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Abstract: This paper proposes a real-time energy management strategy for Dedicated Hybrid Transmission (DHT)
Hybrid Electric Vehicles based on Equivalent Consumption Minimization Strategy-Dynamic Programming (ECMS-DP),
which supports four operating modes: pure electric, boost electric, series and parallel modes. The strategy uses Dynamic
Programming (DP) algorithm to solve the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) cycle oft-line to
obtain the optimal shift line with the objective of energy loss minimization. And the real-time control strategy is based
on Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) and the optimal shift line, with minimizing
energy loss, engine start/stop times, engine power change and engine speed change as mixed target functions. Then a
real-time energy management control system based on ECMS-DP is established. The system utilizes series and parallel
Hamiltonian functions to judge the series and parallel modes, and significantly reduces the calibration workload. Through
verification in real-vehicle revolving drum test, it has been verified that this strategy can effectively utilize the power
battery capacity while maintaining electric balance compared to rule-based strategies such as Rule-Based Threshold
Control, and it achieves better fuel economy, with a fuel-saving rate of approximately 5.18%.
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Abbreviation

DHT Dedicated Hybrid Transmission
DEM  Dirive Electrical Motor

GEM  Generator Electrical Motor
DHE Dedicated Hybrid Engine

ASS  Active Safety System

DP Dynamic Programming
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ECMS
SOC

Equivalent Consumption Minimization Strategy
State Of Charge

WLTC Worldwide Harmonized Light Vehicles Test Cycle

NVH  Noise; Vibration; Hardness (problems)

HVB High-Voltage power Battery
Variables

u,(t)  System input power (kW)

ya(t)  System output power (kW)

Vi System output power (kW)

ny(t)  Fuel massflow (g/s)

A(t)  Lagrange factor (-)

Ci State of Clutch i (1-Closed; 0-Open)

qLnvy  Low Heat Value (kJ/kg)

T,(t)  Torque (Nm)

Teint The coolant temperature (°C)

i Gear ratio (-)

o Angular velocity (rad/s)

n Speed (rpm)

n Efficiency (-)

x State variable (-)

P Power (kW)

R; Internal resistance (€2)

Vv Voltage (V)

NVH Ride comfort of vehicle (db)

d Drive electrical motor

g Generator electrical motor

e Dedicated hybrid engine

br Brake system

h High voltage power battery

m Motor

ech Electrochemical

req Requirement

clnt Coolant

f Fuel

wh Wheel level

act Action value

p Parallel

s Series

chg Charge

dis Discharge

oc Open circle

strt Start
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1. Introduction

Major automotive companies worldwide are seeking innovative powertrain system solutions to reduce vehicle
emissions and minimize pollution. One of the most effective solutions is the powertrain system that uses a Dedicated
Hybrid Transmission (DHT) and a Dedicated Hybrid Engine (DHE). The DHT often integrates multiple electric motors,
with current popular configurations incorporating either P2 motors or the combination with P1 and P3 motors. The
various combinations of motors within DHT systems create diverse powertrain topologies, enhancing the flexibility in
energy management strategy control. The Equivalent Consumption Minimization Strategy (ECMS) achieves a good
balance between reducing computational complexity and improving fuel economy, and is thus commonly used for real-
time energy management control [ 1-3]. Another classic approach is the Dynamic Programming (DP)-based offline search
for a global optimal energy management strategy, which is often applied in map-based real-time control and serves as a
benchmark for comparison with other energy management strategies [4—7].

This study analyzes the structure of a P1 + P3 two-gear, dual-clutch DHT hybrid powertrain system. By applying the
DP algorithm with energy loss as the objective function, the optimal solution is obtained through offline simulation of the
WLTC cycle, from which the shift strategy is extracted. Additionally, an Adaptive Equivalent Consumption Minimization
Strategy (A-ECMS) is employed, where the mixed objective function includes minimizing energy loss, engine start/up
number, engine power variation, and engine speed variation. Based on these, a real-time energy management system using
ECMS-DP is established, and simulations and real-vehicle tests are conducted to verify the effectiveness of the proposed
strategy. The remainder of this paper is organised as follows:

Section 1: Divide the entire DHT HEV powertrain system into several subsystems and establish modular models.
The purpose is to achieve modularization of control strategies for distributed development.

Section 2: Focusing on the optimal control problem of DHT HEV energy management. Using DP offline to obtain
the optimal control decisions and the optimal trajectory; Deriving the instantaneous optimal energy management strategy
(A-ECMS) based on PMP.

Section 3: Propose Real-Time Energy Management Control based on ECMS-DP. This real-time control mainly
includes two parts, one is optimal shift control, and the other is optimal operation mode selection and optimal torque
distribution. The shift line map is the core of shift control, which is mainly extracted from the optimal solution obtained
based on DP; The mode selection and torque distribution are based on PMP.

The main contributions of this study include: firstly, proposing an optimal shift control based on DP, which differs
from traditional shift lines based on accelerator pedal position and vehicle speed. This shift line is mainly based on DHE
speed and torque; Secondly, the optimal mode selection series and parallel methods has been proposed, which utilizes
series and parallel Hamiltonian functions to decide the series and parallel modes.

2. DHT hybrid powertrain system model

This study focuses on the DHT hybrid powertrain system with a P1 + P3 structure. The schematic diagram is shown
in Figure 1. The DHT adopts a two-gear, dual-clutch architecture that integrates a generator (P1) and a drive motor (P3).
The P1 is directly connected to the engine output shaft, which is linked to the drive shaft wheel through the first and
second gear clutches. The P3 is directly connected to the drive shaft wheel.

The vehicle structure shown in Figure 1 is represented by the power flow diagram in Figure 2. One end of the P3
motor (DEM) is connected to the drive shaft, while the other end is connected to the engine via clutches c¢; and ¢;. The
DHE is connected to the drive shaft through clutches ¢ and ¢;. The P1 motor (GEM) is connected to the engine (DHE)
through clutch ¢,. The High-Voltage power Battery (HVB) is connected to both the DEM and GEM.
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Figure 1. The structure of P1 + P3 hybrid vehicle powertrain

u; (T

< uh
A

Figure 2. Power flow diagram of power domain system (arrow direction is positive). ¢; and ¢, represent the clutch states; v; is the output power at
node n;; v; is the input power at node ny, for example, the input of the alternator (AC generator); the electrical load (Eload) represents the input power
v3 at node n3

This powertrain domain system supports the following four operating modes (as shown in Table 1):

Mode 1: Pure electric mode driven solely by the DEM.

Mode 2: Boost electric mode is driven by the GEM and DEM motors with the clutch closed.

Mode 3: Clutch ¢ is open, clutch c; is closed. The DEM drives directly, while the ENG drives the GEM in series
generation mode. This is the series mode.

Mode 4: Clutch closed, both the motor and the engine are engaged for parallel drive mode.
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From the torque constraints in Modes 1 and 2 in Table 1, it can be observed that when the engine output torque is
zero, meaning the engine is not operating, the system operates in pure electric mode.

Table 1. The operate mode of multi-modal HEV

Mode ¢ o Torque constraints Mode definition

vi(t) = yur(t) = ua(t),
1 0 0 Ye(t) =0, ug(t) =0 Pure electric mode

va(t) = —ug(t), ye(kt) =0

vi(t) +va(t) = yir (1) —ua(t) — ug(t),
Ye(t) =0

Boost electric mode

Series mode

4 1 I vi(t)+va(t) = ypr(t) +ye(kt) —uq(t) —ug(t), ye(t) >0 Parallel mode

2.1 Power flow analysis

Each subsystem in Figure 2 is defined by its input u,(z) and output y,(¢) [8-12], where n € N = {e, d, g, h, br}.
The power balance equations at nodes n1, ny, and n3, can be expressed as:

Vi + g — Yor — €1 (c2ye —v2 —ug (1)) =0
vatug —coye+c1 (vi —ypr+ug) =0 (1)
V3 —Ya —Yyn—Yg(t) =0

The power balance Equation (1) can be rewritten in the following general form:

D()v(1)+ Y (Cult)un(t) — F(1)yn(r)) =0 2

neN

T
where N = {e, d, g, h, br}, the output power v(t) = {vl (t) wva(t) w3(t)| ,and the connection matrixes are:

1 Cl(l‘) 0
®@)=|ci() 10 3)
0 1
0 Cl(t)CZ(t)
Qe= (0|, Fe=| cft) “4)
0 0
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[ 1 1 _0
Qa= |c1(t)|, Fa= |0 Q)
0 1
()] 0
Qg = 1 ’ Fg = {0 (6)
0 1
[0 0
On=10|,F=10 @)
0 1
0 1
Opr = |0|, Fpr= |c1(2) (®
0 0

For different powertrain topologies, the power balance Equation (2) is general. For each architecture, only the
connection matrix ®(z), Q,(z), and F,(z) need to be modified to match the specific powertrain architecture, thereby
reducing development costs.

2.2 Subsystem model

Each subsystem is modeled using a quadratic relationship between u,(¢) and y, (), that is:

(1)1t (1) + (0t (1) + € () + yu (1) = 0 ©)

where:

1, (1) < 1) < (1) (10)

For the energy storage subsystem, the state equation is as follows:

G (t) = An(t)xn(t) + Bu(t)un(2) (11)

where:

X, (1) < (1) <Xu(r) (12)
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2.2.1 The engine

The input and output power are defined as follows:

ue(t) = qruvmip(t), ye(t) = To(t) 0 (t) (13)

where nif(r) can be calculated from the engine-specific fuel consumption map.
Based on Equation (9), the simple input-output power relationship of the engine is as follows:

fe(we(t))”e(t)+ee(we(t))+ye(t):O (14)

1 . L . .
; €0 (@,()) is the error between the engine input and output, and 7, is the engine

where f, (@,(t)) = N (0:(6)) qLav’

efficiency.

2.2.2 The motor

The input and output power are defined as follows:

T,n

ug(t) = T (1) g (1) = ﬁ’ Vg = Mgltg

15)
(1) = Ta()ou(r) = 55 g =
ug\t) = 14(1) 0y —97550,%—77,114,1
where 7, and 1, are the efficiencies of the motors.
Based on Equation (5), the simple input-output power relationship of the motor is as follows:

St (t) +ym(t) =0 (16)

where f,, = —N.

2.2.3 High-voltage power battery

— Uech Uh

L O

Figure 3. First order battery circuit model

The model of the high-voltage power battery subsystem is a first-order equivalent circuit model designed for control,
as shown in Figure 3. Its mathematical model is as follows:
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qnti (1) + fu (1) + (1) = 0 (17)
h _ Rh _ . . . .
where g5, = T fn = —1 is substituted into (17):
oc

iR — up (1) +ya(t) =0 (18)

For the battery, the state equation is expressed as follows:

(1) = M (ya (1) +yg (t) = v2) (19)

where 1), is the charging and discharging efficiency.
Let uper, = M (a(t) +ys5(t) —v2) = Uy, — iR;, where u,,, is the electrochemical power. Then, Equation (19) can be
rewritten as:

ip(t) = Ueen (20)

The consumption power of the battery is i*R; (Equation (18)), which can also be obtained through the battery cell
calculation. The formula is as follows:

up — tech = Ui — Vi (21)
where:

Voc = NSVoc, cell

(22)

where R; .y is the cell internal resistance, Ny is the number of series-connected cells per module, Np is the number of
series-connected cells per module, and V. is open-circuit voltage obtained from the SOC vs OCV characteristic curve.
Equations (18) and (21) should be cross-validated to obtain the most accurate estimate.

2.2.4 Brake system

The Active Safety System (ASS) is the output power of the intelligent driving vehicle’s braking system. Excluding the
braking energy recovery part, the non-recoverable power y,, will dissipate in the form of heat. Therefore, the relationship
between the input and output power is not considered.
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3. Energy consumption model

3.1 Optimization control problem
3.1.1 Objective function

The goal of HEV energy management is to minimize the cumulative fuel consumption, which is equivalent to
minimizing the cumulative energy loss in all subsystems of the vehicle:

=" Y (un(r) —yu(0)) dt (23)

10 neN

Where uy, (1) — y, (¢) represents the energy loss of the subsystem. Excluding the brake subsystem, the above Equation
(23) holds only for N = e, d, g, h}.

3.1.2 State equation

The state equation is given by Equation (20), where the State Of Charge (SOC) of the battery is SOC = Qi’ and Q.
is the battery capacity. ‘

3.1.3 Constraints

1. Speed constraints for the motor and engine:

{wmmin <op < Om max (24)

0<w < ®e_max

2. Torque constraints:

{Tmmin < Tm < Tmﬁmax (2 5)

Teﬁmin < Te < Teimax

3. SOC constraints:

(26)

SOCpin < SOC(x) < SOCax
SOC(N) —SOC(0) = ASOC

4. Battery charging and discharging power constraints:

{Pchg_min < Pchg < Pchg_max (27)

Pdis_min < FPyis < Pdis_max

5. Engine NVH constraints:
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NVH pin < NVH < NVH pax (28)

3.2 Energy management based on DP

The DP algorithm is based on Bellman’s optimality theory and adopts a multi-stage decision-making process to find
the optimal solution trajectory (red trajectory) in the entire state space grid, as shown in Figure 4, the entire state space
grid is discretized horizontally (in the time direction) and vertically (in terms of SOC).

A
S0C (%)
80

50

20

Time (s)

1 2 3 4 N

Figure 4. DP discrete grid

In the WLTC driving cycle, use the DP algorithm to solve the optimal control decision u* = [Te*, T;, T;, mode", a):]
for both unloaded and fully loaded vehicle conditions [13, 14]. The process is as follows:

(1) Discretize the SOC with a step size of 0.25 and set the sampling time to 1s, as shown in Figure 4.

(2) Based on the longitudinal dynamics model, solve for the wheel-level required torque vector T,  and wheel
speed vector m,,;, during the WLTC cycle.

(3) Determine the constraint conditions (Equations (24)-(27)), including the maximum and minimum speed vectors
@, min and, @, max, as well as the maximum and minimum torque vectors T, minand T, max of the whole WLTC cycle,
where n € N = {e, g, d}, which can be obtained from the universal characteristics of the motor and engine.

(4) Establish the energy consumption model and power distribution strategy.

(5) Starting from the endpoint of the driving cycle, traverse all feasible grid points in the discrete space and calculate
the energy consumption cost, storing the optimal state trajectory.

(6) Select the trajectory with the minimum energy consumption and store the optimal decision u;.

Figure 5 is the Frame of DP-based energy management algorithm, which is divided into three parts: the input module,
the output module, and the energy management module. The input module mainly samples the entire WLTC wheel-layer
demand torque vector, vehicle speed vector, and discretized constraints (Formulas (24), (25), (26), (27)) at a 1-second
interval. The output module is mainly responsible for storing the optimal trajectory matrix, cumulative fuel consumption
matrix, etc. The energy management module, as the core module, mainly involves two parts: one is the cost module, and
the other is the multi-stage decision-making process based on the Bellman optimality principle.

As shown in Figure 5, the core algorithm of DP-based energy management is the cost model. The difficulty lies in
power distribution and optimal gear selection calculation. In the first gear of DHT, the engine cannot be started when the
transmission ratio is small and the vehicle speed is low. Therefore, if the vehicle speed is lower than the specific vehicle
speed, it cannot enter the parallel mode. Only when the vehicle speed is high, it can enter the parallel mode. According
to equation of state (19), the engine power can be expressed as:
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P,=T.0, = wh_Pb (29)

Input Energy management strategy based on DP Output

Y

Wheel-level torque |
required vector |

.| Optimal trajectory
1 matrix

Feasible area calculation

Fm g
|

Model ca111| -
JK

.;\ Cumulative fuel
Cost model consumption matrix

Y

‘ Wheel speed vector I

‘SOC constraint vectorI »

:{ Engine torque matrix

Y

Battery charging State optimal trajectory lGelar‘ |
and discharging » calculation calcuiation =| Engine speed matrix ‘
constraint vector [

I Gear

=== calculation

A4

‘ Engine constraint | o Generator torque ‘

matrix

vector |
Fuel cost
Drive motor ] . o/ Drive motor torque
constraint vector | i ! matrix
Generator | > > Optimal mode matrix
constraint vector | |

Figure 5. Frame of DP-based energy management algorithm

Based on the power flow diagram shown in Figure 2, the following equation can be obtained:

we(k) (k) :wd(k)

iDHT (C) N igiDHT (C) g (30)

(O (k) =

Where ®,,, is the wheel angular velocity, ipgr is the transmission gear ratio, i, is the ratio from the drive motor to
the wheel, i, is the ratio from the generator to the engine, and c is the clutch corresponding to the gear.
From Equation (30), it can be seen that when the vehicle speed exceeds @, ,ipy7 (1), the engine speed is:

0, = OypipaT(C), € >2 31

For a two-gear DHT, how to obtain the optimal economic gear for the engine while maintaining power performance
is an important aspect of HEV energy management. To obtain the distribution of the optimal shift point ¢* for the engine,
the gear with the minimum system energy loss is selected, that is:

ipgt (¢*) = argmin Z (n—yn) |, c>2 (32)
neN
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In order to obtain the optimal shift line for low and high load conditions, the optimal shift points for both the unloaded
and fully loaded vehicle mass need to be calculated under a given driving cycle.

3.3 A-ECMS
3.3.1 Hybrid objective function

Based on the principle of minimizing energy loss, as represented by formula (23), the objective function must
simultaneously consider both emissions and minimizing the number of engine start/stop. Minimizing emissions primarily
involves minimizing changes in engine power, specifically, changes in both series and parallel power. Minimizing the
number of engine start/stop refers to determining a reasonable number of engine starts and stops under the premise of
minimizing energy loss and emissions. Therefore, the objective function should be transformed into a mixed objective
function in vector form as follows:

J= ’ lz (un(t) _yn(t))+(P1M1 (Tclnm wstrl)”strt +C(P2 | Ue (Te(t)v Ne_ (t)) (33)

o | neN
= Uy, (1) [C@2]tte (To_ (1), 1e(1)) — e, (2) |] dt

Where u; is the fuel energy consumed during each engine start, which is related to the engine coolant temperature
T.1;¢ and the target startup speed @y;. 1y is the accumulated start count vector, and ¢; and ¢, are calibratable factors.
In the parallel mode, ¢ = 1, ¢ = 0, in parallel mode, and vice versa.

3.3.2 Hamiltonian function

The Pontryagin’s Maximum Principle (PMP) is a powerful tool for solving local optimization problems. It allows the
redefinition of the optimal control problem under local conditions represented by differential equations and instantaneous
minimization. Based on the state Equation (20), the Lagrange multiplier A (¢) is introduced, and the Hamiltonian function
can be expressed as:

H= Z (Mn(t) 7yn(t)) + Qrug (Tclntv wstrt)nstrt +c@ | Ue (Te(t); ne,an(t))
neN

(34
— ey (1) [4C@2 tte (Te_er (1), 1 (1)) = the_ ey (t) | +2(8)ttch

To identify whether the boundary value of the constraint condition is exceeded, an additional penalty function y(k)
is introduced, then (34) can be rewritten as:

H= Z (tn () =0 (t)) + @11ty (Teine, Ogire) Rstrt + Q2 | Ue (T6(t), Re_uer (’))
nenN

(35)

— Ue_act (t) | +cp ’ue (Tefact(t); ne(t>) — Ue_act (t)’ + (ﬂ, (t) + ’V(t))u&‘h

Where:
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0 if boundary not activated
y(t) = { —K if upper boundary activated (36)

K  if lower boundary activated

In order to satisfy the SOC and NVH constraints (26) and (27), penalty functions are introduced:

p (SOC(t)) =1- < (SSOOC?HEZ :ggg;jm(;)/z) (37)
Vi) = 1 (e V) )

Where SOC,f(r) and NV H .(t) are the corresponding reference values, and a takes an odd number. The Hamiltonian
function can then be written as:

H= Z (un(t) _yn(t)) + Qrug (Tclntu wstrt)”strt +cp ‘ Ue (Te(t)a Ne_ ey (t)) (39

nen
—the_ o (1) [HC@2 e (To_ oo, (1), o)) = tte_oe, (1) | +(A(2)
+ (1)) p(SOC(2)) p(NVH (1) )tech

S.T.(24), (25), (26), (27), (28) (40)

In parallel mode, when ¢ = 1 and ¢ = 0, the Hamiltonian function H is referred to as the parallel Hamiltonian function,
denoted as H,; conversely, when ¢ = 0 and ¢ = 1, H is referred to as the series Hamiltonian function, denoted as Hy. The
optimal control is then

T, = argmin H 41)

Wheren e N = {e, g, d}

3.3.3 Equivalent factor adaptation [14, 15]

The adaptive algorithm uses the classic PI controller, as shown in Equation (42):

A=X+K, (xrf~—x)+Ki/(x,f~—x) dt (42)
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X7 is the reference state variable. The above equation has three parameters (49, K, K;) that need to be adjusted,
where A is the optimal initial value corresponding to different initial SOCs obtained through offline simulation using the
DP algorithm, and linear interpolation is used to determine the value.

4. Real-time energy management control
4.1 DP-based shift strategy

The Dynamic Programming (DP) algorithm solves the WLTC cycle offline in a backward manner. The optimal state
trajectory for different initial SOCs and the engine operating point distribution for different gears are obtained, as shown
in Figures 6 and 7.

2

i
i
L
i

- -

5

SOC (%)

i
|
A
A
A
k
N

25 T T T T T T T T T T T T
1 151 301 451 601 751 901 1,051 1,201 1,351 1,501 1,651
£(s)

Figure 6. The Optimal SOC trajectory of WLTC using DP
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Figure 7. DHE optimal operating point distribution

Considering cost and calibration continuity, domestic OEMs adapt the shift strategy of hybrid vehicles based on
traditional vehicles. The shift MAP is based on the Accelerator pedal position (App) and vehicle speed (u,) [16, 17].
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Table 2. Powertrain parameters

Component Parameter Value
Displacement/L 1.5
ENG Maximum power/Kw 130
Maximum speed/r-min~! 6,000
Maximum torque/N-m 283
GEM Maximum power/Kw 78
Maximum torque/N-m 95
Peak K 1
DEM eak power/Kw 35
Peak torque/N-m 315
DHT Number of engine gears/- 2
Number of motor gears/- /
Battery capacity/Ah 20
Hvbat Battery energy/kWh 2
Rated voltage/V 400
Maximum current/A 400

In this study, the HEV uses a two-gear, two-clutch DHT with a P1 + P3 architecture. Table 2 lists the parameters of
each component. The shift map of this DHT is not related to vehicle velocity (u,) or Accelerator pedal position (App), as
shown in Figure 8. The shift point distribution is chaotic, which is difficult to obtain downshift and upshift lines.

100 1 AX

90 1 X Up gear ) 4

80 1 A Down gear

70' A X
@60- *A %
Eso- A A A
< 40 A X

30 A A ) 1

N T

0 - - . T T X. T T

0 10 20 30 40 50 60 70 80

90 100 110 120 130

Figure 8. Shift point distribution based on App and vehicle velocity

Unlike traditional vehicles, HEV have multiple power sources. The accelerator pedal position reflects the driver’s
demand, which must be met by both the motor and engine. Therefore, the engine shift map should be related to engine
speed and torque, as shown in Figure 9. The distribution of upshift and downshift points is significantly more concentrated
compared to Figure §, making it easier to obtain the shift lines. As shown in Figure 9, considering drivability, isolated

shift points (marked in circles) are not considered in the upshift line.
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Figure 9. Shift point distribution based on engine torque and engine speed extracted from the optimal solution obtained using DP

Thus, the shift strategy should be based on the DHE speed and DHE torque upshift and downshift MAP.

4.2 Real-time energy management control based on ECMS-DP

For the DHT shift strategy in real-time energy management control, DP is used to solve the WLTC cycle offline to
obtain the shift line shown in Figure 9, while A-ECMS is used for energy torque distribution, mode determination, and
start/stop control.

Figure 10 shows the frame of the real-time energy management, which mainly includes the shift control module based
on the DP shift line (Figure 9); the PMP module is established according to the Hamiltonian function (Formula (39)) and
based on PMP (Formula (39)), aiming to obtain the optimal decision; the subsystem module is established according to the
subsystem models, and the constraint condition module is established according to the constraint conditions; the demand
speed and speed calculation module realizes the discretization of engine torque in parallel mode and the discretization of
engine speed in series mode. Among them, the demand torque and speed in series mode are mainly based on the optimal
power line of the engine.

The real-time energy management control based on ECMS-DP uses a time-sharing call to calculate the series and
parallel Hamiltonian functions H and H,, as shown in the following Figure 10. Modular subsystem and PMP modules use
5 ms task, 5 ms for calculating H,, and 5 ms for calculating H,. In this alternative calculation, such alternate calculation
is equivalent to 10 ms for calculating once H,, and Hy, while other modules use 10 ms task.

4.2.1 Desired mode determination

The determination of the desired series or parallel mode is mainly based on the series and parallel Hamiltonian
functions. If the condition in Equation (43) is satisfied, the system enters the desired parallel mode; otherwise, it enters
the non-parallel mode. However, mode switching delays and hysteresis operations must also be considered.

min (H),) < min (Hj) (43)

4.2.2 Optimal reference SOC

For a fixed driving path, the calculation of the equivalent factor adaptive reference state variable x, mainly uses the
DP algorithm to offline obtain the optimal SOC trajectory, as shown in Figure 6, and the linear interpolation algorithm is
used to calculate it.
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Figure 10. The real-time energy management frame based on ECMS-DP
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5. Real vehicle validation

To verify the effectiveness and rationality of the proposed ECMS-DP-based real-time energy management strategy,
the strategy was integrated into the Power Domain Control Unit (PDCU) and subjected to a real-vehicle WLTC cycle
dynamometer test. The test results were compared with those of the Rule-Based Threshold Control. The Power Domain
Control Unit (PDCU) adopts the VCU 8.1 32-bit hardware platform from United Automotive Electronic Systems Co., Ltd.
(UAES), and the dynamometer test bench used is the emission dynamometer test bench from AVL.
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Figure 11. SOC vs. A in WLTC cycle test

In order to effectively verify the fuel economy of the HEV during the WLTC cycle, the test requires that the battery
remain in energy balance throughout the cycle, meaning ASOC = 0 as per Equation (26). As shown in Figure 11, the initial
SOC of the entire WLTC cycle is 60%, and the terminal SOC is also 60%, indicating that the energy management strategy
can maintain electrical balance throughout the WLTC cycle. It can be seen that as the equivalent factor (1) increases, the
cost of generation is higher under the electrical balance constraint, leading the strategy to favor starting the engine to drive.
However, under the constraint of ASOC = 0, the fluctuation range of SOC is about [37%, 70%], which does not make full
use of the power battery.

One of the main aspects of the HEV energy management strategy is the selection between series and parallel modes.
In this study, the series and parallel Hamiltonian functions are primarily used for this purpose. If the calculation satisfies
the condition in Equation (43), the system enters the desired parallel mode; otherwise, it enters the non-parallel mode. To
avoid frequent mode switching, delays and hysteresis are considered. As shown in Figure 12, when the minimum value of
ECMS_H_HamltFunctionSerlMin (Hj) is greater than that of HamltFunctionParlMin (H,), the system operates in parallel
mode. During the low-speed stage of the WLTC cycle (300 s-400 s), series mode is primarily used, with the engine speed
around 1,800 rpm and torque around 110 Nm, located in the engine’s efficient zone (Figure 7). During the mid-speed
stage (680 s-1,100 s), the minimum values of the series and parallel Hamiltonian functions fluctuate significantly, leading
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to frequent gear shifts. As shown in Figure 12, the minimum values of the Hamiltonian function should be filtered. In the
high-speed stage (1,500 s-1,880 s), parallel mode is primarily used, and the corresponding equivalent factor is relatively
large (Figure 11). Of course, the entire driving process is also related to the driver’s driving habits.
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Figure 13 shows the comparison between the ECMS-DP-based strategy and the Rule-Based Threshold Control. The
Rule-Based Threshold Control does not maintain electrical balance throughout the entire WLTC cycle, with an initial SOC
of 63%, and a termination SOC of 58%. In contrast, compared with the ECMS-DP-based strategy, the SOC fluctuation
range is smaller, approximately between [45%, 65%]. When comparing the Rule-Based Threshold Control instantaneous
fuel consumption (PT_FUEL C NSMASSFLOW) and the ECMS-DP-based energy management strategy instantaneous
fuel consumption (ECMS_Fuel EngMassFlow) of the whole cycle, it can be observed that even though the Rule-Based
Threshold Control does not maintain electrical balance, the engine operates for a longer period. As a result, the cumulative
fuel consumption of the Rule-Based Threshold Control is still higher than that of the ECMS-DP-based strategy. The fuel
consumption per 100 kilometers for the Rule-Based Threshold Control is 6.57 L, while for the ECMS-DP-based energy
management strategy, it is 6.22 L.
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Figure 13. Comparison between ECMS-DP-based and Rule-Based Threshold Control in WLTC cycle test: FUELMASSFLOW vs SOC

6. Conclusions

This paper proposes a real-time energy management strategy for DHT HEV based on ECMS-DP, with the goal
of minimizing energy loss as the objective function. The aim is to decouple the subsystems to facilitate distributed
development. The shift control strategy is derived offline using the DP algorithm and extracting the optimal shift points
from the WLTC cycle. The strategy is combined with A-ECMS, using a hybrid objective function and applying the PMP
to directly solve the optimal control problem. Compared to the Rule-Based Threshold Control, this approach does not
require a large amount of calibration work (such as calibration tables and expert experience). To validate the effectiveness
of the proposed strategy, a real vehicle hub test was conducted. The results show that the strategy effectively utilizes
the battery capacity while maintaining electrical balance and provides better fuel economy compared to the Rule-Based
Threshold Control, with a fuel-saving rate of approximately 5.18%.
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