be a prime. For any non-zero integer a, the p-adic valuation of a, denoted by $v_{p}(a)$, is defined as the exponent of the highest power of p dividing a.

It may be noted that $v_{p}(0)=\infty$ and $v_{p}(a)$ for a non-zero integer a, is a non-negative integer.
So, $v_{3}(25)=0, v_{5}(25)=2$.
Note that, for any prime $p, v_{p}(\pm 1)=0$. For a given prime p and any two integers a and b, we have

$$
v_{p}(a+b) \geq \min \left\{v_{p}(a), v_{p}(b)\right\}, \quad v_{p}(a b)=v_{p}(a)+v_{p}(b) .
$$

The p-adic valuation v_{p} can further be extended to the field of rational numbers, $r=\frac{a}{b}, a, b \in \mathbb{Z}$ and $b \neq 0$ as

$$
v_{p}(r)=v_{p}(a)-v_{p}(b) .
$$

Definition 2.2 Given two non-negative integers n and k, not both zero, the Stirling number of the second kind $S(n, k)$ is defined as the number of ways one can partition a set with n elements into exactly k non-empty subsets.

Example 2.1 All partitions of the set $\{1,2,3,4\}$ into 2 non-empty subsets are $\{1\},\{2,3,4\} ;\{2\},\{1,3,4\} ;\{3\},\{1$, $2,4\} ;\{4\},\{1,2,3\} ;\{1,2\},\{3,4\} ;\{1,3\},\{2,4\}$ and $\{1,4\},\{2,3\}$. Hence, $S(4,2)=7$.

By convention, we set $S(0,0)=1$ and $S(0, k)=0$ for $k \geq 1$. Thus, $S(n, k)$ is the number of ways of distributing n distinct balls into k indistinguishable boxes (the order of the boxes does not count) such that no box is empty.

It is clear that $S(n, k)=0$ if $1 \leq n<k$ and $S(n, n)=1$ for all $n \geq 0$.
We use the following properties to prove the results of $v_{p}(S(n, k))$:

$$
\begin{equation*}
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i} i^{n}, \tag{1}
\end{equation*}
$$

which gives

$$
\begin{equation*}
S(n, 2)=2^{n-1}-1, S(n, 1)=1, S(n, 0)=0 . \tag{2}
\end{equation*}
$$

It is easy to derive the following specific identities of $S(n, k)$ using the results of ([19] p. 115-116).

$$
\begin{gather*}
S(n, n-1)=\binom{n}{2} \text { if } n \geq 2, \tag{3}\\
S(n, n-2)=\binom{n}{3}+3\binom{n}{4} \text { if } n \geq 4, \tag{4}\\
S(n, n-3)=\binom{n}{4}+10\binom{n}{5}+15\binom{n}{6} \text { if } n \geq 6 . \tag{5}
\end{gather*}
$$

3. Results

In this section, we present some basic results of the p-adic valuations of Stirling numbers starting with $S(n, n-1)$ for $n>1$.

Proposition 3.1 For any positive integer $n>1$ and an odd prime p

$$
v_{p}(S(n, n-1))=v_{p}(n)+v_{p}(n-1)
$$

Proof. Using the identity (3), we have

$$
S(n, n-1)=\binom{n}{2}=\frac{n(n-1)}{2}
$$

The multiplicative property of $v_{p}(a)$ implies that

$$
\begin{aligned}
v_{p}(S(n, n-1)) & =v_{p}(n)+v_{p}(n-1)-v_{p}(2) \\
& =v_{p}(n)+v_{p}(n-1)
\end{aligned}
$$

as $v_{p}(2)=0, p$ being odd.
Applying Kummer's theorem [20] to the binomial coefficient $\binom{n}{2}=S(n, n-1)$, the above result can be put in the following form

$$
\begin{equation*}
v_{p}(S(n, n-1))=\frac{s_{p}(n-2)-s_{p}(n)+2}{p-1} \tag{6}
\end{equation*}
$$

where $s_{p}(n)$ denotes the sum of the p-adic digits of n.
Corollary 3.1 Let p be an odd prime. For any positive integer n and c such that $\operatorname{gcd}(p, c)=1$,

$$
v_{p}\left(S\left(c p^{n}, c p^{n}-1\right)\right)=n
$$

Proof. By the proposition, we have

$$
v_{p}\left(S\left(c p^{n}, c p^{n}-1\right)\right)=v_{p}\left(c p^{n}\right)+v_{p}\left(c p^{n}-1\right) .
$$

Since $v_{p}\left(c p^{n}-1\right)=0$ and using the multiplicative property of $v_{p}(a)$, we can obtain

$$
\begin{aligned}
v_{p}\left(S\left(c p^{n}, c p^{n}-1\right)\right) & =v_{p}\left(c p^{n}\right) \\
& =n+v_{p}(c) .
\end{aligned}
$$

As $\operatorname{gcd}(p, c)=1$, it is clear that $v_{p}(c)=0$. This completes the proof.
Proposition 3.2 For any positive integer $n \geq 2$ and an odd prime p,

$$
v_{p}(S(n, n-2))= \begin{cases}v_{p}(n)+v_{p}(n-1)+v_{p}(n-2)+v_{p}(3 n-5), & \text { if } p>3 \\ v_{3}(n)+v_{3}(n-1)+v_{3}(n-2)-1, & \text { if } p=3 .\end{cases}
$$

These results can be proved in the similar manner.
Corollary 3.2 For any positive integer n and an odd prime p,

$$
v_{p}\left(S\left(c p^{n}, c p^{n}-2\right)\right)= \begin{cases}n, & \text { if } p>5 \\ n+1, & \text { if } p=5 \text { and } n>1, \\ n-1, & \text { if } p=3\end{cases}
$$

if c is a positive integer not divisible by p.
Proposition 3.3 Let p be an odd prime. For any positive integer $n \geq 6$,

$$
v_{p}(S(n, n-3))= \begin{cases}v_{p}(n)+v_{p}(n-1)+2 v_{p}(n-2)+2 v_{p}(n-3), & \text { if } p \geq 5, \\ v_{p}(n)+v_{p}(n-1)+2 v_{p}(n-2)+2 v_{p}(n-3)-1, & \text { if } p=3\end{cases}
$$

Proof. Using the identity (5), we have

$$
S(n, n-3)=\binom{n}{4}+10\binom{n}{5}+15\binom{n}{6}, \text { if } n \geq 6
$$

It can also be expressed as

$$
\begin{aligned}
S(n, n-3) & =\binom{n}{4}\left[\frac{n^{2}-5 n+6}{2}\right] \\
& =\binom{n}{4}\left[\frac{(n-2)(n-3)}{2}\right] \\
& =\left[\frac{n(n-1)(n-2)^{2}(n-3)^{2}}{2^{4} \cdot 3}\right]
\end{aligned}
$$

The multiplicative property of $v_{p}(-)$ implies that

$$
v_{p}(S(n, n-3))=v_{p}(n)+v_{p}(n-1)+2 v_{p}(n-2)+2 v_{p}(n-3)-v_{p}(3)
$$

as $v_{p}(2)=0$ and p being odd.
Using Kummer's theorem [20] to $\binom{n}{4}$, we get the following result,

$$
\begin{equation*}
v_{p}(S(n, n-3))=\frac{s_{p}(n-4)-s_{p}(n)+s_{p}(4)}{p-1}+v_{p}(n-2)+v_{p}(n-3) . \tag{7}
\end{equation*}
$$

where $s_{p}(n)$ denotes the sum of the p-adic digits of n. This completes the proof.
Corollary 3.3 For any positive integer n and odd prime p, the following result holds

$$
v_{p}\left(S\left(c p^{n}, c p^{n}-3\right)\right)= \begin{cases}n, & \text { if } p>3, \\ n+1, & \text { if } p=3,\end{cases}
$$

if p does not divides c (provided $c p^{n} \neq 3$ if $p=3$).
Proof. By the proposition, we have

$$
v_{p}\left(S\left(c p^{n}, c p^{n}-3\right)\right)=v_{p}\left(c p^{n}\right)+v_{p}\left(c p^{n}-1\right)+v_{p}\left(c p^{n}-2\right)+2 v_{p}\left(c p^{n}-3\right)-v_{p}(3) .
$$

Since $v_{p}\left(c p^{n}-1\right)=v_{p}\left(c p^{n}-2\right)=v_{p}\left(c p^{n}-3\right)=v_{p}(3)=0$ if $p \geq 5$, we get

$$
\begin{aligned}
v_{p}\left(\mathrm{~S}\left(c p^{n}, c p^{n}-3\right)\right) & =v_{p}\left(c p^{n}\right) \\
& =n+v_{p}(c) .
\end{aligned}
$$

As $\operatorname{gcd}(p, c)=1$, it is clear that $v_{p}(c)=0$.
For the case $p=3,2 v_{3}\left(c 3^{n}-3\right)-v_{3}(3)=1$ and $v_{3}\left(c 3^{n}-1\right)=v_{3}\left(c 3^{n}-2\right)=0$ and hence

$$
\begin{aligned}
v_{3}\left(S\left(c 3^{n}, c 3^{n}-3\right)\right) & =v_{p}\left(c 3^{n}\right)+1 \\
& =n+1
\end{aligned}
$$

This completes the proof.
Now, we give an alternate proof of the primality of integer n by divisibility of $S(n, k)$ given by Deamio and Touset [21]. The proof of corollary 2 in their paper is not correct if we take $n=4$ and $p=2$, then $S(4,3)=6 \not \equiv 1 \bmod 2$ and $2 \mid S(4,3)$. We tackled this problem, in this paper, more simpler manner. This problem with an alternate solution also appears in Pólya et al. [22].

Theorem 3.1 If p is an odd prime, then $p \mid S(n, k)$ if $s_{p}(k)>s_{p}(n)$.
The above theorem is an immediate consequence of ([18], Lemma 2.1) which states that

$$
\begin{equation*}
v_{p}(S(n, k)) \geq \frac{s_{p}(k)-s_{p}(n)}{p-1} . \tag{8}
\end{equation*}
$$

Replacing n by an odd prime p in the above theorem, we get the following results.
Corollary 3.4 If p is an odd prime, then $p \mid S(p, k)$ if $2 \leq k \leq p-1$.
The problem in the above Corollary 3.4 appears in Graham et al. [4] and proof was given by Demaio and Touset [21].
Theorem 3.2 A positive integer n is a prime if and only if $n \mid S(n, k)$ for all $2 \leq k \leq n-1$.
Proof. The generating function of $S(n, k)$ in terms of falling powers is given by

$$
\begin{equation*}
x^{n}=\sum_{k=o}^{n} S(n, k)\{x\}_{k} \tag{9}
\end{equation*}
$$

for any non-negative integer n.
If n is a positive integer such that $n \mid S(n, k)$ for all $2 \leq k \leq n-1$, put $x=n$ in Equation (9)

$$
\begin{aligned}
n^{n} & =\sum_{k=o}^{n} S(n, k)\{n\}_{k} \\
& =\{n\}_{n}+\{n\}_{1}+\sum_{k=2}^{n-1} S(n, k)\{n\}_{k} \\
& =n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1+n+\sum_{k=2}^{n-1} n(n-1) \cdots(n-(k-1)) S(n, k) .
\end{aligned}
$$

It follows that

$$
n^{n-1}=(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1+1+\sum_{k=2}^{n-1}(n-1)(n-2) \cdots(n-(k-1)) S(n, k)
$$

Since $n \mid S(n, k)$ for all $2 \leq k \leq n-1$, we get

$$
0 \equiv(n-1)!+1 \bmod n
$$

or

$$
(n-1)!\equiv-1 \bmod n
$$

Hence, n is prime.
The converse follows from Corollary 3.4.
Lemma 3.1 If p is a prime, then

$$
v_{p}\left(\binom{p-1}{i}-(-1)^{i}\right) \geq 1 \text { or } v_{p}\left(\binom{p-1}{i}\right)=0 .
$$

Proof. For $i=0$, the case is trivial.
Proof. For $i=0$, the case is trivial.
We assume that $i>0$. The binomial coefficient $\binom{p-1}{i}$ is given by

$$
\binom{p-1}{i}=\frac{(p-1)!}{(p-1-i)!i!}
$$

Therefore,

$$
\begin{aligned}
i!\binom{p-1}{i} & =(p-1)(p-2) \ldots(p-i+2)(p-i+1)(p-i) \\
& \equiv(-1)(-2) \ldots(-i) \bmod p \\
& \equiv(-1)^{i} i!\bmod p
\end{aligned}
$$

Since $0<i<p, \operatorname{gcd}(p, i)=1$. Then,

$$
\binom{p-1}{i} \equiv(-1)^{i} \bmod p
$$

Theorem 3.3 Let p be an odd prime. For any positive integer $n \geq p$,

$$
v_{p}(S(n, p))=0
$$

if and only if $(p-1) \mid(n-1)$.
Proof. Using the above Lemma 3.1, we have

$$
\begin{aligned}
p!S(n, p) & =\sum_{i=1}^{p}\binom{p}{i}(-1)^{p-i} i^{n} \\
& \equiv \sum_{i=1}^{p}\binom{p}{i}(-1)^{p-i} i^{n} \bmod p .
\end{aligned}
$$

Since $\binom{p}{i}=\binom{p-1}{i-1} \frac{p}{i}$, we get

$$
(p-1)!S(n, p) \equiv \sum_{i=1}^{p-1}(-1)^{i-1}(-1)^{p-i} i^{n-1}
$$

Using Wilson's theorem, the preceding congruence reduces to

$$
S(n, p) \equiv \sum_{i=1}^{p-1} i^{n-1} \bmod p
$$

as p is odd.
Now, we use the following well-known results

$$
\sum_{i=1}^{p-1} i^{n-1} \equiv \begin{cases}0 \bmod p, & \text { if }(p-1) \nmid(n-1) \\ -1 \bmod p, & \text { if }(p-1) \mid(n-1) .\end{cases}
$$

Hence, the theorem follows.
Theorem 3.4 Let p be an odd prime and c be a positive integer such that $1 \leq c \leq p-1$. Then, for positive integers n and k such that $k \leq n$,

$$
v_{p}\left(S\left(c p^{n}, c p^{k}\right)\right)=0
$$

Proof. The theorem is a special case of ([18], Th. 2.2).
We have

$$
c p^{n}-c p^{k}=c\left(p^{n}-p^{k}\right)=c(p-1) \sum_{j=0}^{n-k-1} p^{j+k}
$$

which implies that $c p^{n}-c p^{k}$ is divisible by $p-1$. We also have $1 \leq c \leq p-1$ and $1 \leq c p^{k} \leq c p^{n}$.
It follows that $S\left(c p^{n}, c p^{k}\right)$ is a minimum zero case and hence we have

$$
\begin{equation*}
v_{p}\left(S\left(c p^{n}, c p^{k}\right)\right)=\frac{s_{p}\left(c p^{k}\right)-s_{p}\left(c p^{n}\right)}{p-1}=0 \tag{10}
\end{equation*}
$$

since $s_{p}\left(c p^{n}\right)=s_{p}\left(c p^{k}\right)=s_{p}(c)=c$.
Theorem 3.5 Let p be an odd prime, then

$$
v_{p}\left(S\left(p^{n}, 2 p\right)\right) \geq n
$$

for every integer $n \geq 2$.
Proof. Using identity (1)

$$
(2 p)!S\left(p^{n}, 2 p\right)=\sum_{i=0}^{2 p}\binom{2 p}{i}(-1)^{2 p-i} i^{p^{n}}
$$

which can also be written as

$$
\begin{aligned}
(2 p)!S\left(p^{n}, 2 p\right) & =\sum_{i=0}^{2 p}\binom{2 p}{2 p-i}(-1)^{i}(2 p-i)^{p^{n}} \\
& =\sum_{i=0}^{2 p}\binom{2 p}{i}(-1)^{2 p-i}(2 p-i)^{p^{n}}
\end{aligned}
$$

Since $\binom{m}{i}=\binom{m}{m-i}$ for every integers $0 \leq i \leq m$ and $2 p-i \equiv i \bmod 2$, we have

$$
\begin{equation*}
2(2 p)!S\left(p^{n}, 2 p\right)=\sum_{i=0}^{2 p}\binom{2 p}{i}(-1)^{2 p-i}\left(i^{p^{n}}+(2 p-i)^{p^{n}}\right) \tag{11}
\end{equation*}
$$

If $p \nmid i$ for $0 \leq i \leq 2 p$, then

$$
2 p-i \equiv-i \bmod p
$$

which also yields the congruence

$$
(2 p-i)^{p^{n}} \equiv-(i)^{p^{n}} \bmod p^{n+1}
$$

It follows that

$$
\begin{equation*}
\binom{2 p}{i}(-1)^{2 p-i}\left((2 p-i)^{p^{n}}+(i)^{p^{n}}\right) \equiv 0 \bmod p^{n+2}, \text { since } p \left\lvert\,\binom{ 2 p}{i}\right. \tag{12}
\end{equation*}
$$

Thus, each terms of the right hand side of (11) is divisible by p^{n+2} and hence

$$
(2 p)!S\left(p^{2}, 2 p\right) \equiv 0 \bmod p^{n+2}
$$

Therefore

$$
\begin{aligned}
v_{p}\left(2(2 p)!S\left(p^{2}, 2 p\right)\right) & \geq n+2 \\
v_{p}\left(S\left(p^{2}, 2 p\right)\right) & \geq n
\end{aligned}
$$

Hence, the theorem follows.
Theorem 3.6 Let p be a prime and n and k be two positive integers with $k \leq p-1$, then there exists a positive integer m in $1 \leq m<p-1$ such that

$$
S(n, k) \equiv \begin{cases}S(m, k) \bmod p, & \text { if } n \neq 0 \bmod (p-1) \\ (p-1-k)!\bmod p, & \text { if } n \equiv 0 \bmod (p-1)\end{cases}
$$

Proof. By division algorithm, we have

$$
n=(p-1) q+m
$$

where q is the quotient and m is the remainder such that $0 \leq m<p-1$.
Now

$$
\begin{aligned}
k!S(n, k) & =\sum_{i=1}^{k}\binom{k}{i}(-1)^{k-i} i^{n} \\
& =\sum_{i=1}^{k}\binom{k}{i}(-1)^{k-i} i^{(p-1) q+m} \\
& \equiv \sum_{i=1}^{k}\binom{k}{i}(-1)^{k-i} i^{m} \bmod p
\end{aligned}
$$

since $i^{p-1} \equiv 1 \bmod p$ for $1 \leq i \leq k \leq p-1$ by Fermat's little theorem.
If $m \neq 0$, we have

$$
k!S(n, k) \equiv k!S(m, k) \bmod p
$$

Since k is less than p, it follows that $p \nmid k!$ which results

$$
S(n, k) \equiv S(m, k) \bmod p
$$

for every n such that $n \not \equiv 0 \bmod p-1$.
Next, if $m=0$, we have

$$
\begin{aligned}
k!S(n, k) & \equiv \sum_{i=1}^{k}\binom{k}{i}(-1)^{k-i} \bmod p \\
& \equiv \sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i}-(-1)^{k} \bmod p \\
& \equiv(-1)^{k+1} \bmod p
\end{aligned}
$$

We also know that

$$
\binom{p-1}{k} \equiv(-1)^{k} \bmod p \text { or }
$$

$$
\begin{aligned}
& \frac{(p-1)!}{(p-1-k)!k!} \equiv(-1)^{k} \bmod p \text { or } \\
& \frac{1}{k!} \equiv(-1)^{k+1}(p-1-k)!\bmod p
\end{aligned}
$$

which implies that

$$
S(n, k) \equiv(p-1-k)!\bmod p,
$$

which completes the proof.
From the above theorem, we see that if $1 \leq m<k$

$$
S(n, k) \equiv 0 \bmod p \text { since } S(m, k)=0
$$

However, the case for $m=k$ results

$$
S(n, k) \equiv 1 \bmod p .
$$

We can write the following results
Corollary 3.5 Let p be an odd prime and k be a positive integer less than p, then

$$
S(n, k) \equiv \begin{cases}1 \bmod p, & \text { if } n \equiv k \bmod (p-1) \\ 0 \bmod p, & \text { if } n \equiv i \bmod (p-1) \text { for } 1 \leq i \leq k-1\end{cases}
$$

If we applied the above theorem and corollary to the special cases for $k=p-1, p-2$ and $p-3$, we get

$$
\begin{gathered}
S(n, p-1) \equiv \begin{cases}1 \bmod p, & \text { if } n \equiv 0 \bmod (p-1), \\
0 \bmod p, & \text { otherwise. }\end{cases} \\
S(n, p-2) \equiv \begin{cases}1 \bmod p, & \text { if } n \equiv 0, p-2 \bmod (p-1), \\
0 \bmod p, & \text { otherwise } .\end{cases} \\
S(n, p-3)
\end{gathered} \begin{aligned}
& \equiv \begin{cases}2 \bmod p, & \text { if } n \equiv 0 \bmod (p-1), \\
3 \bmod p, & \text { if } n \equiv p-2 \bmod (p-1), \\
1 \bmod p, & \text { if } n \equiv p-3 \bmod (p-1), \\
0 \bmod p, & \text { if otherwise. }\end{cases}
\end{aligned}
$$

assuming $p \neq 3$ for the last two cases.

4. Discussions

We have computed $v_{p}\left(S\left(p^{2}, k p\right)\right)$ for primes $3 \leq p \leq 100$ and $2 \leq k \leq p-1$ using PARI/GP software.

Table 1. (p, k) such that $v_{p}(S(p, k))=2$ for $3 \leq p \leq 1000$ and $2 \leq k \leq p-1$

(p, k)	(p, k)	(p, k)	(p, k)	(p, k)	(p, k)	(p, k)
$(5,3)$	$(167,7)$	$(307,12)$	$(463,340)$	$(653,429)$	$(857,592)$	$(947,204)$
$(13,5)$	$(167,103)$	$(307,146)$	$(467,278)$	$(659,457)$	$(859,300)$	$(947,478)$
$(19,14)$	$(173,52)$	$(317,188)$	$(499,63)$	$(661,417)$	$(859,357)$	$(953,391)$
$(29,14)$	$(181,166)$	$(331,20)$	$(499,320)$	$(677,367)$	$(859,558)$	$(977,476)$
$(31,16)$	$(193,23)$	$(337,261)$	$(509,324)$	$(683,271)$	$(863,712)$	$(991,953)$
$(41,13)$	$(193,45)$	$(353,162)$	$(521,169)$	$(683,401)$	$(877,77)$	$(997,786)$
$(42,12)$	$(197,85)$	$(359,96)$	$(521,180)$	$(691,468)$	$(877,204)$	
$(47,12)$	$(211,62)$	$(359,316)$	$(521,479)$	$(709,330)$	$(877,542)$	
$(53,5)$	$(211,159)$	$(373,230)$	$(523,343)$	$(709,371)$	$(881,63)$	
$(53,41)$	$(223,61)$	$(379,253)$	$(523,483)$	$(709,669)$	$(881,72)$	
$(53,45)$	$(227,187)$	$(383,323)$	$(569,123)$	$(733,47)$	$(881,408)$	
$(59,35)$	$(229,25)$	$(397,27)$	$(569,348)$	$(743,23)$	$(881,625)$	
$(73,8)$	$(233,7)$	$(397,78)$	$(569,363)$	$(751,744)$	$(887,149)$	
$(79,14)$	$(239,134)$	$(401,198)$	$(577,119)$	$(761,54)$	$(887,208)$	
$(89,32)$	$(239,219)$	$(409,45)$	$(577,434)$	$(773,143)$	$(887,443)$	
$(89,34)$	$(241,15)$	$(409,80)$	$(593,498)$	$(773,262)$	$(907,611)$	
$(107,16)$	$(251,233)$	$(419,133)$	$(601,303)$	$(787,228)$	$(911,560)$	
$(127,8)$	$(251,247)$	$(419,256)$	$(601,515)$	$(797,290)$	$(919,163)$	
$(139,28)$	$(257,131)$	$(419,310)$	$(607,173)$	$(809,119)$	$(929,347)$	
$(149,5)$	$(269,98)$	$(431,25)$	$(607,242)$	$(811,733)$	$(929,469)$	
$(151,50)$	$(271,211)$	$(431,112)$	$(607,518)$	$(821,533)$	$(929,801)$	
$(151,58)$	$(283,91)$	$(431,116)$	$(617,209)$	$(827,257)$	$(937,528)$	
$(157,45)$	$(283,201)$	$(433,91)$	$(647,117)$	$(827,765)$	$(941,342)$	
$(163,101)$	$(293,76)$	$(439,308)$	$(647,309)$	$(839,50)$	$(947,85)$	
$(163,127)$	$(293,162)$	$(461,341)$	$(653,369)$	$(839,744)$	$(947,116)$	

The obtained values of $v_{p}\left(S\left(p^{2}, k p\right)\right)$ for different values of (p, k) are

$$
v_{p}\left(S\left(p^{2}, k p\right)= \begin{cases}7, & \text { if }(p, k)=(7,4) \tag{13}\\ 6, & \text { if }(p, k)=(37,4),(59,14),(67,8) \\ 3, & \text { if } k=p-1 \text { and }(p, k)=(37,5),(59,15),(67,9) \\ 5, & \text { if } k \text { is even and }(p, k) \neq(7,4),(37,4),(59,14),(67,8) \\ 2, & \text { if } k \text { is odd and }(p, k) \neq(37,5),(59,15),(67,9)\end{cases}\right.
$$

We also provide in Table 1, the pairs of p and k where $v_{p}(S(p, k))=2$ for $3 \leq p \leq 1000$ and $2 \leq k \leq p-1$. It should be noted that $v_{p}(S(p, k))=1$ for all the remaining pairs (p, k).

After a closed examinations of the output, we have observed that the arrays of $v_{p}\left(S\left(p^{2}, k p\right)\right)$ follow certain patterns which interpret as conjectures.

1. Let $p>7$ be an odd prime and k be an even integer such that $0<k<p-1$. Then

$$
v_{p}\left(S\left(p^{2}, k p\right)\right)-v_{p}\left(S\left(p^{2}, p(k+1)\right)=3 .\right.
$$

2. If k be an integer such that $1<k<p-1$, then the p-adic valuations satisfy

$$
v_{p}\left(S\left(p^{2}, k p\right)= \begin{cases}5 \text { or } 6, & \text { if } k \text { is even } \\ 2 \text { or } 3, & \text { if } k \text { is odd }\end{cases}\right.
$$

for any prime $p>7$.
3. For any odd prime p and a positive integer k such that $2 \leq k \leq p-1$,

$$
v_{p}(S(p, k)) \leq 2 .
$$

5. Conclusions

This paper deals with some results of p-adic valuations of Stirling number of the second kind, $S(n, k)$ for odd prime p. We have derived the formulas for $v_{p}(S(n, n-1)), v_{p}\left(S\left(c p^{n}, c p^{n}-1\right)\right), v_{p}(S(n, n-2)), v_{p}\left(S\left(p^{n}, p^{n}-2\right)\right), v_{p}(S(n, n-3))$ and $v_{p}\left(S\left(p^{n}, p^{n}-3\right)\right)$. It has been shown the primality test of n using divisibility of n to $S(n, k), 1<k<n$. We have obtained the results that $v_{p}(S(n, p))$ depends on the divisibility of $n-1$ by $p-1$ and $v_{p}\left(S\left(c p^{n}, c p^{k}\right)\right)=0$ for every integer $n \geq k \geq 1$ and $p-1 \geq c \geq 1$. We also posed three conjectures after analyzing Table 1 and computational results of (13).

References

[1] Stirling J. Methodus Differentialis. London; 1730. English translation. The Differential Method. 1749.
[2] Davis DM. Divisibility by 2 and 3 of certain Stirling numbers. Integers. 2008; 8: A56. Available from: arxiv.org/ abs/0807.2629.
[3] Comtet L. Advanced Combinatorics. Dordrecht/Boston: D. Reidel Publishing Company; 1974.
[4] Graham RL, Knuth DE, Patashnik O. Concrete Mathematics. A Foundation for Computer Science. (2nd ed.). Reading, MA: Addison-Wesley Publishing Company; 1994.
[5] Wannemacker SD. On 2-adic orders of Stirling numbers of the second kind. Integers. 2005; 5: A21.
[6] Lengyel T. On the divisibility by 2 of the Stirling numbers of the second kind. The Fibonacci Quarterly. 1994; 32: 194-201.
[7] Lengyel T. On the 2-adic order of Stirling numbers of the second kind and their differences. Discrete Mathematics \& Theoretical Computer Science. 2009; AK: 561-572.
[8] Hong S, Zhao J, Zhao W. The 2-adic valuations of Stirling numbers of the second kind. International Journal of Number Theory. 2012; 8: 1057-1066. Available from: https://doi.org/10.1142/S1793042112500625.
[9] Amdeberhan T, Manna D, Moll VH. The 2-adic valuation of Stirling numbers. Experimental Mathematics. 2008; 17: 69-82. Available from: https://projecteuclid.org/euclid.em/1227031898.
[10] Zhao J, Hong S, Zhao W. Divisibility by 2 of Stirling numbers of the second kind and their differences. Journal of Number Theory. 2014; 140: 324-348. Available from: https://doi.org/10.1016/j.jnt.2014.01.005.
[11] Gessel I, Lengyel T. On the order of Stirling Numbers and alternating binomial coefficient sums. The Fibonacci Quarterly. 2001; 39: 444-454.
[12] Strauss N, Shallit J, Zagier D. Some strange 3-adic identities. American Mathematical Monthly. 1992; 99(1): 6669. Available from: https://doi.org/10.2307/2324560.
[13] Pan H, Sun ZW. On 2-adic orders of some binomial sums. Journal of Number Theory. 2010; 130: 2701-2706. Available from: https://arxiv.org/abs/0909.4945.15.
[14] Sun ZW. p-adic valuations of some sums of multinomial coefficients. Acta Arithmetica. 2011; 148: 63-76. Available from: DOI: 10.4064/aa148-1-5.
[15] Friedland S, Krattenthaler C. 2-adic valuations of certain ratios of products of factorials and applications. Linear Algebra and Its Applications. 2007; 426: 159-189. Available from: https://doi.org/10.1016/j.laa.2007.04.008.
[16] Gouvea FQ. p-adic Numbers. New York, Heidelberg, Berlin: Springer-Verlag; 1993.
[17] Koblitz N. p-adic Numbers, p-adic Analysis and Zeta-function. New York, Heidelberg, Berlin: Springer-Verlag; 1977.
[18] Adelberg A. The p-adic analysis of Stirling numbers via higher order Bernoulli numbers. International Journal of Number Theory. 2018; 14(10): 2767-2779. Available from: https://doi.org/10.1142/S1793042118501671.
[19] Quaintance J, Gould HW. Combinatorial Identities for Stirling Numbers. The unpublished notes of H. W. Gould, World Scientific Publishing Co. Pte. Ltd., Singapore; 2016.
[20] Mihet D. Legendre's and Kummer's theorems again. Resonance. 2010; 15: 1111-1121. Available from: https:// www.ias.ac.in/article/fulltext/reso/015/12/1111-1121.
[21] Demaio J, Touset S. Stirling numbers of the second kind and primality. Proceedings of the 2008 International Conference on Foundations of Computer Science. Las Vegas, Nevada, USA. CSREA Press. 2008.
[22] Pólya G, Takács L, Broline D. S1. The American Mathematical Monthly. 1980; 87(2): 133-134. Available from: DOI: 10.2307/2321996.

[^0]: Copyright ©2021 S. S. Singh , et al.
 DOI: https://doi.org/10.37256/cm. 212021717
 This is an open-access article distributed under a CC BY license
 (Creative Commons Attribution 4.0 International License)
 https://creativecommons.org/licenses/by/4.0/

